
348 Doohwan Oh et al. © 2015 ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

Mobile devices have been widespread and become very
popular with connectivity to the Internet, and a lot of
desktop PC applications are now aggressively ported to
them. Unfortunately, mobile devices are often vulnerable
to malicious attacks due to their common usage and
connectivity to the Internet. Therefore, the demands on
the development of mobile security systems increase in
accordance with advances in mobile computing. However,
it is very hard to run a security program on a mobile
device all of the time due the device’s limited
computational power and battery life. To overcome these
problems, we propose a novel mobile security scheme that
migrates heavy computations on mobile devices to cloud
servers. An efficient data transmission scheme for
reducing data traffic between devices and servers over
networks is introduced. We have evaluated the proposed
scheme with a mobile device in a cloud environment,
whereby it achieved a maximum speedup of 13.4
compared to a traditional algorithm.

Keywords: Mobile security, offloading computing, cloud
computing, pattern matching, Wu-Manber.

Manuscript received Apr. 5, 2014; revised Nov. 7, 2014; accepted Nov. 28, 2014.
This work was supported by the ICT R&D program of MSIP/IITP, Rep. of Korea (14-000-

05-001, Smart Networking Core Technology Development).
Doohwan Oh (ohdooh@yonsei.ac.kr), Keunsoo Kim (keunsoo.kim@yonsei.ac.kr), and

Won Woo Ro (corresponding author, wro@yonsei.ac.kr) are with the School of Electrical and
Electronic Engineering, Yonsei University, Seoul, Rep. of Korea.

Ilkyu Kim (ilkyu.kim@lge.com) is with the DTV SoC Development Department, LG
Electronics, Seoul, Rep. of Korea.

Sang-Min Lee (sangm@etri.re.kr) is with the Broadcasting & Telecommunications Media
Research Laboratory, ETRI, Daejeon, Rep. of Korea.

I. Introduction

With the emergence of mobile computing, the popularity of
mobile devices, such as smartphones and tablet PCs, has
exploded. With powerful hardware and software support,
mobile devices have enabled many new services, such as web
browsing, gaming, and email (which was only available on
desktop computers in the past). In fact, some personalized
services that cannot be provided on a desktop computer can
now be realized on mobile devices. Such services include
tracking a user’s route with a GPS sensor, taking a photo
(including geo-location information), and recognizing a user’s
gestures through the use of a gyroscope. These activities
produce large amounts of personal data on mobile devices.

As a side effect of the emergence of mobile technology,
mobile devices have become the target of hacking attacks
[1], because the devices hold a huge amount of private data. In
fact, mobile malwares; for example, Cabir, Trojan, and so on,
which are developed to illegally collect such private data, are
increasing in number significantly [2]–[3]. The widespread use
of powerful mobile devices leads the spread of a large number
of mobile malicious codes. Therefore, security systems for
mobile devices are increasingly required according to the
advances being made in mobile computing.

In spite of the importance of secure mobile computing, it is
difficult to adapt traditional security applications to mobile
devices due to hardware restrictions such as memory size,
computing power, and battery life. Most security applications,
including intrusion detection systems and anti-virus software,
detect illegal activities through using string matching
algorithms [4]–[5]. The algorithms require high computation
power and large memory space; these requirements increase in
proportion to the number of malicious signatures [6]–[8]. In

Highly Secure Mobile Devices Assisted with
 Trusted Cloud Computing Environments

Doohwan Oh, Ilkyu Kim, Keunsoo Kim, Sang-Min Lee, and Won Woo Ro

ETRI Journal, Volume 37, Number 2, April 2015 Doohwan Oh et al. 349
http://dx.doi.org/10.4218/etrij.15.0114.0397

fact, computing power of mobile devices is not sufficient for
detecting a large number of malicious signatures, despite the
continual growth in hardware resources for mobile devices and
advances in mobile application processors [9]. This then means
that development of more efficient security schemes for mobile
devices is essential.

Interest in cloud computing has increased with the popularity
of mobile devices [9]–[11]. By migrating computation-
intensive parts of heavy mobile applications to resourceful
remote cloud servers that have higher performance and energy
efficiency, mobile devices are able to offload applications to
achieve low power consumption [12]–[17].

In this paper, we propose a design and implementation of
a highly secure mobile system incorporating offloading
computing. To be specific, we focus on the Wu-Manber (WM)
algorithm [18], which is one of the most famous multiple
pattern matching algorithms used in malware detection and one
that is essential to implement secure mobile devices. Since the
algorithm requires heavy computation, to save energy and
reduce the workload of mobile devices, the heavy tasks of the
algorithm are migrated to a resourceful cloud server. To
achieve this, we analyze the optimal workload balancing and
partition tasks into either lightweight or heavyweight tasks; the
lightweight tasks are assigned to the mobile device, and the
heavyweight tasks are assigned to the server. In addition, we
propose a data transfer scheme that reduces both the power
consumption and the delay times of data transfers. In summary,
the key contributions of this paper are as follows:
■ Analyzing and partitioning the workload of the security

algorithm into lightweight and heavyweight tasks.
■ Developing an offloading framework to provide an energy-

efficient security scheme for mobile devices.
■ Reducing power consumption on data transfer operations by

diminishing the amount of data transmitted from a mobile
device to cloud servers.
To evaluate the proposed system, we perform

comprehensive experiments on a testbed consisting of an
Android mobile device connected to the Amazon EC2 cloud
server [19]. The proposed mobile security system saves
execution time and power consumption on detecting any
malicious patterns in the mobile device employing it.
Compared with the traditional security algorithm running on
the device without offloading computing, the best performance
of the proposed approach provides a speedup factor of 13.4. In
addition, the proposed approach saves up to 833 mWh of
energy compared to the device’s traditional security algorithm.

