
Future Generation Computer Systems 132 (2022) 124–135

J
A

(
i
c
n
t
f

y

h
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Quantune: Post-training quantization of convolutional neural
networks using extreme gradient boosting for fast deployment✩

emin Lee ∗, Misun Yu, Yongin Kwon, Taeho Kim
rtificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, South Korea

a r t i c l e i n f o

Article history:
Received 27 June 2021
Received in revised form 26 December 2021
Accepted 10 February 2022
Available online 17 February 2022

Keywords:
Quantization
Neural networks
Model compression
Deep learning compiler

a b s t r a c t

To adopt convolutional neural networks (CNN) for a range of resource-constrained targets, it is
necessary to compress the CNN models by performing quantization, whereby precision representation
is converted to a lower bit representation. To overcome problems such as sensitivity of the training
dataset, high computational requirements, and large time consumption, post-training quantization
methods that do not require retraining have been proposed. In addition, to compensate for the
accuracy drop without retraining, previous studies on post-training quantization have proposed several
complementary methods: calibration, schemes, clipping, granularity, and mixed-precision. To generate
a quantized model with minimal error, it is necessary to study all possible combinations of the methods
because each of them is complementary and the CNN models have different characteristics. However,
an exhaustive or a heuristic search is either too time-consuming or suboptimal. To overcome this
challenge, we propose an auto-tuner known as Quantune, which builds a gradient tree boosting model
to accelerate the search for the configurations of quantization and reduce the quantization error.
We evaluate and compare Quantune with the random, grid, and genetic algorithms. The experimental
results show that Quantune reduces the search time for quantization by approximately 36.5× with an
accuracy loss of 0.07–0.65% across six CNN models, including the fragile ones (MobileNet, SqueezeNet,
and ShuffleNet). To support multiple targets and adopt continuously evolving quantization works,
Quantune is implemented on a full-fledged compiler for deep learning as an open-sourced project.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In spite of the prevalence of convolutional neural networks
CNNs), the high computational requirements restrict their use
n resource-constrained devices [1]. To address this challenge,
onsiderable research is being done on the compression of neural
etworks. One of the promising compression methods is quan-
ization, which converts high-precision representations (32-bit
loating point) into lower bit representations (int8 fixed point).
Quantization can reduce the model size of the CNN, memory
footprint, and energy consumption and improve the inference
time by utilizing special instructions supported by the hardware
platforms.

To compensate for the accuracy drop of the quantized mod-
els, most of the quantization methods consider retraining [2–9].

✩ This work was supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No. 2018-0-00769, Neuromorphic Computing Software Platform for
Artificial Intelligence Systems).
∗ Corresponding author.

E-mail addresses: leejaymin@etri.re.kr (J. Lee), msyu@etri.re.kr (M. Yu),
ongin.kwon@etri.re.kr (Y. Kwon), taehokim@etri.re.kr (T. Kim).
ttps://doi.org/10.1016/j.future.2022.02.005
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
However, this method, which is commonly referred to as
quantization-aware training (hereinafter referred to as QAT), is
not widely adopted in real-world scenarios because of the fol-
lowing issues. First, a full-size dataset is often unavailable owing
to privacy concerns or because it is proprietary information.
Second, the retraining process in QAT is time-consuming and
resource-hungry because of the long periods of tuning. Third,
its hyper-parameter tuning is complicated because it requires
considerable expertise to develop the architecture of CNNs. Such
limitations prevent us from deploying quantized models in a
timely manner.

In practice, post-training quantization (hereinafter referred to
as PTQ) methods are widely utilized owing to their good applica-
bility [2,10–17]. To recover the accuracy drop, previous studies on
PTQ have proposed the following diverse complementary meth-
ods: novel schemes for mapping [2,10], calibration for activation
of quantization [2,10], granularity for sharing quantization pa-
rameters among tensor elements [2,10], clipping [11–13,15,16],
and mixed-precision [17]. In this study, we define a quantization
configuration as a combination of such complementary methods.
Based on our experiments, as shown in Table 1, the quantiza-
tion configurations vary with the target CNN models to attain
optimal results. Nonetheless, possible quantization configurations
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2022.02.005
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.02.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:leejaymin@etri.re.kr
mailto:msyu@etri.re.kr
mailto:yongin.kwon@etri.re.kr
mailto:taehokim@etri.re.kr
https://doi.org/10.1016/j.future.2022.02.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

v
c
h
n
p
b
c

c
o
t
t
a
s
e
f
m
p
t
f

ary depending on the target hardware devices. For example,
omplicated quantifiers are not tolerated on highly constrained
ardware like integer-only accelerators [18,19]. Therefore, it is
ecessary to perform the configuration search every time de-
ending on the model and the hardware across all the com-
inations. However, it is daunting to explore all the possible
onfigurations when quantization requests occur.
To overcome this challenge, we propose an auto-tuner for

onfiguration search using a gradient tree boosting model (based
n XGBoost [20]) known as Quantune. Quantune generates quan-
ized models without noticeable accuracy degradation and re-
raining and supports multiple hardware platforms (CPU, GPU,
nd integer-only accelerator) by implementing them on an open-
ource deep learning compiler stack. We assume that the features
xtracted from the CNN models are related to quantization con-
igurations. Based on such an assumption, we build an XGBoost
odel, considering the features, configurations, and accuracy. We
erform our search algorithm to find the quantization configura-
ion. To support multiple targets as a unified quantization model
ormat, we implement Quantune on a compiler stack known
as Glow. For a rich configuration, we extend Glow to enable
layer-wise mixed precision (int8 and fp32) and integer-only quan-
tization. Quantune enables the generation of quantized models for
a range of targets including the CPU, GPU, and integer-only hard-
ware such as an accelerator. For the integer-only hardware, we
use Versatile Tensor Accelerator (VTA) [21] as an open-hardware
architecture. To support the VTA, the entire inference processes
comprise only integer multiplication, addition, and bit-shifting.

We evaluate Quantune, in terms of the efficiency of the pro-
posed search algorithm, accuracy of the quantized models, and
end-to-end latency of the embedded CPU, server-side CPU, and
GPU. The experimental results show that Quantune is 1.3–36.5
times faster than the random, grid, and genetic algorithms and
achieves better quality in terms of quantization for the six mod-
els across the CPU, GPU and NPU. To prove the quality of the
quantized models, Quantune is compared with mature tools such
as TensorRT and TVM, which support the PTQ on the GPU and
integer-only accelerator (VTA), respectively. Regarding TensorRT,
the experimental results show competitive accuracy of the quan-
tized models in ResNet18, ResNet50, ShuffleNet, and SqueezeNet,
and better results in GoogleNet. Quantune precisely quantizes
fragile models such as MobileNet, ShuffleNet, and SqueezeNet
despite their small representational capacities [22]. In the case
of the integer-only accelerator, Quantune achieves a 32.52% im-
provement in accuracy compared to TVM-VTA [18].

By implementing Quantune on the compiler stack, the quan-
tized models can be performed on the CPU, GPU, and the accel-
erator. Therefore, the executable binaries for the CPU, GPU, and
accelerator are generated from the quantized models. We mea-
sure the end-to-end inference time of the quantized models on
the edge-side CPU, server-side CPU, and server-side GPU. Quan-
tune achieves speedups of 0.34–1.22, 0.27–2.6, and 0.93–1.57
on ARM-A53, Intel-i7-8700, and NVIDIA 2080ti GPU, respec-
tively, against fp32 execution. From the experiment, it can be
seen that latency is not improved for all the quantized mod-
els because the extended compiler does not exploit fast 8-bit
multiply-accumulate instruction (ARM-vmlal, Intel VNNI, and
NVIDIA-DP4A) provided by hardware vendors while generating
the kernel code. This indicates that quantization is not only a
method that can reduce the memory footprint as in conventional
applications, but also a mandatory step to develop deployable
CNN models on the integer-only accelerator. The efficient ker-
nel code generation for the quantized models is an important
research direction; however, that is beyond the scope of this
paper.

