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Fig. 5. Ξα,z{Dθ(ε, α(l), z)} vs. STO θ with each of ε=0 and ε=2/3
in TU-6 channel at Es/N0=0 dB. 
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comparable to one another, as in the performance metric 2 of 
part B of subsection IV.2. Interestingly, the GSW signal 
employs the non-flat sine wave, which may lead to significant 
average DVs at imperfect STOs (that is, θ≠0). Nevertheless, as 
shown in Fig. 5, the average DVs at these STOs in the GSW 
scheme are almost the same as those of the LTE and MLTE 
schemes, which implies that the sufficient correlation property 
of the binary gold sequence is exhibited in the GSW scheme. 

V. DER Evaluation 

The DER performance of each STS scheme is evaluated 
with the LTE physical layer specification [3] and the following 
detailed parameter settings: a system bandwidth of 1.25 MHz 
(that is, N=64), a common carrier frequency of 2 GHz, a single 
cell model, no transmit diversity, and two-branch equal-gain 
combining diversity. The channel model is the TU-6 [24] with 
mobile velocities of 1 km/h and 100 km/h. Also, any 
accumulation between adjacent STS signals (for example, 
contiguous STS signals within more than one frame are 
combined for synchronization) is not performed to evaluate the 
DER performance under the condition of the numerical study 
of subsection IV.2. Moreover, throughout the evaluation, the 
MS-specific data signals are always loaded so as to realize the 
real scenario. Furthermore, the transmitted power for the STS 
signals is the same as that of the data signals, and, lastly, in 
evaluating the DER of STS, a correct detection is declared if 
the detected timing θ̂  in (14) is within half the CP duration 
(Nc=5 corresponding to N=64). 

Figures 6 and 7 show the DER performances of each STS 
scheme as a function of Es/N0 with the mobile velocities of   
1 km/h and 100 km/h, respectively. It is elucidated that the 

 

Fig. 6. DER vs. Es/N0 per received antenna with ε=0 and ε=2/3 in
TU-6 channel with mobile velocity of 1 km/h. 

–6 –4 –2 0 2 4 6
10–5

10–4

10–3

10–2

10–1

100

 Es/N0 (dB) per received antenna 

Av
er

ag
e 

D
ER

 

LTE: ε=2/3 
MLTE: ε=2/3
GSW: ε=2/3
LTE: ε=0 
MLTE: ε=0 
GSW: ε=0 

 
 

 

Fig. 7. DER vs. Es/N0 per received antenna with ε=0 and ε=2/3 in
TU-6 channel with mobile velocity of 100 km/h. 
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results shown in Fig. 6 are consistent with the analyses 
presented in subsection IV.2 from the following observations: 
there is no DER difference at ε=0; at ε=2/3, the LTE scheme 
provides the worst DER performance and the GSW and MLTE 
schemes demonstrate comparable performances. In addition, it 
is revealed that there is no performance trend difference 
between the case of 1 km/h (Fig. 6) and that of 100 km/h 
(Fig. 7) in terms of DER. Moreover, it is observed that for both 
the MLTE scheme and the GSW scheme, a better DER 
performance results from a lower velocity.7) If the drawbacks of 
the MLTE scheme are not overlooked, as mentioned at the end 
                                                               

7) This observation results from an absence of time diversity [7], [8], which means that if 
one of the accumulation techniques is employed, the observation may be reversed from the fact 
that the higher the mobile velocity, the larger the time diversity gain. 
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of part B of subsection IV.2, employing the proposed GSW 
scheme can be recommended. 

VI. Conclusion 

In this paper, we observed the weak points in the LTE and 
modified LTE schemes for STS. This observation enabled us to 
propose an STS scheme. In the proposed scheme, the proposed 
signal is the product of a binary sequence and a half sine wave. 
It was found through analysis and evaluation that the proposed 
scheme offers a lower PAPR, a lower detector complexity, and 
more robustness against the frequency offset than any other 
STS scheme. Since higher STS accuracy in conjunction with 
lower detector complexity and higher power efficiency is 
indispensable, the multifarious convincing aspects reported in 
this paper provide beneficial information on designing an STS 
signal. 
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