The remainder of this paper is organized as follows. In
Section II, we present background information on malware
detection algorithms and cloud computing, as well as previous
studies with similar approaches. Section III describes the

proposed mobile security system with cloud computing. The
performance of the approach is evaluated and discussed in
Section IV. Conclusions are presented in Section V.

II. Background

This section discusses related work and presents background
information on previous malware detection algorithms.

1. Related Work

The emergence of mobile computing and virtualization
technology has led to the commercial success of cloud
computing. Major IT service providers have already launched
cloud services and allow computation- or data-intensive tasks
to be remotedly executed [19]. Mobile devices have adopted an
offloading approach to migrate these tasks to cloud servers to
improve performance and reduce energy consumption.

To implement a cloud-assisted system, the offload costs
involved in the use of such a system should be considered for
its efficiency. Since entire or partial amounts of data can be
transmitted to cloud servers, the cost of data transmission is
often considered to be the key factor in determining the
suitability of an offloading computation. If the transmission
cost is too high, then executing the workload on the mobile
device would be the better option. Many studies have been
conducted to find the optimal conditions under which
offloading computing can take place in terms of the data
transmission time and energy consumed [9], [20]–[21].

Previous researches have proposed many offloading
approaches that migrate either an entire task or a part of a task
over to other computing resources. In most cases, the detection
systems utilize a centralized server that provides powerful
computing resources. Oberheide and others [22] introduced
a virtualized cloud system that migrates mobile antivirus
functionality to a cloud resource. The cloud detects malicious
intrusions by checking the files or binaries received from the
mobile devices. In the approaches of Portokalidis and others
[23] and Schmidt and others [24], the operating systems (OSs)
of the target mobile devices are cloned in the cloud server, and
the cloud detects malicious intrusions using the OS images it
receives from the mobile devices. Although cloning an entire
OS or sending files to be checked are simple and effective
approaches, their proposed systems generally require a high
degree of network activity [25]. The required high degree of
network activity can be reduced by filtering data properly [25]–
[27]. For instance, a mobile device can exclude files that are
evidently irrelevant in detecting malwares. Cha and others [26]
used bloom filters to filter binaries. Cheng and others [27]
found that filtering algorithms are lightweight processes and

350 Doohwan Oh et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

that the burden of the filtering is not high.
Chen and others [28] proposed multiple detection servers

that can implement collaborative security platforms. The
system uses routers to detect intrusions on mobile devices.
Similar to other approaches, the detection can be achieved
using a single router. If the workload in a router becomes heavy,
then a collaborator dynamically manages other routers to help
with the detection. Zonous and others [29] proposed Secloud,
which is a cloud-based security system for smartphone devices.
Secloud emulates a smartphone in the registered cloud server
and performs data synchronization between the client and
the server. Then, the cloud server inspects whether the data
contains any malicious patterns, and the result is reported to
the smartphone. Yang and others [30] proposed an intrusion
detection system that detects intrusions on the client mobile
device by collaborating with other peer devices. To minimize
the required memory size to keep malicious signatures on
mobile devices, only the most sensitive signatures are stored on
each device.

2. WM Algorithm

The WM algorithm is a multiple pattern matching algorithm
designed to find any predefined patterns in a given input text.
The algorithm searches multiple patterns simultaneously by
moving a search window along the incoming data stream [18].
Therefore, the algorithm is suitable in rapidly checking whether
a search window contains any predefined known malicious
signature strings in a data stream.

A. Preprocessing with Pattern Set

WM uses three tables; that is, the SHIFT, HASH, and
PREFIX tables. These tables are constructed based on a
predefined pattern set before starting the matching procedure.
The SHIFT table originates from the bad-character shift
scheme of the Boyer–Moore algorithm [31]. The indices of the
table are made up of all possible B-character sequences
appearing in the first LSP characters of all patterns, where LSP
is the length of the shortest pattern; B is set as two or three in
[18]. Each index has its own shift value, which defines how
many characters the current search window moves. The shift
values are calculated as LSP-q, where q is the location of the
last character of a block in a pattern. If a block does not appear
in any of the LSP-character sequences, then it’s shift value is
LSP–B+1. Figure 1 shows a SHIFT table with a set of patterns.
In this example, the shift value of the “D1” index is set as four,
because LSP is six with a q-value of two. The shift value for all
blocks not appearing in any patterns is set as five, since the shift
value is computed as LSP–B+1; these blocks are represented
as “*” in the SHIFT table.

Fig. 1. Example of a set of patterns and SHIFT, HASH, and
PREFIX tables of WM (B = B= 2).

0

Set of
patterns

ID Prefix
value

Suffix
value

D1 1B B0 03 33 B3 30 00 05 5A … *

HASH table PREFIX table

… 5

D 1 B 0 3 3 2 3 3

1 B 3 0 0 5 A

2 D 1 B 9 3 3 0 0

3 B 3 A 2 3 3 F

4 3 2 1 0 4 3 2 1 0

Index (s)

Shift value

Index (h)

Pattern ID

5A

1

33

0, 2, 3

Index (p)

Pattern ID

D1

0, 2

B3

1, 3

LSP = 6

SHIFT table

The HASH table groups the patterns based on their suffix
value. The suffix value of each pattern indicates the B-character
sequence located on the (LSP-B)th character of the pattern. For
example, the “B3005A” pattern has “5A” as its suffix value, as
shown in Fig. 1. Each index of the HASH table is made up of
one of the suffix values and is associated with a list of patterns
having that index as their suffix value.