The main contributions of our work are summarized as fol-
lows.
125
• We show that the optimal configurations for quantization
are diverse depending on the CNN models. To demonstrate
the diversity of the quantization configurations, we conduct
entropy analysis. As a result, it is found that the entropy
of each complementary method is not the same across all
the CNN models. There is no universal configuration that is
always applicable regardless of the type of CNN models.
• To efficiently explore all combinations of the quantiza-

tion model, we propose Quantune, which combines both
XGBoost and transfer learning to seek the optimal configura-
tion. Quantune significantly outperforms the grid,
random, and genetic algorithms by approximately 36.5×
with a 0.07–0.65 accuracy loss across the six CNN models.
• For practical use and as an extension, Quantune was im-

plemented on the open-source compiler stack known as
Glow [23], instead of performing a pure algorithm design.
The extended Glow provides layer-wise mixed precision
and integer-only quantization. Therefore, we generated the
binary code of the quantized models for diverse hardware
targets ranging from CPU (x86 and ARM) to the integer-only
accelerator (VTA). To support the integer-only accelerator,
Quantum not only quantized weights, activations, bias, and
scales, but also generated a computational graph that is
comprised of integer multiplication, addition, and bit shift
without any floating-point computation.
• Regarding the quality of the quantized models, Quantune

achieves 0.59% better accuracy in GoogleNet slim v4 than
TensorRT-7.2.2 on the NVIDIA GPU. Regarding the integer-
only quantization, Quantune significantly outperforms the
previous result (based on single-scale quantization across
the whole layer) by approximately 32.52%. In addition, we
directly measure the end-to-end inference time of the quan-
tized models on a real CPU and GPU.

2. Related work

Quantization has attracted significant attention owing to its
tangible benefits for model compression. In this section, we cate-
gorize previous studies on quantization into post-training quanti-
zation and quantization-aware training and describe the novelty
of our study in each category by comparing it to the existing tools.

2.1. Quantization-aware training

Quantization-aware training (QAT) methods map high bit pre-
cision to low bit precision using training step [2–9]. QAT reduces
the accuracy drop from the quantized model by using a retrain-
ing procedure that is performed for a few epochs. Owing to
retraining, QAT is able to quantize CNN models in low precision
representation without noticeable accuracy drop and can even
operate at 2 bits. However, QAT has the following limitations: (i)
retraining is time-consuming, (ii) the training data are not always
accessible by third party services, and (iii) its hyper-parameter
tuning is complicated. Even using active and continual learning
works does not completely mitigate these limitations [24–27].
Therefore, considering its rapid deployment and practical usage,
we focus on post-training quantization that does not require
retraining based on the training data.

2.2. Post-training quantization

Post-training quantization (hereafter called PTQ) methods map
high precision representation bits to low-precision bits without
re-training steps [2,10–17,28,29].

Post-training quantization is widely adopted in practical cases
because it is not necessary to access the full training dataset for

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

h
c

V
h
t
p
e
s
m
t
d
s
s
c
e
o

3

b
t
q
t
q
b

Table 1
The best results among all the possible quantized models for six CNN models. Hereafter, we abbreviate MobileNet V2 as ‘‘MN’’, ShuffleNet V1 as ‘‘SHN’’, SqueezeNet
V1 as ‘‘SQN’’, GoogleNet Slim V4 as ‘‘GN’’, ResNet18 V1 as ‘‘RN18’’, and ResNet50 V1 as ‘‘RN50’’.
Model name Precision # of images for calibration Granularity Clipping Scheme Accuracy (Error)

MobileNet V2(MN) int8 1,000 Channel KL Asymmetric 71.23(−0.58)%
ShuffleNet V1(SHN) int8+fp32 1 Channel Max Symmetric uint 63.59(−0.37)%
SqueezeNet V1(SQN) int8 1,000 Channel KL Asymmetric 53.15(−0.65)%
GoogleNet Slim V4(GN) int8 1,000 Tensor KL Asymmetric 70.58(+0.19)%
ResNet18 V1(RN18) int8 1,000 Tensor KL Asymmetric 70.25(−0.42)%
ResNet50 V1(RN50) int8 10,000 Channel KL Asymmetric 76.01(−0.07)%
retraining. Post-training quantization remedies the large time-
consumption for retraining and the data privacy issue.
Therefore, it helps rapid deployment of the CNN models on
resource-constrained devices. Typically, PTQ leads to non-trivial
accuracy degradation, especially in low precision representations.
Owing to the prevalence of int8 data type support in the many
ardware platforms, most of the previous studies on PTQ have fo-
used on int8 quantization and proposed several methods such
as diverse schemes, clippings, and mixed-precision to recover the
accuracy drop. However, our experimental result shows that the
quantization configurations for the best accuracy are dependent
on the CNN models. There is no universal configuration that is
always applied to attain the most accurately quantized mod-
els. Considering each CNN model, a naive parameter search is
time-consuming. We overcome this challenge to seek the best
configurations for each CNN model. Empirically, this study is the
first work to find the optimal quantization strategy using the
machine learning model.

2.3. Deep learning compilers

The increasing demands for efficiency on the deep learn-
ing (DL) models has made deep DL compilers prevalent. Deep
learning compilers have been proposed in both academia and
industry. Most of the DL compilers focus on improving the quan-
tization ability of a single class of hardware platform such as
Intel nGraph [30], NVIDIA TensorRT [16], ARM NN,1 and Xilinx
itis.2 Nonetheless, it is difficult to extend such tools to other
ardware platforms owing to their proprietaries. On the contrary,
here are community-driven DL compilers for multiple hardware
latforms: TVM [31] and Glow [23]. Such open-source DL compil-
rs support adequate capabilities to adopt diverse quantization
ettings on multiple targets. Each of them needs to go through
anual search procedures to find the optimal quantization set-

ings because of the lack of an auto-tuner, hindering the rapid
eployment of the models. Quantune complements the existing
tudies on the open DL compilers. Quantune introduces a novel
earch algorithm that generates the optimal quantized models,
onsidering accuracy. With the integration on Glow, Quantune
mploys full advantages of its compiler to generate kernel codes
n multiple targets.

. Overview

This section describes the overall procedure for quantization
y presenting each module. Fig. 1 shows the overall workflow for
he configuration search (Quantune) and code generation of the
uantized CNN models (Glow Extension). We implement Quan-
une onto Glow [23] (an open-source DL compiler). Therefore, our
uantization method can support a variety of target devices and
ring about rapid deployment. In addition, we release the code

1 https://github.com/ARM-software/armnn.
2 https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html.
126
of Glow extension as a part of NEST-C3 and Quantune imple-
mented in R.4 The two colored components in Fig. 1 represent
either the changed or new ones. In the Quantune module part,
all the components are fully developed for the configuration
search. Considering the Glow, our extension aims to support the
integer-only accelerator and provide layer-wise quantization for
mixed-precision. The overall process of quantization goes through
two phases: calibration and configuration search.

