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Abstract

Equivalent-time sampling can improve measurement or sensing systems

because it enables a broader frequency band and higher delay resolution for

periodic signals with lower sampling rates than a Nyquist receiver. Meanwhile,

a digital down-conversion (DDC) technique can be implemented using a

straightforward radio frequency (RF) circuit. It avoids timing skew and

in-phase/quadrature gain imbalance instead of requiring a high-speed

analog-to-digital converter to sample an intermediate frequency (IF) signal.

Therefore, when equivalent-time sampling and DDC techniques are combined,

a significant synergy can be achieved. This study provides a parameter design

methodology for optimal equivalent-time sampling using DDC.
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1 | INTRODUCTION

Mobile traffic is rapidly increasing with various multime-
dia services; hence, faster wireless communication sys-
tems are required. Terahertz and subterahertz frequency
bands above 100 GHz are candidates for next-generation
communication services owing to their broad bandwidths
and favorable propagation characteristics [1]. Studies on
propagation and wireless channel characteristics are
needed to develop and deploy terahertz services success-
fully. Various channel sounders have been proposed for
wireless channel studies, such as direct sequence spread
spectrum (DSSS) [2], orthogonal frequency-division mul-
tiplexing (OFDM) [3], chirp signals [4], sliding correlators
[5], and frequency-swept vector network analyzers [6].

The vector network analyzer is only suitable for short-
range measurements because the cables must connect
the transmitter and receiver. Vector network analyzers,
sliding correlators, and chirp signal-based sounders have
low mobility and are suitable for nontime-varying chan-
nel measurements owing to their long measurement
durations. OFDM-based channel sounders generally have
a lower dynamic range than DSSS-based channel
sounders. The DSSS is suitable for channel sounding,
providing a high dynamic range and high resolution of
the channel impulse response. However, a high-speed
analog-to-digital converter (ADC) is required to imple-
ment a DSSS-based channel sounder with bandwidths of
several gigahertz. We implemented an ultra-wideband
channel sounder consisting of a transmitter using
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periodic signals and a receiver using equivalent-time
sampling with digital down-conversion (DDC). This
hardware configuration has the advantages of simplicity,
inexpensive implementation, and low RF impairment;
however, it is limited by the risk of performance degrada-
tion due to aliasing. This paper introduces a method to
avoid aliasing with the hardware configuration and dem-
onstrates its optimized system performance.

As the bandwidth increases, ensuring a sufficient
sampling rate becomes challenging. Nyquist sampling
theory provides a minimum sampling rate to avoid alias-
ing (i.e., Nyquist sampling rate). In low-pass sampling,
the Nyquist sampling rate is twice the maximum fre-
quency of the signal [7]. A bandpass (subsampling)
receiver can directly receive carrier signals at a sampling
frequency lower than twice the maximum frequency [8],
thereby reducing the hardware burden and enabling the
flexible implementation of a multiband receiver. In band-
pass sampling, the Nyquist sampling rate is twice the sig-
nal bandwidth [9]. A time-interleaving technique that
converts an analog signal into digital data using multiple
ADCs and buffers is proposed to implement a high sam-
pling rate. However, as the frequency increases, RF
impairment problems (e.g., phase noise, frequency offset,
timing skew, and gain imbalance) become severe [10]. In
particular, timing skew is problematic in terahertz sys-
tems owing to their short wavelengths. Interleaving
ADCs [11] and in-phase/quadrature (IQ) sampling [12]
are the most common causes of timing skews and gain
imbalances as they produce nonlinear impairments [13]
that cannot be compensated using deconvolution tech-
niques [14]. System nonlinearity is the most significant
cause of spurious multipaths.

Equivalent-time sampling [15] digitizes a periodic sig-
nal over multiple periods using a single ADC and a low
sampling rate. It can achieve a highly effective sampling
rate for periodic signals, and the effective sampling rate
increases proportionally with the number of signal repeti-
tions. Equivalent-time sampling avoids the timing skew
caused by the interleaved ADC RF parallel structure.
However, it carries the risk of aliasing because the sam-
pling rate is lower than the Nyquist rate. The aliasing
problems are solved by interpreting nonuniform samples
[16]; however, performance degradation is unavoidable
in the presence of noise. A DSSS-based channel sounder
was proposed in Rey and others [17] using equivalent-
time sampling, which avoided aliasing by designing uni-
formly spaced samples with IQ sampling at the baseband.
However, the timing skew and gain imbalance could not
be eliminated because the IQ sampling also produced
them. A software-defined radio enables DDC rather than
analog mixing. Notably, real-valued sampling and DDC
are free of IQ imbalances; hence, the use of nonlinear

devices can be reduced [18]. An equivalent-time sam-
pling receiver with DDC is free of timing skew and gain
imbalance problems owing to its simple RF structure.
However, solving the performance degradation caused by
aliasing is crucial for combining these two techniques.

The remainder of this paper is organized as follows.
Section 2 provides mathematical expressions as prelimi-
nary work before finding the optimal system parameters.
Section 3 describes the relationship between system
parameters and performance based on the signal-to-
noise-and-distortion ratio (SNDR). Section 4 introduces
our method of finding the optimal system parameters
and those that result in irreversible sampling processes.
Section 5 presents the measurement results; conclusions
are presented in Section 6.