In the PREFIX table, the patterns are grouped based on the
prefix values of the patterns. The prefix value is the first B-
character sequence of each pattern. The patterns having an
identical prefix value are grouped, and the prefix value then
becomes an index of the PREFIX table. As shown in Fig. 1, the
PREFIX table has two indices, and each of them has IDs of the
patterns having that index as their prefix value.

B. Exact Pattern Matching

The WM algorithm starts the matching procedure with the
tables constructed in the preprocessing step. In fact, the search
window (W) is located on the first character of an incoming
data stream (text), T; WM sets the size of the search window as
equal to LSP. First, the suffix value of W, which is the last B-
character piece of W, is found in the indices on the SHIFT table.
Then, if the matched index has a shift value larger than zero,
then the search window immediately moves to the right by as
many characters as the shift value. Otherwise, the prefix value
of W, which is the first B’-character piece of W, is checked with
the PREFIX table. If there are no matched indexes, then the
search window moves one character to the right and checks the
suffix value of W, again. Otherwise, the character matching
operation starts. All of the patterns listed in the index, which is
equal to the suffix value of W in the HASH table, are matched
with W in a brute-force manner. Figure 2 shows a working
example of matching a pattern set (P) on an incoming data
stream (T); the pattern set and the three tables are shown in Fig. 1.

ETRI Journal, Volume 37, Number 2, April 2015 Doohwan Oh et al. 351
http://dx.doi.org/10.4218/etrij.15.0114.0397

Fig. 2. Working example of WM.

Shift value :

T : A C 1 4 B 0 5 B D 0 0 5 A D 1 B 0 3 3 2

A C 1 4 B 0

1 4 B 0 5 B

B D 0 0 5 A

D 1 B 3 A D

3 3

D 1 B 0 3 3

Step 1

Step 2

Step 3

Step 4

Step 5

T
im

el
in

e

2 5 1 5

Search window

Fig. 3. Workload distribution on WM working on a mobile
device.

0%

25%

50%

75%

100%

10,000 20,000 30,000 40,000 50,000 60,000
Number of malicious patterns

Exact matching Table matching

C. Workload Analysis

To analyze the computation workload of the WM algorithm,
we have evaluated the execution time of WM with various
numbers of patterns. Figure 3 depicts the workload distribution
of the WM process. The execution time for the exact matching
operation accounts for approximately 94% of the overall time
in the case of matching 10,000 patterns. This operation requires
more time as the number of patterns increases. In fact, the
execution time for the exact matching operation accounts for
about 99% of the overall time in the case of matching 60,000
patterns. This is due to the fact that the table look-up operations
consist of few data loads and comparison instructions, while
the exact matching operation loads all of the patterns that have
an equivalent prefix and suffix to the current input string and
executes a one-by-one character comparison with all of them.

Figure 4 illustrates the process of the WM algorithm,
including data and control flows. The size of a vertex
represents the approximate amount of workload, and the width
of a solid line indicates the amount of data transferred from one
vertex to another; they are illustrated based on the experimental
results shown in Fig. 3. The WM process consists of the
following four key functions: the moving window function T,
the shift table function S, the prefix table function P, and the
exact matching function E. There is an input data stream, TD,
and output, R. Note that any of these functions can be offloaded

Fig. 4. WM process graph.

Data
TD: input data stream
TSD: sub-string of TD

PD: TSD’s suffix
SD: TSD’s prefix
SS: shift value
R: results

Functions
T: move window
S: suffix table
P: prefix table
E: exact matching

E

R

P

S

T

TSDPDSDSS

Data flow
Control flow

TD

to cloud servers. The moving window function T reads TD and
moves a search window over TD with a shift value, SS. The
shift table function, S, then, takes an input as a suffix on a
current search window, SD, and matches it against all indices in
the shift table. If the shift value indicates zero, then P should be
processed with a prefix value, PD, which provides a prefix
value on the current search window. In P, if an index on the
prefix table matches with PD, then E operates the exact
matching operation with the substring on the current search
window, TSD, and reports the result R to T.

III. Cloud Framework

In this section, we present the CloudWM framework that
performs distributed WM pattern matching by a collaborative
work of a client mobile device and cloud servers. We discuss
the workload partitioning policy that decides what section of
the pattern matching procedure to offload. We also introduce
our newly designed data-traffic reduction technique
implemented in CloudWM.

1. Framework Overview

An overview of CloudWM is shown in Fig. 5. There are
four major modules — Mobile Agent, Light Detector, Cloud
Agent, and Heavy Detector. Mobile Agent manages the overall
detecting processes on the mobile device; that is, reading
binary files or incoming packets, managing the Light Detector
module, and communicating with the cloud resources. Light
Detector executes lightweight functions of WM. If there is the
possibility of matching, then Mobile Agent is informed of this
fact by Light Detector, and then sends the incoming data
stream to the cloud.

On the cloud side, Cloud Agent manages the overall
detecting execution; that is, communicating with the mobile

352 Doohwan Oh et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

Fig. 5. Proposed mobile security system.

Packets from
network

Binary
files

Light detector

Mobile agent

Mobile
device

TCP/IP

Predefined malicious
signature set

Heavy detector

Cloud
agent

Cloud
resources

device and managing the Heavy Detector. When Cloud Agent
receives a data stream inspection request from Mobile Agent, it
initiates the detailed inspection process with Heavy Detector
(executes heavyweight functions of WM).

2. Partitioning Workload of WM

We partition the workload of the WM algorithm statically.
We first classify the functions of WM into lightweight and
heavyweight ones. From the graph shown in Fig. 4, E will
relatively be a heavy part of the WM process; S and P are
lightweight functions. Therefore, Light Detector executes the
lightweight functions, which are the SHIFT and PREFIX table
look-up operations, on the mobile side, and Heavy Detector on
the cloud side performs the heavyweight functions.