Calibration Phase. The dashed-lines indicate the whole proce-
dure of the calibration phase in Fig. 1. In this phase, the histogram
of possible numeric ranges in each layer of the neural network
is captured for the activation of the quantization and saved to
a calibration cache. First, for the calibration, the Glow compiler
takes a pre-trained model and an image as input. The images
are selected from the training dataset using the Image Selector.
Second, the Glow generates the instrumented codes by moving
through the Loader, Graph-IR, and Tensor-IR. Concerning the
Graph IR, the Glow performs two kinds of optimizations: target
independent and target dependent passes. In Tensor-IR level, the
Glow determines a schedule of operators while optimizing the
memory usage. Finally, the histogram of the tensor values is
generated by observing the execution during the inference to
capture the possible numeric ranges of activations in each layer
of the neural network.

Search Phase. The solid-lines indicate the whole procedure of
the search phase in Fig. 1. In this phase, the quantized models
and optimized codes are generated with the configuration. As
mentioned earlier, the quantization error varies in a chosen con-
figuration. To quickly find the optimal configuration, Quantune
efficiently explores the possible configurations based on the XG-
Boost models that are trained with the model architecture (ei),
explored configuration (si), and measured accuracy (ci). All the
possible configurations are detailed in Section 4. Further details
of the search algorithm are described in Section 5.

4. Quantization methodology

In the calibration phase, Quantune collected calibration data
and saved them into the calibration cache. The calibration cache
containing the distribution of numerical data as a histogram was
used to obtain accurate thresholds for each tensor in the original
fp32 model. The quantized models are generated by calculating
the scale (a quantization parameter) based on the collected data
of the activation tensors. The search space of the possible configu-
ration for quantization is the combination of five complementary
methods (calibration, scheme, clipping, granularity, and mixed-
precision) that affect the accuracy of the quantized models. Eq. (1)
denotes the space of the possible configurations.

Search Space(96) = Calibration Cache(3)×
Scheme(4)× Clipping(2)
×Granularity(2)×Mixed Precision(2) (1)

3 https://github.com/etri/nest-compiler.
4 https://github.com/leejaymin/qaunt_xgboost.

https://github.com/ARM-software/armnn
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://github.com/etri/nest-compiler
https://github.com/leejaymin/qaunt_xgboost

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

a

Fig. 1. System overview of the proposed quantization framework. Our framework consists of two modules (Quantune and Glow Extension) and two phases (Calibration
nd Search).
Fig. 2. Accuracy with int8 quantization of weights and activations. The considered configurations are calibration, schemes, clipping, granularity, and mixed-precision.
The dashed-lines indicate full-precision accuracy (fp32).
The time cost of the accuracy measurement for a configuration
exploration ranges from minutes to hours, depending on hard-
ware platforms. As listed in Table 2, we quantified time costs
of measuring accuracy depending on the processors capability
of the target devices. Hence, the accuracy measurement across
127
the six models took 0.12–0.58 h on GPU(2080ti), 0.51–12.05 h
on CPU(i7-8700), and 10.54–374.15 h on CPU(a53). Even though
we restrict the possible search space by applying a configuration
to the whole layers, an exhaustive search that covers all the
combinations of the configurations may take few days when it

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

g
t
e
s
c
p
w

4

p
u
t
s

i
w
r
q
t
H
p
r
c
o

Table 2
Time cost for measuring Top1 accuracy depending on target devices.
Model Measurement time (h)

CPU(a53) CPU(i7-8700) GPU(2080ti)

MN 26.14 1.84 0.22
SHN 10.53 0.51 –
SQN 11.56 0.52 0.03
GN 374.15 12.05 0.58
RN18 53.31 2.34 0.12
RN50 126.65 4.87 0.22

is performed on the edge and mobile systems. In the following
subsection, we elaborate each quantization configuration.

4.1. Calibration cache

There are many ways to generate a calibration cache. The
enerated calibration cache depends on the given images during
he calibration phase, as shown in Fig. 1. Moreover, the consid-
red images for the calibration phase are selected by the image
elector. To shirk the search space, the image selector randomly
hooses images from the ImageNet training dataset using three
arameters: 1, 1000, 10,000. Therefore, three calibration caches
ere used.

.2. Scheme

Considering an efficient code generation on multiple hardware
latforms, we focus on a uniform integer quantization. Regarding
niform quantization, the schemes to map the real values to
he integers are composed of four linear methods: asymmetric,
ymmetric, symmetric with uint8, and symmetric power2.

Asymmetric: This scheme stands for affine. The float range is
converted to [−2n−1, 2n−1

− 1], where qmin is −128 and qmax
is 127. This scheme fully uses the presentation capability of int8.
The quantizer of this scheme is defined by the following:

xi8 = Quant(xfp32) = ROUND
(xfp32
scale

+ zero point
)

, (2)

where xfp32 is a real value (fp32) and xi8 is 8 bit-width of a signed
integer value. In Eq. (2), scale is defined as

scale =
maxfp32 −minfp32

2n − 1
, (3)

where maxfp32 and minfp32 are maximum and minimum values
in the current feature map, respectively. In Eq. (2), zero point is
defined as:

zero point = −ROUND(
minfp32

scale
)− 2n−1 (4)

The dequantizer of this scheme is defined as follows:

xfp32 = Dequant(xi8) = scale · xi8 − zero point (5)

Symmetric: The real zero directly maps to the quantized zero.
It does not convert the min and max of the fp32 range to the
quantized range (int8). Instead, the absolute maximum value
between the min and max of the fp32 range is used to set the
qmin and qmax. Symmetric scheme is more efficient than that of
the asymmetric because it does not use zero point . However, the
symmetric scheme can result in a severe quantization error when
the minimum and maximum values are significantly different.
The quantizer of the symmetric scheme is defined as

xi8 = Quant(xfp32) = ROUND(
xfp32) (6)

scale t

128
In Eq. (6), scale is defined as

scale =
MAX(ABS(xfp32))

2(n−1) − 1
, (7)

where MAX(ABS(xfp32)) is an absolute maximum value among real
values in the current feature map. The dequantizer of this scheme
is defined as follows:

xfp32 = Dequant(xi8) = scale · xi8 (8)

Symmetric with uint8: This scheme is a combination of
asymmetric and symmetric schemes. This scheme adaptively
switches the quantization method depending on the distribution
of real values. By configuring the offset depending on whether
negative values exist, this scheme achieves a computation over-
head that is less than or equal to that of asymmetric scheme, and
an accuracy higher than or equal to that of symmetric scheme.
In this scheme, zero point is determined in either zero or −128.
The determined zero point enables the quantization scheme to
be either symmetric(zero point = 0) or asymmetric (zero point =
−128). In the code level, uint8 ranges are represented by com-
bining int8 ranges and the zero point of −128. The quantizer of
this scheme is defined as follows:

xi8 = Quant(xfp32) = ROUND(
xfp32
scale

+ zero point) (9)

In Eq. (9), scale is defined as

scale =
MAX(ABS(xfp32))

2n − 1
, (10)

where MAX(ABS(xfp32)) is an absolute maximum value among real
values in the current feature map. In Eq. (9), zero point is defined
as

zero point =
{
−128, if minfp32 ≥ 0
0, otherwise

(11)

The dequantizer of this scheme is defined as follows:

xfp32 = Dequant(xi8) = scale · xi8 − zero point (12)

Symmetric with power of two-scale: This is similar to the
symmetric. This scheme represents the quantized ranges by map-
ping real zero to the quantized zero. In addition to the zero
mapping, this scheme converts a real scale to approximately
a power of two-scale. By doing that, the power of two-scale
quantizer substitutes multiplications by bit-shift operations. The
multiplication elimination makes the hardware design simpler
and leads to a better performance although it results in a poor
representation of the quantized range. In addition, only integer
operators are used in the entire inference. For that reason, the
quantized model with symmetric with power two-scale is deployed
on integer-only hardware. The quantization operation is defined
by the following:

scale = 2

⌈
log2

MAX(ABS(xfp32))

2(n−1)−1

⌉
(13)

In summary, the four schemes constitute a trade-off between
nference latency and quantization error. As listed in Table 3,
e have classified the advantages and drawbacks into four met-
ics based on the following questions: (i) How precise is the
uantization mapping? (fine-grained mapping); (ii) How well is
he skewed distribution handled (robustness to skewness); (iii)
ow much is the execution overhead of quantization? (low com-
utation); and (iv) Can the quantization computation be solely
epresented with integer operators? (integer-only hardware). The
omparison reveals that the four methods complement each
ther because each scheme has its advantages and disadvantages;
hus, there is no superior among these four schemes.