2 | MATHEMATICAL
EXPRESSIONS FOR THE
EQUIVALENT-TIME SAMPLING OF
A CARRIER SIGNAL

Equivalent sampling performs the function of interleav-
ing an ADC over multiple periods with a single ADC.
Combining equivalent sampling with DDC simplifies the
hardware configuration, solves timing skew and gain
imbalance problems, and lowers the required sampling
rate. Figure 1A illustrates the structure of an interleaving
ADC. Note that equivalent sampling can replace the par-
allel structure only with a single ADC during multiple
periods. Figure 1B,C shows the structures of IQ sampling
and DDC-based receivers, respectively. DDC-based equiv-
alent sampling has the simplest structure, and this

f t

f t

f t

F I GURE 1 Hardware configurations of (A) interleaving

analog-to-digital converter (ADC), (B) IQ sampling, and (C) digital

down-conversion (DDC)-based equivalent-time sampling.
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section discusses its mathematical expressions and carrier
signal to derive the optimal system parameter
configurations.

A finite number of coefficients can represent a peri-
odic bandlimited signal using a Fourier series:

sðtÞ¼
X
n
αn � exp j2π � n

T
� t

� �
ð1Þ

and

N ¼T �B: ð2Þ

sð�Þ, T, B, and t denote the periodic bandlimited base-
band signal, period, bandwidth, and time, respectively.
αn and N denote the nth Fourier coefficient and their
number, respectively. The frequency response of the peri-
odic bandlimited signal is represented by

Sð f Þ¼ 1
T
�
X
n
αn �δ f� n

T

� �
, ð3Þ

where Sð�Þ, δð�Þ, and f denote the frequency response,
Dirac delta function, and frequency, respectively. A car-
rier signal with IF is expressed as follows:

Xð f Þ¼ Sð f � f IFÞ, ð4Þ

where Xð�Þ and f IF denote the IF signal and the IF,
respectively. Equivalent-time sampling collects digital
samples of a periodic signal over a longer time than the
signal period. A time window is applied to the received
signal for acquisition, and the windowed signal can be
represented by

Y ð f Þ¼Tacq �Xð f Þ�sincðTacq � f Þ, ð5Þ

where

sincðωÞ¼
sinðωπÞ
ωπ

ω≠ 0

1 ω¼ 0

8<
: ð6Þ

and

Tacq ¼M
f s
: ð7Þ

Tacq denotes the acquisition time, M denotes the
number of samples received during the acquisition, and
f s denotes the sampling rate. The acquisition time is the
same as the signal period in Nyquist sampling or

interleaving ADC, but it is larger than the signal period
of DDC-based equivalent-time sampling.

The DDC system captures only the real part of the IF
signal and is expressed by

Y rð f Þ¼
~S f � f IFð ÞþfS ∗ f þ f IFð Þ

2
, ð8Þ

where

~Sð f Þ¼Tacq �Sð f Þ�sincðTacq � f Þ ð9Þ

and

fS ∗ ð f Þ¼Tacq �S ∗ ð f Þ�sincðTacq � f Þ: ð10Þ

Y rð�Þ and S ∗ ð�Þ denote the frequency responses of the
real IF and baseband signals’ complex conjugates, respec-
tively. After an analog signal is sampled, the sampling
harmonics repeat each sampling rate multiple times. The
received signal’s discrete fourier transform (DFT) sam-
ples are expressed as

Y s½m� ¼M � T
Tacq

�
X∞
i¼�∞

Y r
m
Tacq

� i � f s
� �

, ð11Þ

where Y s½m� denotes the received signal’s mth DFT
sample.

Equations (3)–(11) can be expressed by linear equa-
tions as follows:

y¼A � x¼ A1þA2 0

0 A1�A2

� �
�x, ð12Þ

where

x¼

..

.

R α�1ð Þ
R α0ð Þ
R α1ð Þ

..

.

I α�1ð Þ
I α0ð Þ
I α1ð Þ
..
.

2
66666666666666666664

3
77777777777777777775

, y¼

..

.

R Y s½�1�ð Þ
R Y s½0�ð Þ
R Y s½1�ð Þ

..

.

I Y s½�1�ð Þ
I Y s½0�ð Þ
I Y s½1�ð Þ

..

.

2
66666666666666666664

3
77777777777777777775

, ð13Þ
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A1½ �m,n ¼
M �T
2

�
X∞

i¼�∞
sinc Tacq � m

Tacq
� n
T
� f IF� i � f s

� �� �
,

ð14Þ

and

A2½ �m,n ¼
M �T
2

�
X∞

i¼�∞
sinc �Tacq � m

Tacq
þ n
T
þ f IFþ i � f s

� �� �
:

ð15Þ

A, x, and y denote the sampling matrix, Fourier coeffi-
cient vector of the original signal, and received digital
sample vector, respectively. R �ð Þ and I �ð Þ denote functions
that produce outputs as real and imaginary values of the
input, respectively. ½��m,n denotes an element of the mth
row and nth column of the input matrix.

3 | NOISE AND ERROR ANALYSIS

Theoretically, a received signal can be perfectly recon-
structed in an ideal situation using a full-rank sampling
matrix. However, the performance of signal reconstruc-
tion is limited due to noise. This section analyzes the per-
formance degradation of the equivalent-time receiver
with DDC according to random noise. The samples
received with noise can be represented by