By offloading the heavyweight functions, both performance
gain and power saving on mobile devices are achieved.
However, the input line TSD is wider than those of the others
shown in Fig. 4. If the data flow frequently goes to E, then
significant amounts of data would need to be transferred to
a cloud server over the network. Therefore, an optimization
scheme to reduce the amount of data transferred is required.

3. Reducing Amount of Data Transfer

In the proposed system, the data in the search window is
transmitted to the cloud server for more detailed inspection
when Light Detector identifies that this window may contain a
potential malicious signature. This suspicious data comprises
as many characters as the length of the longest pattern (LLP)
from the position in the current window. Then, the suspicious
data is inserted into a suspicious data queue (SDQ). In Fig. 6,
an SDQ named Q9 contains a suspicious data stream. The
queue is temporarily stored in the message buffer as an entry
and sent to the cloud server.

Fig. 6. Messages sent for suspicious malicious data stream.

Message buffer

Q1 Q2 … Q9 Q9

StoredLoaded

Q1

Send an SDQ
to cloud

TCP/IP

Q7 Q8

Q9 SDQ

If Light Detector frequently detects suspicious patterns or
LLP is very long, then the amount of data transmitted to the
cloud servers exponentially increases. In the worst case, the
amount can be greater than that of the overall input data stream.
In mobile environments, data transfer may consume a large
amount of energy and lead to long computation times due to
long network delay. In fact, the overhead on computation and
power consumption for offloading computing increases as the
amount of transmitting data increases.

To reduce the amount of data, an interleaved suspicious-data
forwarding scheme is proposed. When a suspicious-data
substring is inserted to SDQ, the window is moved to the
right, immediately. If another suspicious-data substring is
detected before the window moves right as many as LLP from
the position detecting the last suspicious data, then there are
redundant data between the last one and the current suspicious
data. An interleaved forwarding scheme can prevent
transmission of such redundant data. When a suspicious data
stream is detected and another suspicious data stream is then
detected in an adjacent position to the first, both are written on
the same SDQ.

Figure 7 shows an example of the interleaved forwarding
scheme. Let Mx be the position at which a suspicious data
substring is detected. Let us assume that LLP is equal to 5 and
that the size of SDQ is 16 bytes. The input data stream has
five suspicious data streams until t26. The first suspicious data
stream appears at M1. The suspicious data stream {t1, t2, t3, t4,
t5} is inserted into an SDQ. The next suspicious data are
located at M2. The system attempts to insert data steam {t3, t4, t5,
t6, t7} at the same SDQ. At this time, the partial data {t3, t4, t5}
are already stored in the queue. Therefore, only data t6 and t7
are inserted. In the case of M3, only a single datum, t8, is stored
to SDQ. Before detecting M5, SDQ has only three empty
spaces since the size of SDQ is limited to 16 bytes. This means
that the data stream corresponding to M5 cannot be fully stored
in the same queue. Therefore, it will be contained in the next
SDQ, and the current SDQ is stored in a sending message
buffer as an entry in the buffer.

By combining the proposed interleaving scheme and lossless
data compression, the total amount of transmitted data can be
further reduced. The QuickLZ lossless compression is a well-
known fast compression method. Before inserting SDQ into

ETRI Journal, Volume 37, Number 2, April 2015 Doohwan Oh et al. 353
http://dx.doi.org/10.4218/etrij.15.0114.0397

Fig. 7. Interleaved suspicious-data forwarding scheme.

SDQ
LLP: 5
Size of SDQ: 16 bytes

t1 t2 t3 t4 t5 t6 t7 t8 t15 t16 t17 t18 t19 t22 t23 t24 t25 t26

0 15

Input data
stream Enqueue

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21 t22 t23 t24 t25 t26 …

Transmitted to cloud servers
Suspicious data on input data stream

M1 M2 M3 M4 M5

the message buffer, we compress SDQ with QuickLZ. After
the data are compressed by QuickLZ, the size of the data to be
transmitted will be reduced to about 45% of its original size.
In conclusion, the workload on transferring suspicious data is
reduced to less than half compared to a naive method.

4. Detecting Modules on Mobile Side

On mobile devices, there are two main modules — Mobile
Agent and Light Detector. Mobile Agent, which controls the
overall detecting process on the mobile device, includes the
following four modules: Manager, Window Mover, Sender,
and Buffer, as shown in Fig. 8. Incoming data, such as binary
files or packets from networks, is temporarily stored in Buffer.
When the size of accumulated data in Buffer exceeds the
length of the longest signature, Manager sends a start signal to
Window Mover, which is the task corresponding to the T
function of WM shown in Fig. 4. Window Mover moves the
search window along the data in Buffer and sends the suffix
value of the search window to Light Detector.

When Light Detector receives the suffix value of the input
data stored in Buffer, the SHIFT table checks the shift value. If
this shift value is larger than zero, then Window Mover moves
the search window as many characters as this shift value.
Otherwise, the PREFIX table matches the prefix value and
sends the matching result to Window Mover. When there is a
matched prefix, Window Mover informs this result to Manager.
Otherwise, the search window moves one character and sends
its suffix value to Light Detector again.

Manager signals to Sender when it decides to send
suspicious data on the mobile device to the cloud server.
Sender reads the suspicious data from Buffer; the location
information of the data is transferred to Manager. At this time,
Manager allocates an ID of the suspicious data for identifying
the result from the cloud server. Next, the suspicious data are
stored in SDQ and then sent to the cloud server after the
interleaving and compression process described in the previous
section.

Fig. 8. Block diagram on mobile side of CloudWM.

(4)
(5)

(3)
Suffix value

(6)
Result

Shift value

HASH table

SHIFT table

Light Detector

PREFIX table

Data flow

Control flow

Window Mover (T func.)