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

a
s
t
o
s
q
m
s

t
m
m
p

4

v
a
f
s
g
i
a
t
d
l

4

m
G
l
w
s
s
s

5
i

5

t
o
a
c
C
t
t

l

s

Table 3
Comparison of quantization schemes. Three symbols ✓, ▲ and, ✗ denote full, partial, and no supports respectively.
Schemes Fine-grained mapping Robustness of skewness Low computation Integer-only HW

Asymmetric ✓ ✓ ✗ ✗

Symmetric ▲ ✗ ✓ ✗

Symmetric with uint8 ▲ ▲ ▲ ✗

Power of two-scale ✗ ✗ ✓ ✓
o
v
e

m
e
u
f
o

5

t
s
l
r
d
t
c

c
c
i
B
x
e

f

F

4.3. Clipping

Without the retraining step, a uniform quantization causes
n accuracy drop. Accuracy loss mainly stems from the Gaussian
hape of the distributions for weights and activations of the pre-
rained neural networks [9,32]. Considering such a characteristic
f the distributions, a few weights and activations are sparsely
pread as outliers. The outliers in a long tail make a uniform
uantizer assign few quantization levels to small values and too
any to large ones. This skewness of the distributions leads to
ignificant accuracy degradation [2,13].
To rectify this problem, the Glow compiler allows clipping

he range of the distributions for weights and activations. This
ethod chooses a clip threshold which (approximately) mini-
izes the Kullback–Leibler (KL) divergence between the floating-
oint and quantized [16].

.4. Granularity

Considering the quantization, we decided on how far the scale
alue should be shared among the tensors. We refer to this choice
s quantization granularity. We consider two kinds of granularity
or the quantization: tensor-wise and channel-wise. Granularity
hows the trade-off between accuracy and latency. Fine-grained
ranularity requires more computation because of the increas-
ng multiplications [17]. Furthermore, a convolution containing
wide range of weight values should consider the channel-wise
o compute the scale for quantization. Therefore, granularity is
etermined by examining the granularity impact on accuracy and
atency.

.5. Mixed-precision

As a part of the extended Glow, we implemented layer-wise
ixed precision by extending the Glow compiler. The original
low compiler does not support the mixed-precision at the layer
evel. Instead of considering all the layers for the mixed-precision,
e only keep the first and last layers of the original preci-
ion (fp32). This is because an experimental result of a previous
tudy [17] demonstrates that the first and last layers are the most
ensitive to the quantization error.

. Modeling: Parameter search using eXtreme gradient boost-
ng

.1. Problem definition

The quantization configuration search is performed using his-
orical data previously found in other CNN models regardless
f having to search for a new quantization configuration from
random initial point. We hypothesize that the quantization

onfigurations of a CNN model is related to other configurations.
onsidering the model, a next configuration can be predicted and
he result sends feedback to the online training process to update
he model.

As described in Eq. (14), our tuning problem can be formu-
ated, considering two kinds of features as demonstrated below:

∗

opt = argmax f (g(e, s)) (14)

s∈Se

129
First is the block expression of the CNN as denoted by e. The
CNN block expression e consists of the following operations:
the number of layers, convolutions, activation functions, skip-
layers, and depth-wise and pointwise convolutions. These kinds
of blocks are based on the predefined common structures in the
neural architecture search [33,34]. The blocks have been used to
reduce the search time and to find a good model in the neural
architecture search [33,34].

We generate multiple quantized models that have different
accuracies for a given e ∈ E . We use Se to denote the space of
quantization configurations from e to the quantized models. For
instance, if s ∈ Se let x = g(e, s) is the generated quantized model,
g represents the Glow extension that generates the quantized ten-
sor IR from e, s. We aim to maximize f (x), which is the accuracy
f the quantized models on the target hardware. Particularly, we
erified if an output for f (x) could measure accuracy by running
xperiments on the hardware. For a given g, e, Se, f , the accuracy

of the quantized models are demonstrated using Eq. (14).

5.2. Auto-tuning algorithm

We propose a machine learning (ML)-based auto-tuning to
search the quantization configurations. Fig. 4 shows the compo-
nents of the auto-tuning and how they interact with one another.
To predict the accuracy of quantized model x, the cost model
f̂ (x) is trained using the historical data. The search engine gen-
erates a new quantized model by using the Glow extension and
measures its accuracy on the hardware. The accuracy of the
quantized model is saved in a database as demonstrated below:
D = {(ei, si, ci)}. As shown in Fig. 1, ei, si, and ci denote the
easured accuracy, the extracted model architecture, and the
xplored configuration, respectively. The collected data could be
sed to train f̂ . The following subsections elaborates objective
unction to train a statistical cost model and the design choices
f each component.

.2.1. Cost model and objective function
XGBoost is an extension and improvement of the gradient

ree boosting (GBT) algorithm. The characteristic of XGBoost is
calability, efficiency, sparsity-aware fitting, and well-supported
ibraries [20]. To this end, the XGBoost is widely adopted to solve
eal-world problems such as security [27,35], fault detection [36],
rug discovery [37], and disease diagnosis [38,39]. In addition
o academic fields, XGBoost is the winning algorithm in Kaggle
hallenges [40].
We selected the XGBoost algorithm to train the data suc-

essfully found in the other CNN models and to predict the
onfiguration arising from the most accurate model generation
n the next quantization step. With the cost model f̂ (x) of XG-
oost, we could estimate the accuracy of each quantized model
. Specifically, the cost model f̂ (x) of XGBoost represents a tree
nsemble model that uses K additive functions defined as

ˆ(xi) = ŷi =
K∑

k=1

fk(xi), fk ∈ F (15)

or a given quantized model xi, f̂ (xi) is the predicted accuracy ŷi.
The value of the ith instance is fk(xi) at the kth tree. Moreover,
the values of the space of trees are denoted by the function F .

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

o

O

E
t
i
t
t

O

w

h

W
A

c
n
t
b
t
r
t

5

i
t
h

t
a
m
t
r
r

s
f
s
i
f
g
a

5

t
a
o
i
f
s

Fig. 3. Ranking of the features used for the modeling.

