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In this letter, we derive the distribution functions of five ratios 
involving two correlated Gaussian random variables by using 
the rotation of Cartesian coordinates. The results can be used 
in evaluating the various probability performances of wireless 
communications systems. 

Keywords: Error probability, Gaussian distribution, Q-function. 

I. Introduction 
The distribution of the ratio involving two correlated Gaussian 

random variables (RVs) has been used in computing error and 
outage probabilities. As an example, the analytical expression for 
outage probability over a dual lognormal fading channel is 
obtained in the form of two-dimensional (2D) Gaussian Q-
function by using the ratio of two Gaussian RVs [1]. The rotation 
of Cartesian coordinates was presented to compute the error 
probability of M-ary phase shift keying (MPSK) over an additive 
white Gaussian noise (AWGN) channel [2]-[5]. 

There are various error or outage probabilities characterized 
by the ratio involving Gaussian RVs. It is important to obtain 
the ratio distribution function (DF) to compute the probabilities. 
In order to evaluate the probability performances of wireless 
communications systems over a Gaussian channel, we focus 
on analytical expressions for the DFs of five ratio RVs: i) the 
DF of signal-to-noise (or interference) ratio, Y/X, ii) the DF of 
signal-to-received power ratio, Y/X+Y, iii) the ratio DF used to 
compute the symbol error probability (SEP) of binary 
differential phase shift keying (BDPSK), |Y|/|X|, iv) the phase 
DF employed when computing the SEP of MPSK, tan–1(Y/X), 
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and v) the ratio DF applied to evaluate the performance of dual 
switch antenna, min(X, Y)/max(X, Y). 

Thus, in this letter, we develop the DF of five ratio RVs to 
compute error or outage probabilities in the presence of two 
correlated Gaussian noises. The objective of this letter is to 
present new and simple derivations of the five DFs.  

II. Derivations of DFs 

In this section, we consider that the distribution of X and Y 
has a correlated Gaussian distribution with two means, µX and 
µY, two standard deviations, σX and σY, and a correlation 
coefficient, ρXY. 

1. DF of Y/X 

The DF of signal-to-noise (or interference) ratio plays a key 
role in computing the outage probability of a wireless 
communications system over a correlated Gaussian channel. 
Hinkley [6], [7] first gave the derivation of FY/X (z) through an 
algebraic-direct technique. Alternatively, we present a 
derivation of FY/X (z) by computing wedge-shaped regions in 
two correlated Gaussian RVs. 

The DF of Y/X is determined by the event {(x, y)|Y/X≤z}, 
which can be divided into two events: {(x, y)|Y≥zX, X≤0} and  
{(x, y)|Y≤zX, X≥0}. Figure 1 shows that the event {(x, y)|Y/X≤z} 
is expressed by two wedge-shaped regions, 1

+ −Y OU  and 

1
− +.Y OU  The symbol ‘ ’ denotes the wedge-shaped 

region. In Fig. 1, the phase angle 1tan ( )ψ z−=
 
characterizes 

two wedge-shaped regions: 1
+ −Y OU  and 1

− +.Y OU  
In order to obtain an analytical expression for / ( ),Y XF z we 
rotate the X-Y Cartesian coordinates counterclockwise about 
the origin through an angle 

1tan ( )ψ z−= in a way that 
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Fig. 1. Geometry of wedge-shaped regions generated by two
rotated X-Y Cartesian coordinates. 
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According to the theory of linear combinations of Gaussian 
RVs, the distribution of two Gaussian RVs, U1 and V1, 
becomes Gaussian with two means and two standard 
deviations such that 
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Using the geometry of Fig. 1, we get 
/ 1 1( ) Pr{ 0, 0} Pr{ 0, 0}.Y XF z V X V X= > < + < <    (3) 

The correlation coefficient between two Gaussian RVs, V1 and 
X, 1 ,V Xρ  is computed as 

1
1

2 sin cosX X Y Y
V X

V X

σ ψ ρ σ ψ
ρ

σ σ
−

=− .          (4) 

Finally, applying normalization and applying (26.3.5) and 
(26. 3.6) of [8] to (3) gives the expression for FY/X(z) as 

( ) 1 1
1 1

1 1
/ , ; , ; ,V VX X

Y X V X V X
V X V X

μ μμ μF z Q ρ Q ρ
σ σ σ σ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= − − + − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 (5) 
where the 2D Gaussian Q-function ( ), ; ρQ x y  is defined as 

( )
( )

2 2

22

1 2, ; exp .
2 12 1 x y

u v uvQ x y dudvρ
ρ

ρπ ρ

∞ ∞
⎡ ⎤
⎢ ⎥+ −

= −⎢ ⎥
⎢ ⎥−− ⎢ ⎥⎣ ⎦

∫ ∫  

(6) 

Note that Simon [9] and Park and others [10] presented a single 
finite integral representation of the 2D Gaussian Q-function. 

Approximations for the 2D Gaussian Q-function are provided 
in [11], [12]. As in (3) of [1], the derived DF can be used to 
compute the outage probability in a log-normal fading channel 
because Y (in decibels)/X (in decibels) is represented by the 
ratio of two Gaussian RVs. 