(7)

(2)
(1)

Sender

SDQ Compressor
Msg.
buffer

Buffer Manager

Binary
files

Packets
from

networks

(10)

M
ob

il
e

op
er

at
in

g
sy

st
em

(9) Result (8) Suspicious data

Cloud resources

Mobile agent

5. Detecting Modules on Cloud Side

On the cloud side, the data received from the mobile device
must be decompressed before executing the detailed data
inspection through the exact character matching. Therefore,
Receiver of Cloud Agent preprocesses the data to inspect them
in Heavy Detector, as shown in Fig. 9. First, the data are
decompressed to get the received SDQ and stored in DeSDQ.
Then, SDQs are dequeued from DeSDQ in their arrival order,
and then sent to Heavy Detector. This process is controlled by
the Manager module.

When an SDQ arrives at Heavy Detector, the SHIFT table
inspects it again, as on the mobile device. If the shift value is
zero, then HASH table maps the suffix value to the list of the
patterns having the suffix value. Character Matcher reads the

354 Doohwan Oh et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

Fig. 9. Block diagram on cloud resources of CloudWM.

Receiver

Buffer

Decompressor

DeSDQ

Suspicious data (3) Result (7)

Heavy Detector

SHIFT table

HASH table

(4)

(5)

Character Matcher

Predefined
malicious

signature set
(6)

(2)

(8)

Manager

Cloud Agent (1)

From mobile devices To mobile devices

patterns in the list and runs exact character-by-character
matching on the SDQ. When any matched pattern is found, the
matched point and the SDQ’s ID are returned to Manager of
Cloud Agent. Finally, Manager reports the results to the mobile
device.

Note that in Heavy Detector, the SHIFT and HASH tables
are processed again, although these operations have already
been executed in Light Detector on the mobile device. There
can be several matched positions in an SDQ; therefore,
information about these positions must be included in the SDQ.
However, if the SHIFT table is performed on Heavy Detector,
then the position information is not required on the cloud side.
Indeed, the workload on SHIFT table is much less than the
character matching operations, as mentioned in Section III-3.
In addition, the HASH table is used by Character Matcher to
ascertain those signatures that are candidates for matching on
the SDQ in the signature set.

IV. Evaluation

In this section, the experimental methodology and results are
presented. Then, the results are analyzed and discussed in detail.

1. Experimental Environments

For evaluation, we perform the experiments with a low-
performance mobile device and high-performance servers. The
application processor integrated in the mobile device has a
1 GHz CPU clock and 512 MB SDRAM. We use two types of
servers — a local server and a cloud server. The local server

has two physical processors that have 24 cores running with
2.3 GHz clock frequency. In addition, the system is equipped
with a total of 128 GB DDR3 RAM. For the cloud server, we
use Amazon EC2 instance [19]. This instance has two virtual
cores configured with 2.5 EC2 Compute units and 1.7 GB
memory.

The malicious patterns are extracted from the simple patterns
of the ClamAV 0.97.2 signature set [32]. An input stream of
around 100 MBytes is generated from some Android APK
expansion files.

2. Performance Evaluation

To compare the scanning speed of CloudWM with the
traditional WM algorithm, we have measured the inspecting
time on matching various numbers of the malicious signatures
on the target input stream. WM is operated only on the mobile
device. CloudWM has three options — CWM, CWM_SDQ,
and CWM_CompSDQ. CWM sends data as soon as a string
subset is revealed as a candidate. CWM_SDQ additionally
uses the proposed interleaved suspicious-data forwarding
scheme. CWM_CompSDQ exploits the compression to
CWM_SDQ.

Figure 10 compares the execution times of these schemes.
The best performance is achieved on CWM_CompSDQ,
although the execution times of all three methods increase as
the numbers of signatures grow. CWM_CompSDQ requires
12.58 s for matching 10,000 patterns. However, the execution
time is increased to 189.62 s for matching 60,000 patterns.
From the results of WM, the elapsed time marks 47.3 s for
matching 10,000 patterns, but grows to 2940.72 s for 60,000
patterns. As a result, CWM_CompSDQ achieves a speedup
factor of 15.51 compared to WM, 12.15 to CWM, and even
2.83 to CWM_SDQ on matching 60,000 patterns.

Unfortunately, CWM shows the worst performance on

Fig. 10. ClamAV scanning time with respect to the number of
malicious patterns.

10,000 20,000 30,000 40,000 50,000 60,000

Number of malicious patterns

3,000

2,500

2,000

1,500

1,000

500

0

E
la

ps
ed

 ti
m

e
(s

)

WM
CWM
CWM_SDQ
CWM_CompSDQ

ETRI Journal, Volume 37, Number 2, April 2015 Doohwan Oh et al. 355
http://dx.doi.org/10.4218/etrij.15.0114.0397

Fig. 11. Amount of transferring data to the cloud server.

31,098 31,098
37,884

81,477 81,477 81,477

7,585 7,585 9,363

20,376 20,376 20,376

96 96 118 257 257 257

CWM
CWM_SDQ

CWM_CompSDQ

10,000 20,000 30,000 40,000 50,000 60,000

90,000

kB

75,000

60,000

45,000

30,000

15,000

0

Number of malicious patterns

matching patterns for less than 40,000 malicious patterns. This
is due to the fact that the operations for transferring a large
amount of suspicious data in CWM causes significant network
delay and degrades the overall performance.

