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In this paper, we demonstrate the capabilities of 380-nm 
ultraviolet (UV) light-emitting diodes (LEDs) using metal 
organic chemical vapor deposition. The epi-structure of 
these LEDs consists of InGaN/AlGaN multiple quantum 
wells on a patterned sapphire substrate, and the devices 
are fabricated using a conventional LED process. The 
LEDs are packaged with a type of surface mount device 
with Al-metal. A UV LED can emit light at 383.3 nm, and 
its maximum output power is 118.4 mW at 350 mA. 
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I. Introduction 

III-nitride materials, AlN (6.2 eV), GaN (3.4 eV), and InN  
(0.8 eV), have a direct bandgap and cover a wide wavelength 
range of ultraviolet (UV) to visible red [1]. Technology 
breakthroughs, such as a low-temperature buffer layers [2] and 
p-type activation [3], have focused a lot of attention on 
optoelectronic devices. After the commercialization of blue and 
white light-emitting diodes (LEDs) [4], several research groups 
developed an interest in the UV region because of its wide range 
of applications as a function of wavelength [5]-[7]. The UV-A 
region of 320 nm to 400 nm is useful for UV curing, counterfeit 
banknote detection, tanning, photocatalysis air purification, and 
lighting applications. The UV-B region of 280 nm to 320 nm is 
useful for phototherapy, the treatment of skin disease, DNA 
analysis, and chemical sensor applications. The UV-C region 
under 280 nm is useful for laser knives, sterilizers, and water or 
air purifiers [8]. Traditional UV lamps, such as mercury, metal 
halide, and xenon lamps, have been used for many of these 
applications, but, in the future, UV lamps will be replaced with 
UV LEDs, owing to significant advantages in size, power 
consumption, lifetime, wavelength control, and safety.  

The fabrication of UV LEDs using standard technologies, 
particularly for UV-B and UV-C, has many problems, such as 
the substrate absorption of UV light, high Al-content growth, 
low doping efficiency, cracking, and a low growth rate of epi-
layers. In the case of a UV-A LED, particularly for near-UV 
(360 nm to 400 nm), the LED structure consists of an active 
layer based on InGaN materials and n-/p-contact layers with 
low Al-content. The internal quantum efficiency (IQE) of an 
LED is therefore higher than that of UV-B and UV-C. 

In this paper, we discuss several technologies for achieving 
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Fig. 1. Cross-section view of PSS.  
 

 

Fig. 2. Schematic view of UV LED epi-structure. 
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high-power UV LEDs. First, we use a patterned sapphire 
substrate (PSS) to increase the IQE by reducing the screw 
dislocation and improving the light extraction efficiency (LEE) 
[9]-[11]. We then use InGaN-based multiple quantum wells 
(MQWs) in a UV LED structure. The MQW structures based 
on InGaN with low In content are important for improving the 
IQE of an LED. Finally, we use a surface mount device (SMD) 
package with a metal frame due to the heat dissipation from the 
LED chip.  

II. Experiments 

Figure 1 shows a cross-section view of the PSS used in this 
study. PSS patterns are optimized for the LED and fabricated 
using photolithography and a dry etching process. The height 
and width of the pattern are 1.6 μm and 2.7 μm, respectively, 
and the distance of the pattern is 0.5 μm. Figure 2 shows a 
schematic view of the UV LED epi-structure used in this study. 
The UV LEDs are grown on a PSS using metal organic 
chemical vapor deposition (MOCVD). 

In this study, the UV LED structure consists of a 30-nm- 

 

Fig. 3. SEM image of UV LED device structure. 

p-metal 

n-metal 

 
 
thick low-temperature buffer layer at 530ºC, a 2-μm-thick 
high-quality un-doped GaN layer, a 4-μm n+-GaN contact layer, 
a 25-nm-thick n-Al0.2GaN cladding layer, five pairs of  
InGaN/(Al)GaN MQW layers, a 25-nm-thick p-Al0.2GaN 
electron blocking layer (EBL), and a 120-nm-thick p-GaN 
contact layer.  

The MQWs of the LED consist of Sample A, which is an 
In0.05GaN (3 nm)/GaN (10 nm) structure, and Sample B, which 
is an In0.05GaN (3 nm)/Al0.05GaN (10 nm) structure. The 
growth temperatures of the MQWs vary from 790ºC for the 
In0.05GaN well layer to 850ºC for the (Al)GaN barrier layers. 
Comparing a GaN barrier with an Al0.05GaN barrier, it is clear 
that the latter is better for improving the LED output power. 

Figure 3 shows the pattern of the UV LED devices. The chip 
process utilizes a conventional LED fabrication using a      
1 mm × 1 mm size. First, 100-nm-thick indium tin oxide (ITO) 
thin films are deposited onto an LED wafer using a sputtering 
method for the transparent contact layer (TCL). After 
deposition, a rapid thermal annealing (RTA) process is carried 
out for 20 minutes at 520ºC for p-GaN activation and for 
improving such ITO properties as conductivity and 
transmittance. The device pattern is formed using inductively 
coupled plasma (ICP) etching, and Cr/Au is used for n-/p-type 
metal contacts. 