To train the cost model f̂ (x), we follow the regularized ob-
jective function and the optimization method introduced in the
original paper [20]. The regularized objective function of XGBoost
is defined as

Obj =
N∑
i=1

L(ŷi, yi)+
K∑

k=1

Ω(fk) (16)

Eq. (16) consists of two parts: the loss function (L(ŷi, yi)) and the
regularization function (Ω(fk)). L(ŷi, yi) is a differentiable convex
function that computes the difference between the prediction ŷi
and the true label yi. The differentiable convex functions are mean
square error and Logistic loss. The regularization function Ω(fk)
for the kth tree is then defined as

Ω(fk) = γ T +
1
2
λ∥w∥2, (17)

where T is the number of leaves in a tree, γ lies between 0 and 1
and is multiplied by T to reduce the complexity of each leaf, and
λ is a parameter that scales the penalty to avoid the overfitting.

The regularized objective function in Eq. (16) cannot be op-
timized using traditional methods. Instead, the cost model is
trained using an additive method. At the tth step, the ŷi

(t) is
ptimized as follows:

bj(t) =
n∑

i=1

L
(
yi, ŷi

(t−1)
+ ft (xi)

)
+Ω(ft) (18)

ach ft denotes to an independent tree generated by instance i in
he tth step. The additive method combines all ft that maximally
mproves the objective function in Eq. (16). To reduce the compu-
ation cost of the objective function, Eq. (18) is transformed using
he second-order Taylor approximation as follows

bj(t) ≃
n∑

i=1

[
L(yi, ŷi

(t−1))+ gift (xi)+
1
2
hif 2t (xi)

]
+Ω(ft), (19)

here gi and hi are defined as

gi = ∂ŷ(t−1)i
L(yi, ŷi

(t−1))

i = ∂2
ŷ(t−1)i

L(yi, ŷi
(t−1))

(20)

e could simplify Eq. (20) by removing the constant terms.
t step t , the final objective function depends on the first and
130
Algorithm 1 Quantune: Search for the Optimal Configuration.
Input: Macro-arch. blocks e
Input: Search space Se
Output: s∗opt

1: D← ∅ ▷ The collected data will be contained
2: while n_trials < max_n_trials do
3: s← A top candidate in unexplored Se using f̂
4: c ← f (g(e, s))
5: D← D ∪ {(e, s, c)}
6: update f̂ using D
7: n_trials← n_trials+ 1
8: end while
9: return s∗opt ← history best quantization config.

second-order gradients and is defined as

˜Obj(t) =
n∑

i=1

[
gift (xi)+

1
2
hif 2t (xi)

]
+Ω(ft) (21)

Finally, with the simplified objective function in Eq. (21), we
ould iteratively evaluate the model performance after a certain
ode split in a tree. If the tree model performance is improved af-
er splitting, this change will be accepted; otherwise, the split will
e stopped. In this manner, the optimal splitting point for each
ree to minimize the objective function is determined; hence, the
egularization term remedies overfitting during training. This is
he working principle of XGBoost.

.2.2. Training objective function with hyperparameters
The XGBoost models have hyper-parameters which can be set

n order to customize the model for a specific dataset. To train
he XGBoost model, we consider several factors including the
yper-parameters, preprocessing, and loss functions.
First, the hyper-parameters were Eta and gamma. To feed the

dataset to the XGBoost model, we considered the preprocessing
of two kinds of features: a model-arch (ei) and a configuration (si).
Second, the preprocessing can be determined using categorical or
one-hot encoding. In this study, we consider one-hot encoding
features for the preprocessing because it shows better accuracy
than the categorical ones. Third, the possible loss functions for the
training are rank and regression. To apply the rank loss function in
he training process, it is necessary to add rank the information,
nd the ranked information can be grouped by a type of the CNN
odels or whole data. The result of the comparison between the

wo loss functions shows that regression achieves a better search
esult with a lower number of trials. Therefore, we consider
egression function.

To understand the value of the selected features in the con-
truction of the XGBoost model, we performed the analysis of the
eature importance using the XGBoost library in R. The significant
core of the features is simply calculated using purity (the Gini
ndex) [41]. Fig. 3 shows the result of the importance of the
eature. As a result, the number of nodes, calibration (profile),
ranularity, and clipping is important, considering the predicted
ccuracy of the XGBoost model.

.2.3. Search engine
The search engine seeks the optimal configuration of the quan-

ization as described in Algorithm 1. Algorithm 1 takes macro-
rch blocks e and search space Se as its inputs. It produces the
ptimal configuration for quantization as an output. At each
teration, the engine picks a candidate based on ˆf (x) and queries
(x) on the accuracy of quantized model. We enumerate the entire
pace of S and pick the top candidate. The top candidate is not
e

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

i
c
m

6

d
t
m
p

6

t
t
e
s
a
a
w
t
a
c
t
c
t
q
W
d
t
e
c
i

t
w
e
M
w
o

Fig. 4. Auto-tuner to efficiently explore quantization configurations.
explored in the previous step. To accelerate convergence in search
step, we apply transfer learning.

The loop iterates over possible optimal configurations. We set
the maximum iteration max_n_trials = search space as described
in Eq. (1). In Algorithm 1, lines 2–8 describe the steps needed
to obtain an optimal configuration from the possible configura-
tion space Se. At each iteration, the following steps take place
sequentially. First, a top candidate is selected using f̂ , consider-
ng diversity. Therefore, we select a candidate from unexplored
onfigurations and try to measure the accuracy of the quantized
odel on the real target hardware.

. Evaluation

We conducted three experiments: (1) the variation of accuracy
epending on the quantization configurations, (2) effectiveness of
he XGBoost based parameter search in search time and accurate
odel generation, and (3) benefits of the inference time in low
recision representation.

.1. Diversity in quantization configurations

Considering the broad selection of the quantization configura-
ions, it is not obvious to determine which choice mostly reduces
he quantization error. To find out the best configuration, we
mpirically explored various choices for int8 quantization of the
ix models. As described in Eq. (1), the search space includes
large number of configurations. We experimentally explored
ll the combinations that map fp32 to int8 to show that there
as no universal configuration that was always applied to attain
he most accurately quantized models. Fig. 2 shows the Top1
ccuracy. The relative error which substrates the quantized ac-
uracy from the baseline ranges from −71.72% to 0.19% across all
he combinations. Considering the exploration results of all the
onfigurations, we found the following insights. The accuracy of
he quantized models with various configurations varies. Conse-
uently, there is no clear solution to be applied in all the cases.
hether clipping is applied depends on the amount of calibration
ata. If calibration is performed with a small number of samples,
here are relatively few outliers. In this case, the quantization
rror can be reduced by using full ranges of tensors without
lipping. In contrast, clipping reduces the quantization error by
ncreasing the number of sample images during the calibration.

To determine the diversity among the quantization configura-
ion at the accurately quantized models, the results are selected
ithin relative error of 1%. The industrial margin for quantization
rror is 1% accuracy drop because a de-facto benchmark known as
LPerf [42] allows the quantized model to degrade the accuracy
ithin -1%. Therefore, the following analysis for diversity is based
n 1% accuracy drop across all the quantized models.
131
Table 4
Diversity analysis of quantization configurations. For the analysis, the
quantization configurations that achieve accuracy loss within 1% are used.
Precision Calibration Granularity Clipping Scheme # of samples

0.50 1.43 0.99 0.98 1.80 71

The Shannon-entropy equation (22) is used to show diversity
index in each quantization configuration.

H(X) = H(p) = −
∑

i

p(xi)× log p(xi) (22)

The analysis demonstrates the number of configurations that
generate the quantized models that meet the industrial quality
and diversity index. Each column in Table 4 shows the diversity
index that represents the diversity of the configurations. The
diversity indexes for all models within 1% range from 0.50 to 1.80
across the calibration, scheme, clipping, granularity, and mixed-
precision. If the entropy is zero, there is no uncertainty. This
indicates that there is no obvious configuration to generate the
optimal quantized models because all the configurations are not
zero entropy. Therefore, it is hard to intuitively and manually
select a configuration for the quantization.