ŷ¼A �xþw, ð16Þ

where w and ŷ denote the noise and vector of the received
samples with noise, respectively. The noise can be ther-
mal, quantization, phase, or sampling jitter types. Maxi-
mum a posteriori estimation is typically used for symbol
detection in communication systems. Methods using a
priori are not considered because we target random pro-
cesses, such as a radio channel, in this study. With a
white Gaussian noise assumption, maximum likelihood
estimation can be achieved using the least-squares
method:

x̂¼Aþ � ŷ¼Aþ � ðA �xþwÞ¼ xþAþ �w, ð17Þ

where

Aþ ¼ ðAT �AÞ�1 �AT: ð18Þ

ð�ÞT denotes a transpose matrix operation, and Aþ

denotes a left-inverse matrix of the sampling matrix. If
the sampling matrix is not full-rank, a unique solution

cannot be guaranteed by aliasing. Here, when any prior
information on the received signal (e.g., channel coding
scheme, modulation scheme, or pulse shape) is
unknown, the signal reconstruction of a random process
in an unknown form is impossible, even without noise. If
the number of samples is sufficient, a sampling matrix
that is not full-rank cannot be found in IQ sampling
because it has twice the number of combinations of A1

and A2 in (12). However, when only the in-phase signal
is sampled, a nonfull-rank sampling matrix can be
obtained, even if the number of samples is sufficient.
Figure 2 shows examples of irreversible sampling pro-
cesses. The left and right columns show the in-phase
sampling processes of the different signals. The two sig-
nals have the same bandwidth of 3 Hz and the same
period of 1 s, but they have different spectra. The first
row shows the two signals in the time domain, and the
second row shows the Nyquist-sampled spectra. The third
and fourth rows show sampling results with a nonfull-
rank sampling matrix, which results in aliasing, making
reconstruction impossible. Even if the periodic signals
are sampled for an infinite time, the two different signals
cannot be distinguished by any digital signal processing
technique because the sampling results are identical.
Thus, setting the appropriate system parameters is crucial
for equivalent-time sampling with DDC.

The mean squared error (MSE) of the least-squares
solution is computed as

ε ¼ðx̂�xÞT � ðx̂�xÞ
¼ ðAþ �wÞT � ðAþ �wÞ

¼
X
n

X
m

Aþ½ �n,m �wm

 !2

,

ð19Þ

F I GURE 2 Examples of irreversible sampling processes.
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where ε and wm denote the MSE and noise in the mth
measurement data, respectively. Therefore, the expected
MSE is computed as

E ε½ � ¼
X
n

X
m

Aþ½ �2n,m �E w2
m

� 	 

þ2 �
X

m1 ≠m2

Aþ½ �n,m1
� Aþ½ �n,m2

�E wm1 �wm2½ �
!
,

ð20Þ

where E �½ � denotes an expectation operation. Assuming w
is white Gaussian noise, the following equation is
established:

E½wm1 �wm2 � ¼
Pw

N
m1 ¼m2

0 m1 ≠m2,

8<
: ð21Þ

where Pw denotes noise power within the bandwidth.
Therefore, the expected MSE can be computed as

E ε½ � ¼ Pw � Aþk k22, ð22Þ

where

Aþk k2 ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
�
X
n

X
m

Aþ½ �2n,m
s

: ð23Þ

As shown in (22), the expected MSE is the product of
the noise power and squared matrix norm of the left-
inverse matrix. The matrix norm is the degree to which
an observation error affects the estimation error in the
linear equation, Ax¼ y. The relationship between obser-
vation and estimation errors can be represented as

x̂� x¼Aþ � ŷ�Aþ � y¼Aþ � ðŷ� yÞ: ð24Þ

Thus, even a small observation error can result in a
large estimation error if the matrix norm is significant.

Figure 3 shows the calculation results of the squared
matrix norm based on the IFs. The period is 1.25 ns, and
bandwidth is 4 GHz in the calculation. The top-left subfi-
gure shows a case with a 12 GSPS sampling rate. At
12 GSPS, Nyquist sampling can be performed up to a
received signal with a maximum frequency of 6 GHz.
Because the bandwidth is 4 GHz in the simulation, it cor-
responds to Nyquist sampling until the IF reaches 4 GHz.
The signal reconstruction performance is severely
degraded when the IF exceeds 4 GHz and remains less
than 8 GHz. However, the top-right subfigure shows a
case of equivalent-time sampling with 6 GSPS samplings
over two periods. The results differ significantly from the

interpretation of a T-periodic signal or from the bandpass
sampling theory. For a carrier signal to be T-periodic, the
carrier frequency must be a multiple of 0.8 GHz (=1/1.25
ns). IFs that are T-periodic and are within the Nyquist
zone based on the effective sampling rate are represented
by blue circles. However, many other optimal IFs can
also occur. The optimal IFs that are not T-periodic but
are within the Nyquist zone are represented by green
squares. Although they are not T-periodic signals, equiv-
alent sampling operates without performance degrada-
tion. The optimal IFs that are not T-periodic and are out
of the Nyquist zone are represented by red triangles; they
do not satisfy the T-periodic signal and Nyquist sampling
requirements, but they show optimal performance. The
bottom subfigure shows a case of equivalent-time sam-
pling with 3 GSPS samplings over four periods. Even if
the IF period is different from the signal period or is out-
side the Nyquist zone, the performance of many IFs can
be same to that of Nyquist sampling under the same
SNDR assumptions. However, the matrix norm can
diverge to infinity, making reconstruction in the worst
case impossible, which in this case is caused by a nonfull-
rank sampling matrix.