We measure the amount of data transferred to the server to
observe how many data can be reduced by the proposed
interleaved suspicious-data forwarding scheme and data
compression technique. The results are shown in Fig. 11. On
matching 60,000 patterns, CWM sends 81,477 kB of
suspicious data to the remote server. This amount is almost
equivalent to that of the target input data stream. In
CWM_SDQ, the amount of data is significantly reduced to
20,376 kB. This means that the interleaved suspicious-data
forwarding scheme successfully reduced the data size.
Furthermore, in CWM_CompSDQ, which further reduces data
size with lossless data compression, only 257 kB is transferred.
This is only 12% of CWM_SDQ. As a result,
CWM_CompSDQ achieves the best performance with
significant reduction in data size.

In Fig. 12, we show a breakdown of the execution time for
CWM_CompSDQ on the client side. In the figure, there is a
network transmission overhead to offload heavy-weight
functions, allocate SDQ, and compress the SDQ; the Table
Matching operation is equivalent to that of WM. As shown in
the figure, CWM_CompSDQ spends 92% of overall
processing time on the offloading operation, which is mostly
data transmission time. On the other hand, the SDQ and
Compression amount to only a 1% portion, respectively. In
fact, the offloading operation requires some time to establish
connection to the offloading server and send suspicious data.
As a result, it is obvious that CWM_CompSDQ spends most
of its processing time on transferring suspicious data to the
offloading server.

To observe energy consumption for matching a malicious
signature-set on the mobile device, we measure average power
consumption by using the PowerTutor tool [33]. The power

Fig. 12. Overhead for offloading heavy-weight functions of
CWM_ CompSDQ.

10,000 20,000 30,000 40,000 50,000 60,000
Number of malicious patterns

100%

75%

50%

25%

0%

Offloading Compression SDQ Table Matching

Fig. 13. Power consumption breakdown.

WM CWM CWM_SDQ CWM_CompSDQ

1,800

1,500

1,200

900

600

300

0

P
ow

er
 (

m
W

)
Wi-Fi CPU LCD

consumption breakdown is shown in Fig. 13. We measure
power consumption in a unit time for three hardware
components: LCD, CPU, and Wi-Fi. WM requires the least
power at 1,139 mW since the Wi-Fi component is idle
during matching. Among the CloudWM approaches, CWM
consumes the least power than the others schemes utilizing
SDQ. This is due to the fact that CWM should send much
more data to the cloud server than the others and CPU is in the
idle state during the sending time. In fact, the average power
consumption of the CPU of CWM indicates 380 mW, while
WM, CWM_SDQ, and CWM_CompSDQ score are at
489 mW, 553 mW, and 519 mW, respectively. Although WM
and CWM show less power consumption than CWM_SDQ
and CWM_CompSDQ, the CloudWM approaches utilizing
SDQ consume less energy than WM and CWM for matching
malicious patterns since their execution time is much less than
WM and CWM.

We have measured the performance of CWM_CompSDQ
on real cloud computing environments. The offloading servers
are configured on the Amazon EC2 instances located in
different cities all over the world, each of which has a different
network bandwidth. Table 1 shows the execution times of
CWM_CompSDQ as it cooperated with eight different

356 Doohwan Oh et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

Table 1. Execution times for various environments.

Offloading Server
(location)

Execution time
(s)

Bandwidth
(Mbits/s)

Distance
(km)

Local server 43 14.80 0

Tokyo 53 9.70 1,163

N. California 59 3.36 9,040

Singapore 69 2.50 4,670

Oregon 77 2.43 8,702

Sydney 82 1.50 8,330

N. Virginia 102 1.00 11,280

Ireland 117 0.80 9,024

A
m

az
on

 E
C

2

Sao Paulo 127 0.72 18,340

Fig. 14. Matching time of CWM_CompSDQ with various
available computing power of the Amazon EC2 Tokyo
server.

10 20 30 40 50 60 70 80 90 100

Available computing power of offloading server (%)

100

80

60

40

20

0

E
la

ps
ed

 ti
m

e
(s

)

offloading servers. The bandwidths and distances from the
client to one of the servers are also presented. In the table,
the “Local server” item is the case that CWM_CompSDQ
offloads the heavy computation part to the server connected in
the same local network with the mobile client. The Amazon
EC2 servers are named after the city in which they are located.
For example, the offload server of “Tokyo” is located in Tokyo
city in Japan.

The results show that the execution time is reduced as the
bandwidth is increased. The “Local server” shows the highest
bandwidth of 14.8 Mbits/s and the best performance — with
an execution time of 43 s. Among the Amazon EC2 servers,
Tokyo shows the best performance because of the shortest data
transfer time due to the highest bandwidth among non-local
servers. Note that the execution time is more sensitive to
network bandwidth rather than physical distance between
client and server. Although N. California is located the furthest
from Singapore, since the bandwidth of N. California
(3.36 Mbits/s) is larger than that of Singapore (2.50 Mbits/s),

the execution time for N. California is 59 s compared to 69 s of
Singapore.

It is interesting that even in the case of Sao Paulo, which
shows the worst performance among the offloading servers,
our approach still proves to be advantageous when compared
to being executed only on a mobile device (218.12 s. of WM)
with a speedup factor of 1.7 when matching 30,000 patterns.
To summarize, our approach shows higher performance with
an offloading server having low bandwidth, and when
combined with offloading servers having higher bandwidth, it
can achieve much better performance.

We have observed variations in the execution times in the
case when an offloading server is processing multiple tasks
concurrently and the partial portion of the total computation
power of the server is available. Figure 14 shows the variation
in execution time of CWM_CompSDQ with Tokyo for
matching 30,000 patterns. With 100% server performance,
CWM_CompSDQ completes the matching task in 52.9 s. On
the other hand, when only 10% performance is allocated to the
offloaded matching task, the execution time is increased to
86.4 s. This is 63% worse performance compared to the 100%
case. However, with only 10% available computing power,
CWM_CompSDQ still shows a speedup factor of 2.5
compared to WM running at the mobile device only.