6.2. Efficiency of XGBoost based configuration search

From the experiment, the quantization configuration for the
most accurately quantized models varies, depending on the type
of models. However, the search space for the configuration selec-
tion is large as shown in Eq. (1). To reduce the search time, we
devise a Quantune that seeks the optimal configuration for the
generation of the quantization model based on the XGBoost.

In this section, we show how many trials are required to
obtain the optimal quantized model with the optimal configu-
ration. To show the efficiency of the Quantune, we compared it
to four algorithms. The random search defines a search space as
a combination of hyper-parameter values and randomly selects
a point in the range. The grid search specifies a search space as
a grid of the hyper-parameter values and samples of a point in
the grid. The genetic algorithm (GA) is an optimization method
that exploits the idea of evolution by natural selection. GA is
based on the hypothesis that a new population will be better
than the previous one. To apply genetic algorithm in the quan-
tization configuration search, we implemented the details using
the GA package.5 With the GA package, we defined Top1 accuracy
evaluation as the fitness function. Furthermore, we exploited
binary encoding for crossover and mutation. In other cases, we
used the default settings from the GA package. We apply the
XGBoost in two cases: individual learning and transfer learning.

5 https://cran.r-project.org/web/packages/GA/GA.pdf.

https://cran.r-project.org/web/packages/GA/GA.pdf

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

T
d
t
C
d
t

t
a
f
5

3
p
c
c
a
t
X
S
a

Fig. 5. Comparison of different search algorithms, considering the convergence speed and Top1 accuracy on the six CNN models.
Fig. 6. Relative speedups of convergence over the random search.
N
d
T
s
a
i
t

he individual XGBoost model is initialized with no historical
ata that are produced from the other CNN models. It shows that
he XGBoost online-learning starts from the base of the current
NN model-tuning. Practically, the Quantune can collect historical
ata (D) from previous exploration. We combine the XGBoost and
ransfer learning to effectively use D.

Figs. 5 and 6 show five algorithms that search the quantiza-
ion configurations of the six CNN models. Our proposed search
lgorithm (XGB-T) is able to guide the configuration search to
aster convergence for MN, SHN, SQN, GN, RN18, and RN50 by
.50×, 1.31×, 7.25×, 31×, 2.14×, and 1.07× for the random

search and 14.5×, 1.75×, 7.25×, 10.5×, 1.5×, and 1.6× for the
grid search, respectively. In addition, XGB-T yielded a 2.13× to
6.5× speedup compared with the genetic search. All the im-
rovements are due to the cost model and transfer learning. In
ontrast to XGBoost, the other three algorithms work without
ost model. Furthermore, transfer learning allows speedup and
ttains a higher accuracy. Specifically, transfer learning improves
he convergence time of the MN, GN, and RN18 relative to the
GBoost by 11×, 25×, and 1.7×, respectively. Regarding the
QN and RN50, the XGB-T achieved +0.27% and +0.22% higher
ccuracy, respectively, than the XGB.
132
6.3. Accuracy

Through the extended Glow stack, the Quantune supports
both of the general-purpose units (CPU or GPU) and the VTA.
Considering both targets, we show how accurate the Quantune
generates the quantized models compared to the other existing
tools.

First, in the general-purpose targets, the Quantune is directly
compared to NVIDIA TensorRT7.2.2 (released in 19 Dec. 2020) on
the server-side GPU. The TensorRT6 is a well-supported tool by
VIDIA to speed up an inference of the CNN. For comparison, we
evelop a test code that generates the quantized models using
ensorRT’s post-training quantization and releases it as an open
ource.7 As shown in Fig. 7, the Quantune achieves 0.59% higher
ccuracy on GoogleNet slim v4 than the TensorRT. Nevertheless,
t attains 0.19–1.36 lower accuracy across the four models than
he TensorRT. Considering that the Quantune is a unified open

6 https://developer.nvidia.com/tensorrt.
7 https://github.com/leejaymin/tensorrt_quantization_imagenet.

https://developer.nvidia.com/tensorrt
https://github.com/leejaymin/tensorrt_quantization_imagenet

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

t
N

d
o
v
C
s
c
t
o
t
a
m
t

S

F
t
m
g
g

6

t
c
a

Fig. 7. Quantune vs. TensorRT - Quantune achieves a comparable accuracy of
he quantized CNN models against the off-the-shelf compiler (TensorRT) on the
VIDIA GPU.

Fig. 8. Quantune vs. TVM-VTA - Quantune leads to the significant improvement
in accuracy by approximately 32.52% as against the TVM-VTA [18]. The solid-line
indicates full-precision accuracy (fp32). The dashed-line indicates the TVM-VTA
accuracy.

toolchain to support multiple hardware devices, it shows a com-
petitive accuracy compared to the TensorRT which is used only
for the NVIDIA GPUs.

Second, for the VTA, we compare the Quantune to the TVM
(released in Jul. 2017) on the VTA. Previous results from the VTA-
TVM [18] reported a significant accuracy drop (−33.76%). This
rastic accuracy drop in the TVM-VTA stems from the choice
f a quantization scale for the whole network because a scale
alue can be imprecise for small values and truncate large values.
ontrary to the VTA-TVM [18], the Quantune selects different
cales depending on each layer and traverses all the possible
onfigurations. The search space is different because of the limita-
ions of the VTA hardware. In the VTA, the scheme and granularity
nly support the power of the two-scale and tensor level. Owing
o the architecture support, the fused operator for the convolution
nd ReLU is executed in consecutive cycles without extra off-chip
emory access. There are 12 distinct configurations derived from

he following possible combinations.

earch Space(12) = Calibration Caches(3)×
Schemes(1)× Clipping(2)×
Granularity(1)× Fusion(2) (23)

rom the results of all configurations, as shown in Fig. 8, Quan-
une leads to significant improvement in accuracy by approxi-
ately 32.52%. We show that even with a limited scheme and
ranularity, the best result is 0.73% lower than the ones on the
eneral-purpose units.

.4. Model size

To demonstrate the effectiveness of our model, we measured
he size of quantized models depending on the quantization
onfigurations. Among the considered configurations, granularity
nd mixed-precision affect model size. As listed in Table 5, the
133
Fig. 9. Comparison of relative speedup between the original and quantized
models on ARM A53, NVIDIA 2080ti, and Intel i7-8700.

Table 5
Comparison of the size of quantized models depending on quantization con-
figuration. Model size means the number of bytes required to save all of the
weights in the CNN model.
Model Original Tensor Channel Tensor+Mixed Channel+Mixed

MN 13.96 MB 3.54 MB 3.70 MB 7.39 MB 7.54 MB
SHN 5.52 MB 1.42 MB 1.54 MB 3.06 MB 3.17 MB
SQN 4.94 MB 1.25 MB 1.29 MB 1.25 MB 1.29 MB
GN 170.60 MB 42.75 MB 43.01 MB 47.36 MB 47.63 MB
RN18 47.94 MB 12.91 MB 12.95 MB 14.47 MB 14.51 MB
RN50 102.12 MB 25.61 MB 25.84 MB 31.79 MB 32.01 MB

size of quantized models varies for four configurations combined
with granularity and mixed-precision. With tensor granularity
alone, the compression rate is the highest spanned across six
quantized models. In contrast, the combining channel granularity
and mixed-precision shows the lowest compression rate. The
differences between tensor and channel granularity stem from
the number of scale factors for quantization. Intuitively, channel
level quantization requires more scale factors than tensor-level.
In the case of mixed-precision, the model size is dependent on
the number of parameters in the first and last layers.