2. DF of X/(X+Y) 

We consider the outage probability of a pilot channel in the 
mobile cellular system using code division multiple access. We 
assume that the RV X is the received pilot channel power and 
the RV Y is the received total power excluding the received 
pilot channel power X at mobile station over a Gaussian 
channel. Thus, the DF of X/(X+Y), FX/(X+Y)(z), can be applied to 
compute the outage probability of pilot channel, as presented in  
(3.61) of [13]. We easily obtain the DF of X/(X+Y) as 

( ) ( ) //
1Pr ,Y XX X Y

X zF z z F
X Y z+

⎧ ⎫ ⎛ ⎞−⎪ ⎪⎪ ⎪ ⎟⎜= ≤ = ⎟⎨ ⎬ ⎜ ⎟⎟⎜⎪ ⎪ ⎝ ⎠+⎪ ⎪⎩ ⎭      (7) 

where FY/X(·) is in (5). 

3. DF of /Y X  

As in (7.6.19) of [14], the DF of // , ( ),Y XY X F z  can be 
used in evaluating the SEP performance of a BDPSK system 
over an AWGN channel. The / ( )Y XF z is computed by using 
the geometry of Fig. 1 as 

( ) { }

{ } { }
/

1 21 2

Pr

Pr Pr .
Y XF z Y z X

U OU U OU+ + − −

= ≤

= +     (8) 

In Fig. 1, two U1-V1 and U2-V2 Cartesian coordinates are 
obtained by rotating the X-Y Cartesian coordinates clockwise 
and counterclockwise through the phase angle 

1tan ( ),ψ z−=  
respectively. Here, we focus on two Gaussian RVs, V1 and V2: 
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           (9) 

Employing the theory of Gaussian RVs to (9) gives a bivariate 
Gaussian distribution with two means,

1Vμ and
2
,Vμ two 

standard deviations,
1Vσ and 

2
,Vσ and a correlation coefficient, 

1 2
,V Vρ such that 
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Equation (8) can be rewritten by using the geometry of two 
wedge-shaped regions, 1 2U OU+ + and 1 2 ,U OU− − in Fig. 1 as 

( ) { } { }/ 1 2 1 2Pr 0, 0 Pr 0, 0 .Y XF z V V V V= < > + > <   (11) 

Thus, by using the same step done in the previous subsection, 
we obtain an exact expression for / ( )Y XF z as 

( ) 1 2 1 2
1 2 1 2

1 2 1 2
/ , ; , ; ,V V V V

Y X V V V V
V V V V

μ μ μ μ
F z Q ρ Q ρ

σ σ σ σ
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= − − + − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

 (12) 
where five parameters, 

1 2 1 2 1 2
, , , , and ,V V V V V Vμ μ σ σ ρ in the 2D 

Gaussian Q-function are in (10). 

4. DF of 1tan ( / )ψ Y X−=  

There have been several expressions to compute the 
probability of a wedge-shaped region in the presence of two 
Gaussian RVs. Case I of Pawula F-function [15], [16] has been 
used in the case of two uncorrelated Gaussian RVs. Park and 
others [17] extended Case I of Pawula F-function to correlated 
Gaussian quadratures. Aalo and others [18] derived a new 
expression for the probability density function (pdf) of phase 
angle for correlated Gaussian quadratures. Shmaliy [19] also 
presented the pdf of random RF pulse. However, motivated by 
the possibility to compute the probability of the wedge-shaped 
region through the well-known function, we derive an 
alternative expression for the DF of phase angle in the presence 
of two correlated Gaussian RVs. 

We define that 

( )
( )

1

1
tan / if 0

Ψ ; Ψ
tan / if 0
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π Y X X

−

−
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Using the geometry in Fig.1, ( )ΨF ψ is expressed as 
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(14) 
Next, we consider the similar transformation given in the 

previous subsections: 
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   (15) 

where sgn(u) is +1 if u ≥ 0, and –1 if u < 0. From (15), we get 
that the RV, V1, has Gaussian distribution with mean

1Vμ and 
standard deviation

1Vσ such that 
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The DF of ( )ΨΨ, F ψ , can be expressed by using (14) and 
(15) as 

( )
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The correlation coefficient of V1 and Y is 
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Then, applying normalization and (26.2.6), (26.3.5), and 
(26.3.6) of [8] to (17) gives the expression for ( )ΨF ψ as 
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where the mean Yμ and standard deviation Yσ are given, the 
mean

1Vμ and standard deviation 1Vσ are in (16), and the 
correlation coefficient

1V Yρ is in (18). 

5. DF of min(X, Y)/max(X, Y)  

The DF of min(X, Y)/max(X, Y), F*(z), is obtained as 
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Figure 2 represents two wedge-shaped regions, 0 1
− +U OU   

and 0 2 ,− +U OU  which determine the DF F*(z). Next, we 
consider the rotated X-Y Cartesian coordinates determined by 
three phase angles ; 0, 1, 2 :iψ i =  
 

 

Fig. 2. Geometry of wedge-shaped regions generated by three 
rotated X-Y Cartesian coordinates. 
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cos sin
; 0,1,2,
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where 1 1
0 1 2/ 4, cot ( ), and tan ( ).ψ π ψ z ψ z− −= = = Using 

the geometry of Fig. 2, we get 
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Finally, applying normalization and (26.3.3) and (26.3. 11) of 
[8] to (22) yields an expression for F*(z) as 
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III. Conclusion 

In this letter, we have derived five DFs of the ratios involving 
two correlated Gaussian RVs by using the rotation of Cartesian 
coordinates. The derived functions are represented as only the 
known Gaussian Q-function. The results can be used in 
evaluating the probability performances of various analyses 
determined by the ratio of two Gaussian RVs. 
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