V. Conclusion

In this paper, we proposed an efficient, secure mobile system
assisted by cloud computing. To provide additional security on
mobile devices, we designed a malware detection system based
on a WM pattern matching algorithm. To optimize energy
efficiency and maximize performance on mobile devices that
have limited hardware resources, we presented a novel
approach that offloads the heavyweight tasks of the algorithm
to a resourceful cloud server. However, the overhead on data
transfer between the mobile device and the server becomes a
significant performance bottleneck in the system. To address
this problem, an interleaved suspicious-data forwarding
scheme was additionally proposed to minimize the size of the
transmitted data. As a result, the proposed system achieves a
speedup factor of 13.4 while consuming only 9% of power,
compared to being run only on mobile devices.

References

[1] A. Mylonas, A. Kastania, and D. Gritzalis, “Delegate the

Smartphone User? Security Awareness in Smartphone

Platforms,” Comput. Security, vol. 34, May 2013, pp. 47–66.

[2] A.P. Felt et al., “A Survey of Mobile Malware in the Wild,” ACM

ETRI Journal, Volume 37, Number 2, April 2015 Doohwan Oh et al. 357
http://dx.doi.org/10.4218/etrij.15.0114.0397

Workshop Security Privacy Smartphones Mobile Devices,

Chicago, IL, USA, Oct. 17–21, 2011, pp. 3–14.

[3] M. La Polla, F. Martinelli, and D. Sgandurra, “A Survey on

Security for Mobile Devices,” IEEE Commun. Surveys

Tutorials, vol. 15, no. 1, Feb. 2012, pp. 446–471.

[4] P.-C. Lin et al., “Using String Matching for Deep Packet

Inspection,” Comput., vol. 41, no. 4, Apr. 2008, pp. 23–28.

[5] H. Kim and S.-W. Lee, “A Hardware-Based String Matching

Using State Transition Compression for Deep Packet Inspection,”

ETRI J., vol. 35, no. 1, Feb. 2013, pp. 154–157.

[6] R. Antonello et al., “Deep Packet Inspection Tools and

Techniques in Commodity Platforms: Challenges and Trends,” J.

Netw. Comput. Appl., vol. 35, no. 6, Nov. 2012, pp. 1863–1878.

[7] D. Oh and W.W. Ro, “Multi-threading and Suffix Grouping on

Massive Multiple Pattern Matching Algorithm,” Comput. J., vol.

55, no. 11, Nov. 2012, pp. 1331–1346.

[8] L. Hoang and V.K. Prasanna, “A Memory-Efficient and Modular

Approach for Large-Scale String Pattern Matching,” IEEE Trans.

Comput., vol. 62, no. 5, May 2013, pp. 844–857.

[9] K. Kumar et al., “A Survey of Computation Offloading for

Mobile Systems,” Mobile Netw. Appl., vol. 18, no. 1, Feb. 2013,

pp. 129–140.

[10] K. Yang, S. Ou, and H.-H. Chen, “On Effective Offloading

Services for Resource-Constrained Mobile Devices Running

Heavier Mobile Internet Applications,” IEEE Commun. Mag., vol.

46, no. 1, Jan. 2008, pp. 56–63.

[11] M. Schmidt et al., “Malware Detection and Kernel Rootkit

Prevention in Cloud Computing Environments,” Euromicro Int.

Conf. Parallel, Distrib. Netw.-Based Process., Ayia Napa, Cyprus,

Feb. 9–11, 2011, pp. 603–610.

[12] G. Chen et al., “Studying Energy Trade offs in Offloading

Computation/Compilation in Java-Enabled Mobile Devices,”

IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 9, Sept. 2004, pp.

795–809.

[13] Y.-J. Hong, K. Kumar, and Y.-H. Lu, “Energy Efficient Content-

Based Image Retrieval for Mobile Systems,” IEEE Int. Symp.

Circuits Syst., Taipei, Taiwan, May 24–27, 2009, pp. 1673–1676.

[14] Z. Li and R. Xu, “Energy Impact of Secure Computation on

a Handheld Device,” IEEE Int. Workshop Workload

Characterization, Nov. 25, 2002, pp. 109–117.

[15] S.H. Kim et al., “Offloading of Media Transcoding for High-

Quality Multimedia Services,” IEEE Trans. Consum. Electron.,

vol. 58, no. 2, May 2012, pp. 691–699.

[16] I. Kim et al., “A Distributed Signature Detection Method for

Detecting Intrusions in Sensor Systems,” Sensors, vol. 13, no. 4,

Mar. 2013, pp. 3998–4016.

[17] C.-H. Lin, P.-C. Hsiu, and C.-K. Hsieh, “Dynamic Backlight

Scaling Optimization: A Cloud-Based Energy-Saving Service for

Mobile Streaming Applications,” IEEE Trans. Comput., vol. 63,

no. 2, Feb. 2014, pp. 335–348.

[18] S. Wu and U. Manber, “A Fast Algorithm for Multi-pattern

Searching,” University of Arizona, Techn. Rep., May 1994.

[19] J. Murty, “Programming Amazon Web Services: S3, EC2, SQS,

FPS, and SimpleDB,” Sebastopol, USA: O’Reilly Media, 2009.

[20] Z. Li, C. Wang, and R. Xu, “Computation Offloading to Save

Energy on Handheld Devices: A Partition Scheme,” Int. Conf.

Compilers, Archit., Synthesis Embedded Syst., Atlanta, GA, USA,

Nov. 16–17, 2001, pp. 238–246.

[21] K. Kumar and Y.H. Lu, “Cloud Computing for Mobile Users:

Can Offloading Computation Save Energy?,” Comput., vol. 43,

no. 4, Apr. 2010, pp. 51–56.