6.5. Latency

Our evaluation has focused on the accuracy of the quantized
models. In this section, we measured end-to-end inference time
using the Glow’s code generation (referred to as CodeGen) on
a server class GPU (an embedded CPU) and a desktop CPU for
both the floating point and quantized models. As shown in Fig. 9,
the inference time of all the quantized models is not improved
against the fp32 models. This is because the CodeGen in the

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135

G
f
t
t
t
q
v
i
a
S
c

s
s
d
p
t
s

7

n
a
a
q
d

t
o
i
o
F
e
d

D

c
t

A

m
b
p
t

R

low is not efficiently implemented at the int8 quantization level
or chosen target platforms. Previous studies have reported that
he naive implemented kernels for quantization can be slower
han the original models [10,22,43,44]. As mentioned in Table 3,
he four schemes are a trade-off between inference latency and
uantization error. Therefore, the latency of the quantized models
aries for different schemes. In the naive implementation, the
ncreasing latency stems from extra operations such as the scales
nd offsets in each layer of the quantization. In some cases like
huffleNet, the improvements of latency are attributed to better
ache reuse by reducing the weights and activations.
In a nutshell, the quantization method in DL frameworks pre-

erves the accuracy of the quantized models; however, it is in-
ufficient to provide latency improvement on diverse hardware
evices. To overcome this challenge, few studies have been pro-
osed [10,22,43,44]. An efficient kernel code generation for quan-
ized models is an important research direction that is beyond the
cope of our study.

. Conclusion

To enable rapid deployment of quantized models without
oticeable accuracy loss, we present Quantune, which can build
model to find optimal configurations for quantization, thereby
ccelerating the search speed and enhancing the accuracy of the
uantized models. The experimental results on real hardware
evices show that Quantune achieved 1.3–31 faster convergence

time than the three algorithms with 0.07–0.65% accuracy drop
across the six CNN models including MobileNet, ShuffleNet, and
SqueezeNet, which are light-weight networks. Moreover, Quan-
une achieved 0.59% higher accuracy for GoogleNet than TensorRT
n the NVIDIA GPU. Furthermore, Quantune led to a significant
mprovement in accuracy by achieving an improvement of 32.52%
n the accelerator compared with the published study on VTA.
inally, by extending the DL compiler stack, we reduced the
ffort needed to efficiently execute the quantized CNN models on
iverse hardware devices.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work was supported by Institute of Information & com-
unications Technology Planning & Evaluation (IITP) grant funded
y the Korea government(MSIT) (No. 2018-0-00769, Neuromor-
hic Computing Software Platform for Artificial Intelligence Sys-
ems).

eferences

[1] M. Astrid, S.-I. Lee, Deep compression of convolutional neural networks
with low-rank approximation, ETRI Journal 40 (4) (2018) 421–434.

[2] R. Krishnamoorthi, Quantizing deep convolutional networks for efficient
inference: A whitepaper, 2018, arXiv preprint arXiv:1806.08342.

[3] S.K. Esser, J.L. McKinstry, D. Bablani, R. Appuswamy, D.S. Modha, Learned
step size quantization, in: 8th International Conference on Learning
Representations (ICLR) 2020, OpenReview.net, 2020, pp. 1–12.

[4] J. Choi, Z. Wang, S. Venkataramani, P.I.-J. Chuang, V. Srinivasan, K.
Gopalakrishnan, Pact: Parameterized clipping activation for quantized
neural networks, in: 6th International Conference on Learning Represen-
tations (ICLR) 2018, OpenReview.net, 2018, https://openreview.net/forum?
id=ryQu7f-RZ.

[5] D. Zhang, J. Yang, D. Ye, G. Hua, LQ-Nets: Learned quantization for
highly accurate and compact deep neural networks, in: Proceedings of the
European Conference on Computer Vision (ECCV), 2018, 2018, pp. 365–382.
134
[6] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S.J. Hwang, C. Choi, Learning
to quantize deep networks by optimizing quantization intervals with task
loss, in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 4350–4359.

[7] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients, 2016,
arXiv preprint arXiv:1606.06160.

[8] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D.
Kalenichenko, Quantization and training of neural networks for efficient
integer-arithmetic-only inference, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[9] S. Han, H. Mao, W.J. Dally, Deep compression: compressing deep neural
network with pruning, trained quantization and huffman coding, in: 4th
International Conference on Learning Representations (ICLR), 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016, URL:
http://arxiv.org/abs/1510.00149.

[10] Z. Jiang, A. Jain, A. Liu, J. Fromm, C. Ma, T. Chen, L. Ceze, Automated
backend-aware post-training quantization, 2021, arXiv preprint arXiv:
2103.14949.

[11] R. Banner, Y. Nahshan, D. Soudry, Post training 4-bit quantization of
convolutional networks for rapid-deployment, in: Advances in Neural
Information Processing Systems, Vol. 32, Curran Associates, Inc., 2019.

[12] Y. Choukroun, E. Kravchik, F. Yang, P. Kisilev, Low-bit quantization of
neural networks for efficient inference, in: ICCV Workshops, 2019, pp.
3009–3018.

[13] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, Z. Zhang, Improving neural net-
work quantization without retraining using outlier channel splitting,
in: International Conference on Machine Learning, PMLR, 2019, pp.
7543–7552.

[14] J.H. Lee, S. Ha, S. Choi, W.-J. Lee, S. Lee, Quantization for rapid deployment
of deep neural networks, 2018, arXiv preprint arXiv:1810.05488.

[15] A. Goncharenko, A. Denisov, S. Alyamkin, E. Terentev, Fast adjustable
threshold for uniform neural network quantization, Int. J. Comput. Inf. Eng.
13 (9) (2019) 495–499.

[16] S. Migacz, 8-Bit inference with tensorrt, in: GPU Technology Conference,
Vol. 2, 2017, p. 5.

[17] H. Wu, P. Judd, X. Zhang, M. Isaev, P. Micikevicius, Integer quantization for
deep learning inference: Principles and empirical evaluation, 2020, arXiv
preprint arXiv:2004.09602.

[18] T. Moreau, T. Chen, L. Ceze, Leveraging the vta-tvm hardware-software
stack for fpga acceleration of 8-bit resnet-18 inference, in Proceedings
of the 1st on Reproducible Quality-Efficient Systems Tournament on
Co-designing Pareto-efficient Deep Learning, 2018, p. 1.

[19] X. Zhao, Y. Wang, X. Cai, C. Liu, L. Zhang, Linear symmetric quantization
of neural networks for low-precision integer hardware, in: International
Conference on Learning Representations (ICLR), 2019.

[20] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785–794.

[21] T. Moreau, T. Chen, L. Vega, J. Roesch, E. Yan, L. Zheng, J. Fromm, Z. Jiang,
L. Ceze, C. Guestrin, et al., A hardware–software blueprint for flexible deep
learning specialization, IEEE Micro 39 (5) (2019) 8–16.

[22] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D.
Kalenichenko, Quantization and training of neural networks for efficient
integer-arithmetic-only inference, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 2704–2713.

[23] N. Rotem, J. Fix, S. Abdulrasool, G. Catron, S. Deng, R. Dzhabarov, N. Gibson,
J. Hegeman, M. Lele, R. Levenstein, et al., Glow: Graph lowering compiler
techniques for neural networks, 2018, arXiv preprint arXiv:1805.00907.