4 | CONDITIONS FOR
OPTIMALITY AND
IRREVERSIBILITY

Optimal IFs exist at specific intervals (Figure 3), and
clearly, they are related to the signal period. When all the

F I GURE 3 Matrix norm calculation results according to an

intermediate frequency (IF) when the signal period is 1.25 ns and

the bandwidth is 4 GHz: (A) 12 GSPS sampling for one period, (B) 6

GSPS sampling for two periods, (C) 3 GSPS sampling for four

periods (T = 1.25 ns, B = 4 GHz) 2 2.
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sinc function inputs in (6) are integers, the sinc function
becomes a Dirac delta function. If a sinc function does
not become the Dirac delta function owing to a noninte-
ger input, the power spectrum’s side lobes have infinite
length, and spectral leakage occurs [19]. This result is
related to the orthogonality of the received signals and
harmonics. The autocorrelation function evaluates the
correlation between the original and frequency-shifted
signals, and because the autocorrelation function of the
sinc function is also a sinc function, two sinc functions
are orthogonal only when the interval is a multiple of
their widths. Therefore, aliasing caused by spectral leak-
age is inevitable unless the spacing between all frequen-
cies of the received signal and the sampling harmonics
are multiples of 1=Tacq.

To formulate optimal IFs, we must determine the
optimal conditions to avoid spectral leakage. The down-
converted DFT samples by DDC can be represented by

Y b½m� ¼ M � T
Tacq

�
X∞
i¼�∞

Y r
m
Tacq

� i � f s� f IF

� �

¼ M �T
2 �Tacq

�
X∞
i¼�∞

~S
m
Tacq

� i � f s
� � 

þ
X∞
i¼�∞

fS ∗ m
Tacq

� i � f sþ2 � f IF
� �!

,

ð25Þ

where Y b½m� is the mth downconverted DFT sample. The
acquisition time must be a multiple of the period and the
IF must be a multiple of 1=ð2 �TacqÞ to avoid spectral
leakage in (25). Therefore, the following equations are
established:

Tacq ¼K �T, ð26Þ

f s ¼
M

K �T , ð27Þ

and

f IF ¼
u

2 �K �T , ð28Þ

where K and u denote the number of periods during the
acquisition time and the arbitrary integer used to deter-
mine the IF, respectively. By substituting (9), (10), (26),
and (28) into (25), (25) can be expressed by

Y b½m� ¼M �T
2

�
X∞
i¼�∞

S
m� i �M
K �T

� � 

þ
X∞
i¼�∞

S ∗ m� i �Mþu
K �T

� �!
:

ð29Þ

In equivalent-time sampling, the received signal can
be analyzed by reorganizing the collected samples over
multiple periods into a single period. A signal representa-
tion of the downconverted samples in the time domain is
represented by

yb2ðtÞ¼
XM�1

m¼0

yb½m� � δ t�m �K �T
M

� �
, ð30Þ

where yb½m� denotes the mth Inverse DFT sample of Y b½��
and yb2ð�Þ denotes the signal representation of the down-
converted samples. The signal representation can be
divided into multiple single-period signals, as follows:

yb2ðtÞ¼
XK�1

i¼0

yiðtÞ, ð31Þ

where yið�Þ denotes a signal representation of the down-
converted signal within the ith period. Therefore, the
reorganized signal can be represented as

yd2ðtÞ¼
XK�1

i¼0

yiðtÞ �δðtþ i �TÞ, ð32Þ

where yd2ð�Þ denotes the reorganized signal. The DFT
samples of the reorganized signal can be computed as

Yd½m� ¼
XK�1

i¼0

Yi
m
T

� �
� exp �j2π �m

T
� i �T

� �

¼
XK�1

i¼0

Yi
m
T

� �
¼Y b2

m
T

� �
,

ð33Þ

where Yið�Þ and Y b2ð�Þ denote the frequency responses of
yið�Þ and yb2ð�Þ, respectively. Because Y b½�� is the DFT of
the downconverted samples, (29) can be rewritten as

Y b½m� ¼Y b2
m

K �T
� �

: ð34Þ

Considering (33) and (34), the DFT of the reorganized
samples reflects the downsampled DFT samples of the
downconverted samples. Equation (33) can be
rewritten as

Y d½m� ¼Y b½m �K�: ð35Þ

This relationship can be explained by the duality
between time and frequency. When an analog signal is
sampled or a high-resolution signal is downsampled in
the time domain, the harmonics of the high-frequency
components enter frequencies below the sampling rate.
Similarly, if samples of multiple periods shift to the first
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period in the time domain, it is equivalent to downsam-
pling in the frequency domain.

Substituting (29) into (35), (35) can be rewritten as

Yd½m� ¼ S0½m�þS1½m�þS2½m�, ð36Þ

where

S0½m� ¼M �T
2

�S m
T

� �
, ð37Þ

S1½m� ¼M �T
2

�
X
i≠ 0

S
m �K� i �M

KT

� �
, ð38Þ

and

S2½m� ¼M �T
2

�
X
i

S ∗ m
T
� i �M�u

K �T
� �

: ð39Þ

S0½m� and S1½m� denote the mth DFT samples and
harmonics of the received signal, respectively. S2½m�
denotes the mth DFT sample of the conjugate signal and
its harmonics, respectively.

Only cases in which K and M are coprime are consid-
ered to simplify the above equations. As M is the number
of samples during K periods, K and M can be parameter-
ized using coprime integers by reducing the fraction. For
example, if 2002 samples are taken during four periods, it
is equivalent to taking two snapshots of 1001 samples
over two periods. When K and M are coprime, this reor-
ganization can be represented by deinterleaving as

yd md½ � ¼ yb mb½ �, ð40Þ

where

md¼ rem K �mb,Mð Þ: ð41Þ

yd½m� denotes the mth deinterleaved sample, and
remðp,qÞ denotes the remainder when p is divided by q,
where p and q are integers. md and mb denote the sample
indices of the deinterleaved and downconverted data,
respectively. A periodic bandlimited signal has nonzero
tones only at frequencies of n=T, as explained in (3).
When K and M are coprime, S1½�� has nonzero values
only when the i values are multiples of K and can be sim-
plified as