[22] J. Oberheide et al., “Virtualized in-Cloud Security Services for

Mobile Devices,” Workshop Virtualization Mobile Comput.,

Breckenridge, CO, USA, June 17, 2008, pp. 31–35.

[23] G. Portokalidis et al., “Paranoid Android: Versatile Protection for

Smartphones,” Annual Comput. Security Appl. Conf., Austin, TX,

USA, Dec. 6–10, 2010, pp. 347–356.

[24] A.-D. Schmidt et al., “Monitoring Smartphones for Anomaly

Detection,” Int. Conf. MOBILe Wireless MiddleWARE, Operating

Syst., Appl., Innsbruck, Austria, Feb. 13–15, 2008.

[25] J.-S. Lee, T.-H Kim, and J. Kim, “Energy-Efficient Run-Time

Detection of Malware-Infected Executables and Dynamic

Libraries on Mobile Devices,” Int. Workshop Softw. Technol.

Future Dependable Distrib. Syst., Tokyo, Japan, Mar. 17–18,

2009, pp. 143–149.

[26] S.K. Cha et al., “Splitscreen: Enabling Efficient, Distributed

Malware Detection,” J. Commun. Netw., vol. 13, no. 2, Apr. 2011,

pp. 187–200.

[27] J. Cheng et al., “Smartsiren: Virus Detection and Alert for

Smartphones,” Int. Conf. Mobile Syst., Appl. Services, San Juan,

PR, USA, June 11–14, 2007, pp. 258–271.

[28] X. Chen, B. Mu, and Z. Chen, “Netsecu: A Collaborative

Network Security Platform for In-network Security,” Int. Conf.

Commun. Mobile Comput., Qingdao, China, Apr. 18–20, 2011,

pp. 59–64.

[29] S. Zonouz et al., “Secloud: A Cloud-Based Comprehensive and

Lightweight Security Solution for Smartphones,” Comput.

Security, vol. 37, Sept. 2013, pp. 215–227.

[30] L. Yang, V. Ganapathy, and L. Iftode, “Enhancing Mobile

Malware Detection with Social Collaboration,” IEEE Int. Conf.

Privacy, Security, Risk Trust IEEE Int. Conf. Social Comput.,

Boston, MA, USA, Oct. 9–11, 2011, pp. 572–576.

[31] R.S. Boyer and J.S. Moore, “A Fast String Searching Algorithm,”

Commun. ACM, vol. 20, no. 10, Oct. 1977, pp. 762–772.

[32] T. Kojm, Clam AntiVirus User Manual, ClamAV, 2012. Accessed

Dec. 14, 2013. http://www.clamav.net/doc/latest/clamdoc.pdf
[33] M. Gordon et al., A Power Monitor for Android-Based Mobile

Platforms, 2013. Accessed Dec. 14, 2013. http://ziyang.eecs.

umich.edu/projects/powertutor/

358 Doohwan Oh et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.0114.0397

Doohwan Oh received his BS degree in

electronic engineering from the College of

Electronics and Information, Kyung Hee

University, Suwon, Rep. of Korea, in 2007 and

his MS degree in electronic engineering from

the School of Electrical and Electronic

Engineering, Yonsei University, Seoul, Rep. of

Korea, in 2010. He is currently enrolled in a PhD degree program at the

School of Electrical and Electronic Engineering, Yonsei University.

His current research interests are network security, pattern matching

algorithms, and parallel processing on multi-core systems.

Ilkyu Kim received his BS and MS degrees in

electrical and electronic engineering from the

School of Electrical and Electronic Engineering,

Yonsei University, Seoul, Rep. of Korea, in

2011 and 2013, respectively. He currently

works as a research engineer with the SoC

Platform Technology Team, DTV SoC

Developement Department, LG Electronics, Seoul, Rep. of Korea. His

current research interests are system parts of current broadcasting

systems and software optimization for data-intensive applications.

Keunsoo Kim received his BS degree in

electrical and electronic engineering from the

School of Electrical and Electronic Engineering,

Yonsei University, Seoul, Rep. of Korea, in

2012. He is currently pursuing his PhD degree

at the Embedded Systems and Computer

Architecture Laboratory, School of Electrical

and Electronic Engineering, Yonsei University. His industry

experience includes a college internship at NAVER Corporation. His

research interests are computer architecture and network applications.

Sang-Min Lee received his BS and MS

degrees in electronic engineering from the

School of Electrical Engineering and Computer

Science, Kyungpook National University,

Daegu, Rep. of Korea, in 1994 and 1996,

respectively. He currently works as a principal

researcher at the Electronics and

Telecommunications Research Institute, Daejeon, Rep. of Korea. His

current research interests are packet transport networks and smart

Internet.

Won Woo Ro received his BS degree in

electrical engineering from Yonsei University,

Seoul, Rep. of Korea, in 1996. He received his

MS and PhD degrees in electrical engineering

from the University of Southern California, Los

Angeles, USA, in 1999 and 2004, respectively.

He has worked as a research scientist for the

Electrical Engineering and Computer Science Department, University

of California, Irvine, USA. He currently works as an associate

professor at the School of Electrical and Electronic Engineering,

Yonsei University. Prior to joining Yonsei University, he worked as an

assistant professor at the Department of Electrical and Computer

Engineering, California State University, Northridge, USA. His

industry experience also includes a college internship at Apple

Computer Inc., Cupertino, CA, USA and a work placement as a

contract software engineer at ARM Inc., Irvine, CA, USA. His current

research interests are high-performance microprocessor design,

compiler optimization, and embedded system designs.

	I. Introduction
	II. Background
	III. Cloud Framework
	IV. Evaluation
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