[24] C.V. Nguyen, Y. Li, T.D. Bui, R.E. Turner, Variational continual learning,
2017, arXiv preprint arXiv:1710.10628.

[25] A.D. Doulamis, N.D. Doulamis, S.D. Kollias, On-line retrainable neural net-
works: improving the performance of neural networks in image analysis
problems, IEEE Trans. Neural Netw. 11 (1) (2000) 137–155.

[26] S. Shin, Y. Boo, W. Sung, Fixed-point optimization of deep neural networks
with adaptive step size retraining, in: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp.
1203–1207.

[27] S.S. Dhaliwal, A.-A. Nahid, R. Abbas, Effective intrusion detection system
using XGBoost, Information 9 (7) (2018) 149.

[28] M. Nagel, M.v. Baalen, T. Blankevoort, M. Welling, Data-free quantiza-
tion through weight equalization and bias correction, in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019, pp.
1325–1334.

[29] E. Meller, A. Finkelstein, U. Almog, M. Grobman, Same, same but different:
recovering neural network quantization error through weight factorization,
in: Proceedings of the 36th International Conference on Machine Learning,
in: Proceedings of Machine Learning Research, vol. 97, PMLR, 2019, pp.
4486–4495.

http://refhub.elsevier.com/S0167-739X(22)00049-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb1
http://arxiv.org/abs/1806.08342
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb3
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb5
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/2103.14949
http://arxiv.org/abs/2103.14949
http://arxiv.org/abs/2103.14949
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb13
http://arxiv.org/abs/1810.05488
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb16
http://arxiv.org/abs/2004.09602
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb21
http://arxiv.org/abs/1805.00907
http://arxiv.org/abs/1710.10628
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb29

J. Lee, M. Yu, Y. Kwon et al. Future Generation Computer Systems 132 (2022) 124–135
[30] S. Cyphers, A.K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart, A.
Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi, et al., Intel
ngraph: An intermediate representation, compiler, and executor for deep
learning, 2018, arXiv preprint arXiv:1801.08058.

[31] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan, L. Wang, Y.
Hu, L. Ceze, et al., {TVM}: An automated end-to-end optimizing compiler
for deep learning, in: 13th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), 2018, pp. 578–594.

[32] D. Lin, S. Talathi, S. Annapureddy, Fixed point quantization of deep
convolutional networks, in: International Conference on Machine Learning,
PMLR, 2016, pp. 2849–2858.

[33] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, K.
Keutzer, Fbnet: Hardware-aware efficient convnet design via differentiable
neural architecture search, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 10734–10742.

[34] A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu, K.
Chen, et al., Fbnetv2: Differentiable neural architecture search for spatial
and channel dimensions, in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 12965–12974.

[35] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, J. Peng, XGBoost classifier for
DDoS attack detection and analysis in SDN-based cloud, in: 2018 IEEE
International Conference on Big Data and Smart Computing (bigcomp),
IEEE, 2018, pp. 251–256.

[36] D. Zhang, L. Qian, B. Mao, C. Huang, B. Huang, Y. Si, A data-driven design
for fault detection of wind turbines using random forests and XGboost,
IEEE Access 6 (2018) 21020–21031.

[37] X. Ji, W. Tong, Z. Liu, T. Shi, Five-feature model for developing the classifier
for synergistic vs. Antagonistic drug combinations built by XGBoost, Front.
Genetics 10 (2019) 600.

[38] A. Ogunleye, Q.-G. Wang, Xgboost model for chronic kidney disease
diagnosis, IEEE/ACM Trans. Comput. Biol. Bioinform. 17 (6) (2019)
2131–2140.

[39] K. Budholiya, S.K. Shrivastava, V. Sharma, An optimized XGBoost based
diagnostic system for effective prediction of heart disease, J. King Saud
Univ.-Comput. Inf. Sci. (2020).

[40] O. Sagi, L. Rokach, Ensemble learning: A survey, Wiley Interdiscip. Rev.
Data Min. Knowl. Discov. 8 (4) (2018) 1249.

[41] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer Science & Business Media,
2009.

[42] V.J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B.
Anderson, M. Breughe, M. Charlebois, W. Chou, et al., Mlperf inference
benchmark, in: 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), IEEE, 2020, pp. 446–459.

[43] M. Cowan, T. Moreau, T. Chen, J. Bornholt, L. Ceze, Automatic generation
of high-performance quantized machine learning kernels, in Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and
Optimization, 2020, pp. 305–316.

[44] A. Jain, S. Bhattacharya, M. Masuda, V. Sharma, Y. Wang, Efficient execution
of quantized deep learning models: A compiler approach, 2020, arXiv
preprint arXiv:2006.10226.
135
Jemin Lee received the B.S. and Ph.D. degrees in com-
puter science and engineering from Chungnam National
University, in 2011 and 2017, respectively. He is a
senior researcher at the Electronics and Communica-
tions Research Institute (ETRI). He was a post-doctoral
researcher at the Korea Advanced Institute of Science
and Technology (KAIST), in 2017–2018. His research
interests include energy-aware mobile computing and
deep learning compiler.

Misun Yu received the M.S. degree from the Depart-
ment of Computer Science and Engineering at Pohang
University of Science and Technology, Rep. of Korea.
She is a principal researcher at the Electronics and
Communications Research Institute (ETRI), Daejeon,
Rep. of Korea. Her main research interests include
concurrent program analysis, software testing, deep
learning, and embedded systems.

Yongin Kwon received the B.Sc. degree in electrical
and electronic engineering from the Korea Advanced
Institute of Science and Technology (KAIST), South Ko-
rea, in 2008, and the M.S. and Ph.D. degrees in electrical
and computer engineering from Seoul National Univer-
sity, South Korea, in 2010 and 2015, respectively. He
is currently a senior researcher at the Electronics and
Communications Research Institute (ETRI). His research
interests include mobile cloud computing, compiler,
deep learning, and embedded systems.

Taeho Kim received the B.S. degree from Sungkyun-
kwan University in 1995 and the M.S. and Ph.D. degrees
from the Department of Computer Science, Korea Ad-
vanced Institute of Science and Technology (KAIST), in
1997 and 2005, respectively. He is currently Assistant
Vice President of AI SoC Research Division, Electron-
ics and Telecommunications Research Institute (ETRI).
His research interests are safety-critical and intelligent
cyber–physical systems, system software, and software
engineering.

http://arxiv.org/abs/1801.08058
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb35
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb36
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb36
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb36
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb36
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb36
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb37
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb37
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb37
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb37
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb37
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb38
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb38
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb38
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb38
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb38
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb39
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb39
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb39
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb39
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb39
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb40
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb41
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://refhub.elsevier.com/S0167-739X(22)00049-8/sb42
http://arxiv.org/abs/2006.10226

	Quantune: Post-training quantization of convolutional neural networks using extreme gradient boosting for fast deployment
	Introduction
	Related work
	Quantization-aware training
	Post-training quantization
	Deep learning compilers

	Overview
	Quantization methodology
	Calibration cache
	Scheme
	Clipping
	Granularity
	Mixed-precision

	Modeling: Parameter search using eXtreme gradient boosting
	Problem definition
	Auto-tuning algorithm
	Cost model and objective function
	Training objective function with hyperparameters
	Search engine

	Evaluation
	Diversity in quantization configurations
	Efficiency of XGBoost based configuration search
	Accuracy
	Model size
	Latency

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