S1½m� ¼M �T
2

�
X
i≠ 0

S
m� iM

T

� �
: ð42Þ

If only nonzero tones are selected in S2½��, then (39) is
rewritten as

S2½m� ¼M �T
2

�
X∞
i¼�∞

S ∗ m
T
� i �M�a�b �K

K �T
� �

, ð43Þ

where a and b denote the remainder and quotient when
u is divided into K. Considering (43), the ith harmonic of
the conjugate signal appears at the center frequency of
ði �M�a�b �KÞ=K �T. For the ith harmonics to survive
after deinterleaving, ði �M�a�b �KÞ must be a multiple
of K. To determine the surviving harmonics after deinter-
leaving, the following equation is established:

a¼ f ðvÞ¼ remðv �M,KÞ, ð44Þ

where v is the minimum positive integer of i, which
makes ði �M�a�b �KÞ a multiple of K. Thus, nonzero
frequency components exist only when the i values are
(i �Kþ v) in (43). Substituting (i �Kþ v) into i in (43), (43)
can be rewritten using (44):

S2½m� ¼M �T
2

�
X∞
i¼�∞

S ∗ m� i �M
T

� f�1ðaÞ �M�a�b �K
K �T

� �
: ð45Þ

As shown in (42) and (45), the harmonics repeat every
M=T, as do the carrier frequencies that provide
orthogonality. Therefore, (28) can be rewritten as

f IF ¼
aþb �Kþ c �M �K

2 �K �T , ð46Þ

where c denotes an arbitrary integer. To be orthogonal
between (37) and (45), M=T must be larger than twice
the bandwidth:

M
T

≥ 2 �B¼ 2 �N
T

: ð47Þ

Equation (47) indicates that the number of received
samples must be greater than or equal to twice the num-
ber of Fourier coefficients to avoid aliasing. This is equal
to the degrees of freedom (DoF) of the original signal.
This result is the same as that of the compressed sensing
principles [20]. If (47) is satisfied, then (37) and (42) are
also orthogonal. The additional inequalities for orthogo-
nality are calculated as follows:

f�1ðaÞ �M�a�b �K
K �T ≤ �B ð48Þ

and

B ≤
f�1ðaÞ �M�a�b �K

K �T þ M
T
: ð49Þ
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Inequalities (48) and (49) represent the conditions in
which harmonics are not within the baseband signal
bandwidth. They can be merged as

N� gðaÞ≤ b≤M�N� gðaÞ, ð50Þ

where

gðaÞ¼ a� f�1ðaÞ �M
K

: ð51Þ

When (50) is satisfied, only the original signal exists
in the bandwidth without harmonics. Therefore, the
received signal can be reconstructed using lowpass
filtering.

The conditions for optimality can be summarized as
follows. At first, the acquisition time is a multiple of the
signal period and sampling interval. Secondly, the num-
bers of received samples and signal period are coprime
integers during acquisition. Thirdly, the IF is a multiple
of half the inverse of the acquisition time. Fourthly,
inequality (50) is satisfied. The optimal IFs in Figure 3
can be calculated using the conditions described in this
section. In our simulation, K and M are coprime, and M
is greater than twice that of N . The acquisition time and
sampling rate are given by (26) and (27), respectively.
Because K is two in the top-right subfigure, a is zero or
one. Therefore, the range of b for the optimal IFs is given
by 5≤ b≤ 10 and 12≤ b≤ 17 for a are zero and one,
respectively. If c is set to zero, the optimal IFs are calcu-
lated as 2.0, 2.4, 2.8, 3.2, 3.6, and 4 GHz when a is zero
and 5.0, 5.4, 5.8, 6.2, 6.6, and 7.0 GHz when a is one.
Because K is four in the bottom subfigure, a can be in [0–
3], and the ranges of b are given as 5≤ b≤ 10, 16≤ b≤ 21,
12≤ b≤ 17, and 8≤ b≤ 13, respectively. The optimal IFs
are calculated by f2:0, 2:4, 2:8, 3:2, 3:6, 4:0g,
f6:5, 6:9, 7:3, 7:7, 8:1, 8:5g, f5:0, 5:4, 5:8, 6:2, 6:6, 7:0g and
f3:5, 3:9, 4:3, 4:7, 5:1, 5:5g GHz, respectively. The integers,
uð¼ aþb �Kþ c �M �KÞ, make the matrix norm infinite,
apart from the optimal integers given above, and the
sampling processes are irreversible. These calculation
results are in good agreement with the simulation results.

The proposed technique is similar to OFDM and
cyclic prefix (CP) techniques. When transmitting succes-
sive OFDM symbols over a multipath channel, a guard
time interval between symbols is required to prevent
intersymbol interference. Zero-padding can be a solution;
however, it causes the signal length to be changed by
multipath delays. Otherwise, a CP creates an OFDM sig-
nal as a periodic signal and maintains the signal period
as the length of the original signal. Therefore, the
received signal can be expressed as a circular convolution
of the original signal and the multipath channel. This

factor is crucial for keeping the time-window size
unchanged in the channel estimation.