The optical properties of LEDs are characterized through 
photoluminescence (PL) and electroluminescence (EL). The 
epi-structures are observed using transmission electron 
spectroscopy (TEM) and scanning electron microscopy (SEM). 
The output power (PO) of the UV LEDs is measured at the 
Korea Photonics Technology Institute (KOPTI), which is a 
certification authority (CA) of optical devices. 

III. Results and Discussion  

Figure 4 shows the average wavelength (λavg) of the UV  
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Fig. 4. PL mapping of UV LED epi-wafers. 
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Fig. 5. STEM and TEM images of (a) Sample A and (b) Sample
B. 
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LED epi-wafers using a PL mapping system. The λavg of 
Sample A is 378.5 nm, and that of Sample B is 382.2 nm. One 
of the reasons for a red-shift of λavg is the different In0.05GaN 
well thicknesses in an MQW structure. 

Figure 5 shows scanning transmission electron microscopy 
(STEM) and transmission electron microscopy (TEM) images 
of UV LED epi-structures. Figure 5(a) shows that Sample A 
has the same design structure as an LED except for the InGaN 
well thickness of the MQWs. Reducing the thickness of an 
InGaN well from 3 nm to 2.5 nm can reduce the λavg of the 
LED from 380 nm in the design structure to 378.5 nm. Figure 
5(b) shows that the design structure of Sample B is not the 
same as that of an LED. The thickness of the Al0.2GaN layers  

Table 1. LED chip results of Samples A and B. 

Samples 
PL (λavg)

(nm) 

LED chip (unpackaged) 
VF 
(V) 

WP 
(nm) 

Vr 
(10 µA) 

Ir 
(–5 V)

Po (avg)
(mW)

A InGaN/GaN 
MQWs 378.5 3.85 377.3 12.1 0.46 16.2

B InGaN/Al0.05GaN 
MQWs 382.2 3.83 382.8 35.9 0.23 40.79

 

 
of the n-cladding and p-EBL is increased from 25 nm to 
30.3 nm and 28.2 nm, respectively.  

The InGaN well thickness is increased from 3 nm to 3.3 nm, 
and the Al0.05GaN barrier thickness is decreased from 10 nm to 
8.3 nm. We believe the thickness variation of the LED structure 
is caused by a growth rate variation in the MOCVD system.  

Table 1 shows the chip results of Samples A and B. The LED 
chips are measured using a wafer probing system. The 
measurement conditions of the forward voltage (VF), EL peak 
wavelength (WP), and PO are carried out at a 350-mA operation. 

The wavelengths of PL (λavg) and EL (WP) are nearly the 
same in Samples A and B. The values of VF in Samples A and 
B are higher than the typical value of a blue LED 
(approximately 3.2 eV), owing to a high series resistance in the 
n-Al0.2GaN cladding layer. Both the reverse voltage (Vr) at   
10 μA and the reverse current (Ir) at –5 V show the reverse 
characteristics of an LED chip. In terms of the reverse 
characteristics, Sample B is superior to Sample A because of a 
lower Ir and higher Vr. The adoption of the Al0.05GaN barrier in 
the MQWs is very effective in improving the reverse 
characteristics and output power of an LED. The output power 
of the UV LEDs is 16.2 mW for Sample A and 40.79 mW for 
Sample B.  

Sample B undergoes a back-end process for packaging. The 
back-end process consists of a wafer back-grinding of up to 
100 μm, die singulation, die inspection, and a sorting of the 
output power. The UV LED chips sorted in Sample B are 
mounted on two kinds of packaging. One type is an SMD 
5050 size package of different materials, such as 
polyphthalamide (PPA), ceramic, and Al-metal. The other is a 
transistor outline (TO) package of different sizes, such as   
TO-39 and TO-46. 

In Fig. 6, the optical output power of UV LEDs using 
different packages is plotted as a function of the injection 
current. In terms of the package type, SMDs show a higher PO 
than the TO-types. This is caused by the fact that the radiation 
lights from an LED chip can be removed from TO packages 
with a metal-based body structure. For the SMDs, Al-metal 
and ceramic materials show a higher PO, owing to their  
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Fig. 6. Optical power of UV LED with different packages. 
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Fig. 7. EL spectrum of UV LED (packaged). 
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desirable thermal dissipation properties. The value of PO is 
increased as a function of the injection current up to 200 mA. 
Over 200 mA, the value of PO is slightly decreased. This 
indicates that the heat dissipation property is a critical issue in 
UV LEDs. 

Figure 7 shows the EL spectrum of the 380-nm UV LED 
package. The peak wavelength is 383.3 nm, and the full width 
at half maximum (FWHM) is 11.2 nm. The PO of the UV LED 
is 51.3 mW at 150 mA and 118.4 mW at 350 mA, as measured 
by KOPTI (CA). 

IV. Conclusion  

In conclusion, we demonstrated the use of 380-nm UV 
LEDs. The epi-structure consisted of PSS technology and 
InGaN-based MQWs using MOCVD. To improve the thermal 
properties, we used an SMD 5050 package with Al-metal. The 
WP of the UV LED was 383.3 nm, and the PO was 118.4 mW 
at 350 mA. 
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