Similarly, the signal period does not change, even
when it passes through a multipath channel in the pro-
posed method. If the signal is periodic, then the basis fre-
quencies are always multiples of 1=T. Therefore,
knowing the precise period of a signal is equivalent to
knowing its precise basis frequencies. Generally,
equivalent-time sampling, frequency, and phase uncer-
tainties exist when a nonperiodic signal is considered or
the exact period is unknown. If the transmitter generates
a signal with a predetermined period, the uncertainties
disappear. Figure 4 shows examples of T-periodic signals.
As can be seen in the first subfigure, if the signal period
is a multiple of the sampling interval, there is no phase
uncertainty in equivalent-time sampling. In the proposed
method, it has already been shown mathematically that
there is no phase uncertainty because the complex
amplitude includes both amplitude and phase. A non-
T-periodic signal produces phase uncertainty; however, it
can also be converted into periodic signals by repeating
the signal every period. After repeating this process, the
basis frequencies become multiples of 1=T. The second
and third subfigures show the effects of repetition. The
last subfigure shows that the periodicity does not change,
even if a signal passes through a multipath channel.

Figure 5 presents a conceptual diagram of the mecha-
nism used to avoid aliasing with DDC-based equivalent-
time sampling in this study. When the basis frequencies
are known, the receiver must avoid only the aliasing
caused by overlapping or spectral leakages. Because spec-
tral leakage is caused by the window function, it is only
necessary to design the sampling rate and number of
samples so that the basis frequencies are orthogonal to

F I GURE 4 Examples of T-periodic and non-T-periodic

signals.
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each other, as explained in this section. Figure 6 shows
the optimal system parameters extended in this study
using a Venn diagram. The set drawn with a dotted line
represents cases in which the received signal and sam-
pling harmonics are orthogonal; hence, the optimal per-
formance can be obtained. The blue set represents cases
in which the carrier signal period is the same as that of
the baseband signal. The red set indicates cases in which
the received signal is in the Nyquist zone, calculated by
the effective sample rate. The purple set represents the
intersection of the blue and red sets, which are all cases
of orthogonal harmonics.

5 | MEASUREMENT RESULTS

This section presents the measurement results for two
purposes. The first is to verify the optimal parameter con-
ditions introduced in the previous section, and the
second is to demonstrate the performance in a real envi-
ronment with clock drift. Sampling at accurate frequen-
cies and timing is crucial for DDC-based equivalent-time
sampling. Sampling jitter can be divided into indepen-
dent random and accumulated types. The additive white
Gaussian noise assumption can be applied to indepen-
dent sampling jitter, which has a white spectrum and
increases the random noise [21, 22] even during
equivalent-time sampling [23]. The effect of random
noise on this technique is explained in Section 3. How-
ever, the accumulated sampling jitter differs from that of
random noise. The slip rate (i.e., clock drift velocity) can
linearly approximate the accumulated sampling jitter in a
short period. This can be interpreted as an offset of the IF
and sampling frequency. It is not a problem in wired
transceiver systems because the same clock source pro-
vides reference signals for both the transmitter and
receiver. However, if different clock sources are used in
wireless transceiver systems, various frequency offsets
may occur and degrade system performance.

The first experiment evaluated the availability of the
reconstruction technique using DDC and deinterleaving
when the signal was not T-periodic and not within the
Nyquist zone. A pseudo noise (PN) sequence was used as

the probing signal, where the code length, period, band-
width, and carrier frequency were 4095, 10.2375 μs,
400 MHz, and 420 MHz, respectively. The signal was
sampled at an 88 MSPS sample rate for 102.375 μs. Sys-
tem parameters N , M, K, a, b, and c were set as 4095,
9009, 10, 5, 8599, and 0, respectively. The effective sample
rate is 880 MSPS, and the signal generator and oscillo-
scope were synchronized using a reference cable.
Figure 7 shows the measurement and signal reconstruc-
tion results. Based on the effective sample rate and
Nyquist theory, the IF should be within 200 MHz–240
MHz or 640 MHz–680 MHz. In this case, the IF was out
of range, and its period differed from the baseband signal
period. However, all conditions for the orthogonal har-
monics were satisfied. A mirror image should be centered
at 460 MHz based on Nyquist theory after being con-
verted to 40 MHz and repeatedly appearing every
880 MHz. The harmonics were removed during deinter-
leaving, and the other sampling harmonics were observed
with a center frequency of –400 MHz. The observed har-
monics were generated by the actual sample rate, not the
effective rate, and survived after deinterleaving. As antici-
pated in Section 4, different results were obtained than
those interpreted by effective sampling harmonics and
Nyquist theory. Additionally, no aliasing was observed
between the received signal and harmonics.

The second measurement test evaluated the accuracy
of the actual subterahertz band when clock drift existed.

F I GURE 5 Concept diagram of the

mechanism used to avoid aliasing

during digital down-conversion (DDC)-

based equivalent-time sampling.

F I GURE 6 Expansion of optimal system parameters for digital

down-conversion (DDC)-based equivalent-time sampling by

orthogonal harmonics.
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The clock drift between the two asynchronous rubidium
oscillators was measured, and the slip rate was approxi-
mately 236.8758 ps/s. The PN signal’s code length, sym-
bol rate, signal period, and bandwidth were 4095, 4 GHz,
1.02375 μs, and 5 GHz, respectively. The PN signal was
generated at the baseband, upconverted to 159 GHz
through a 15 GHz IF, and transmitted. After receiving
the signal, it was downconverted to 4 GHz through a
15-GHz IF and sampled by 10 GSPS. The clock source
error produced offsets at all frequencies, including the IF,
carrier frequency, and sampling rate. The frequency off-
set can be calculated as

f offset ¼ f � Rslip

1þRslip
, ð52Þ

where f offset and Rslip denote frequency offset and slip
rate, respectively. Therefore, in the experimental environ-
ment, the frequency offsets at 4 GHz, 10 GHz, 15 GHz,
and 159 GHz were 0.9475 Hz, 2.3688 Hz, 3.5531 Hz, and
37.6633 Hz, respectively. The proposed sampling method
was performed using three ways. The first dataset was
sampled for two periods, the second was downsampled
eight times after being sampled over 16 periods, and the
third was downsampled 4096 times after being sampled
over 8192 periods. The effective sample rate was 20 GSPS,
whereas the actual sample rates were 10, 1.25, and 10/
4096 GSPS (≈ 2:4414 MSPS). Then, the power delay pro-
files were calculated by correlating them with the origi-
nal PN signal after applying a system response
deconvolution and raised cosine (RC) filter. The 3-dB

bandwidth and roll-off factors of the RC filter were
4 GHz and 1.25, respectively. Figure 8 shows the results
of power delay profile measurements. The number of
received samples was 20475 in all cases. Consequently,
the longer the acquisition time after the holdover, the
worse was the performance owing to clock drift at the
same slip rate. Even in an asynchronous environment,
measuring a dynamic range of approximately 40 dB with
2.4414-MSPS sampling of a 5-GHz bandwidth signal was
possible. Figure 9 shows the measurement results in air
using the same hardware configuration. The transmitter
and receiver faced two reflectors placed at 3.0 m and 3.5
m distances, respectively. Both sides of the reflector were
blocked with absorbers. Horn antennas with a 10 degree
beamwidth were used as the transmitter and receiver.
Multipath delays of 20 ns and 23.3333 ns were observed,
which equaled the round-trip distance between antennas
and reflectors. The red dotted line represents the calcu-
lated delays. Multipaths that hit the channel sounder
body and traveled twice between the channel sounder
and reflectors were also observed between 40 and 50 ns.

6 | CONCLUSIONS

This study introduced a system design method with
equivalent-time sampling and DDC that avoids aliasing.

F I GURE 8 Measurement results of power delay profiles

according to the number of signal repetitions under the same

number of samples. The sample rate is inversely proportional to the

number of repetitions.

F I GURE 7 Measurement and signal reconstruction results,

where the carrier signal is not T-periodic and out of the Nyquist

zone: (A) received samples, (B) down-converted samples, (C)

deinterleaved samples.

F I GURE 9 Measurement results of power delay profiles with

two reflectors at 3 m and 3.5 m from the antennas.
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The proposed technique can be applied to channel
sounders and measurement systems for radar, biomedical
sensing, and imaging requirements. If a probing signal
can be repeated, it can be used for any application. A
receiver can thus be implemented using a low-cost, low-
power, lightweight, small, and flexible device because its
hardware configuration can be simplified, and digital
processing techniques can replace the hardware.

CONFLICT OF INTEREST STATEMENT
The authors declare that there are no conflicts of interest.

ORCID
Kyung-Won Kim https://orcid.org/0000-0002-9663-9954

REFERENCES
1. T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S.

Mandal, A. Alkhateeb, and G. C. Trichopoulos, Wireless
communications and applications above 100 GHz: opportunities
and challenges for 6G and beyond, IEEE Access 7 (2019),
78729–78757.

2. R. Zhang, S. Wang, X. Lu, W. Duan, and L. Cai,
Two-dimensional DoA estimation for multipath propagation
characterization using the array response of PN-sequences, IEEE
Trans. Wireless Commun. 15 (2016), no. 1, 341–356.

3. Y. Samayoa, M. Kock, H. Blume, and J. Ostermann, Low-cost
channel sounder design based on software-defined radio and
OFDM, (Proc. IEEE 88th Vehicul. Technol. Conf. (VTC-Fall),
Chicago, IL, USA), 2018, pp. 27–30.

4. N. Hosseini and D. W. Matolak, Wide band channel
characterization for low altitude unmanned aerial system
communication using software defined radios, (Proc. ICNS
Conf., Herndon, VA, USA), 2018, pp. 10–12.

5. G. R. Jr, T. S. MacCartney, and A Rappaport, Flexible
millimeter-wave channel sounder with absolute timing, IEEE
J. Select. Areas Commun. 35 (2017), no. 6, 1402–1418.

6. Y. Ji, W. Fan, and G. F. Pedersen, Channel characterization for
wideband large-scale antenna systems based on a
low-complexity maximum likelihood estimator, IEEE Trans.
Wireless Commun. 17 (2018), no. 9, 6018–6028.

7. C. E. Shannon, Communication in the presence of noise, Proc.
IRE 37 (1949), no. 1, 10–21.

8. M. Brandolini, P. Rossi, D. Manstretta, and F. Svelto, Toward
multistandard mobile terminals—fully integrated receivers
requirements and architectures, IEEE Trans. Microwave Theory
Techniq. 53 (2006), no. 3, 1026–1038.

9. R. G. Vaughan, N. L. Scott, and D. R. White, The theory of
bandpass sampling, IEEE Trans. Signal Process. 39 (1991),
no. 9, 1973–1984.

10. A. Mohammadian and C. Tellambura, RF impairments in
wireless transceivers: phase noise, CFO, and IQ imbalance—a
survey, IEEE Access 9 (2021), 111718–111791.

11. C. Vogel, The impact of combined channel mismatch effects in
time-interleaved ADCs, IEEE Trans. Instrum. Meas. 54 (2005),
no. 1, 415–427.

12. Y. R. Ramadan, H. Minn, and M. E. Abdelgelil, Precompensa-
tion and system parameters estimation for low-cost nonlinear

tera-hertz transmitters in the presence of I/Q imbalance, IEEE
Access 6 (2018), 51814–51833.

13. H. Cao, A. S. Tehrani, C. Fager, T. Eriksson, and H. Zirath,
I/Q imbalance compensation using a nonlinear modeling
approach, IEEE Trans. Microwav. Theor. Techniq. 57 (2009),
no. 3, 513–518.

14. R. Sun, P. B. Papazian, J. Senic, Y. Lo, J.-K. Choi, K. A.
Remley, and C. Centile, Design and calibration of a double-
directional 60 GHz channel sounder for multipath component
tracking, (Proc. 11th EuCAP, Paris, France), 2017, pp. 19–24.

15. Z. Zhu, Y. Zhu, D. Li, and M. Liu, A TD-ADC for IR-UWB
radars with equivalent sampling technology and 8-GS/s effective
sampling rate, IEEE Trans. Circuit. Sys. II 68 (2021), no. 3,
888–892.

16. Y.-P. Lin and P. P. Vaidyanathan, Periodically nonuniform
sampling of bandpass signals, IEEE Trans. Circuit Sys. II
Analog Digit. Sig. Process. 45 (1998), no. 3, 340–351.

17. S. Rey, J. M. Eckhardt, B. Peng, K. Guan, and T. Kurner,
Channel sounding techniques for applications in THz
communications—a first correlation based channel sounder for
ultra-wideband dynamic channel measurements at 300 GHz,
(Proc. 9th ICUMT, Munich, Germany), 2017, pp. 6–8.

18. G. Fettweis, M. Lohning, D. Petrovic, M. Windisch, P.
Zillmann, and W. Rave, Dirty RF: a new paradigm, (Proc. IEEE
16th Int. Symp. Person. Indoor Mobile Radio Commun.,
Berlin, Germany), 2005, pp. 11–14.

19. F. J. Harris, On the use of windows for harmonic analysis with the
discrete Fourier transform, Proc. IEEE, 66 (1978), no. 1, 51–83.

20. D. L. Donoho, Compressed sensing, IEEE Trans. Informat.
Theory 52 (2006), no. 4, 1289–1306.

21. Y. C. Jenq, Digital spectra of nonuniformly sampled signals:
fundamentals and high-speed waveform digitizers, IEEE Trans.
Instrum. Meas. 37 (1998), 245–251.

22. S. S. Awad and M. F. Wagdy, More on jitter effects on sinewave
measurements, IEEE Trans. Instrum. Meas. 40 (1991),
549–552.

23. K. Takahashi, R. Roberts, Z. Jiang, and B. Memarzadeh,
Statistical evaluation of signal-to-noise ratio and timing jitter in
equivalent-time sampling signals, IEEE Trans. Instrum. Meas.
70 (2021), 1–4.

How to cite this article: K.-W. Kim, H.-K. Kwon,
and M.-D. Kim, Optimal equivalent-time sampling
for periodic complex signals with digital down-
conversion, ETRI Journal 46 (2024), 238–249.
DOI 10.4218/etrij.2022-0426

AUTHOR BIOGRAPHIES

Kyung-Won Kim received his BS
degree in Electrical Engineering
from Korea University in Seoul,
Republic of Korea, in 2009, and his
Ph.D. in Computer and Radio Com-
munications Engineering from Korea
University, Seoul, Republic of Korea

248 KIM ET AL.

 22337326, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.2022-0426 by E

lectronics and T
elecom

m
unications, W

iley O
nline L

ibrary on [29/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-9663-9954
https://orcid.org/0000-0002-9663-9954
info:doi/10.4218/etrij.2022-0426


in 2015. Since 2015, he has been with ETRI in Dae-
jeon, Republic of Korea, where he is currently a senior
researcher. His fields of interest include signal proces-
sing, channel estimation, channel modeling, and
radio resource management.

Heon-Kook Kwon received his
BS and MS degrees at the Depart-
ment of Electronics Engineering at
Chungnam National University in
Daejeon, Republic of Korea, in 1997
and 1999, respectively. He joined
ETRI in Daejeon, Republic of Korea

in 2004. As a principal researcher, he worked on
developing RF systems for mobile communications,
including those of mobile and base stations. His
research interests include RF system design for next-
generation mobile communications.

Myung-Don Kim received his BS
and MS degrees in Electronics Engi-
neering from Dong-A University in
Busan, Republic of Korea, in 1993
and 1995, respectively. Since 1995,
he has been with ETRI, Daejeon,
Republic of Korea, where he is a

principal researcher at the Telecommunications and
Media Research Laboratory. He was the Director of
the Mobile RF Research Section from 2017 to 2018
and is currently a project leader in the Channel
Modeling Research Group. His research interests
include wireless channel measurements and model-
ing. Since 2006, he has been involved in many projects
developing wideband MIMO channel sounders, field
measurements, and channel models. He contributed
to the development of ITU-R recommendations and
reports in Study Group 3 (Propagation), including
millimeter-wave propagation models. Since 2014, he
has been the chairperson of the ITU-R WP3K Draft
Group 3K-3A, which studies prediction methods for
short-path outdoor propagations in frequencies from
300 to 100 GHz.

KIM ET AL. 249

 22337326, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.4218/etrij.2022-0426 by E

lectronics and T
elecom

m
unications, W

iley O
nline L

ibrary on [29/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


	Optimal equivalent-time sampling for periodic complex signals with digital down-conversion
	1  INTRODUCTION
	2  MATHEMATICAL EXPRESSIONS FOR THE EQUIVALENT-TIME SAMPLING OF A CARRIER SIGNAL
	3  NOISE AND ERROR ANALYSIS
	4  CONDITIONS FOR OPTIMALITY AND IRREVERSIBILITY
	5  MEASUREMENT RESULTS
	6  CONCLUSIONS
	CONFLICT OF INTEREST STATEMENT
	REFERENCES


