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Abstract
A large amount high-resolution satellite imagery (HRSI) has
been available in the commercial market because of its
value in creating accurate base maps for various applica-
tions. As massive amounts of HRSI are acquired globally by
satellites with short revisit times, automated but accurate
georegistration is still required despite advances in precise
orbit tracking and estimation. Motivated by the attractive
properties of airborne lidar data, such as their high resolu-
tion and accuracy, this study proposes a new automated
method for refining the HRSI with rational polynomial
coefficients (RPCs) using airborne lidar information. By
projecting the lidar intensity return into the HRSI space, the
image matching complexity is reduced to a simple, 2D case.
The true challenge is in overcoming the difference between
the HRSI and the lidar intensity return to allow for reliable
matching. To this end, this paper proposes a new method
based on simple relative edge cross correlation (RECC) with a
screening method to prevent false matching. To make the
approach more robust, data snooping was added for a final
detection of outliers. Experiments were performed using
three Kompsat-2 images and the potential of the approach
was confirmed, showing sub-pixel accuracy.

Introduction
The last decade has seen major breakthroughs in geospatial
image technology in the spaceborne domain. High-resolution
Earth observing (EO) satellites have shown the capability
of acquiring high spatial- and temporal-resolution imagery
with large swath widths such that efficient and accurate
topographic mapping is enabled. Moreover, high-resolution
satellite imagery (HRSI) provides a valuable base map for
various applications, such as change detection, frequency
monitoring of global water and climate evolution, as
well as for locational purposes such as Google™ Maps 
(Lee et al., 2011), automobile navigation, and intelligent
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transportation systems. Many high-resolution EO satellites
are currently in operation (Oh et al., 2010).

Because the data acquisition capability of EO satellites
produces substantial amounts of geospatial imagery, auto-
mated but accurate georegistration of HRSI has become
critical. HRSI georegistration assigns accurate geodetic or map
coordinates to the pixels of the geospatial images, and
therefore permits topographic mapping, target monitoring,
and multitemporal data analysis from accurate image fusion.
Conventional manual georegistration using GPS-surveyed
ground control points (GCPS) ensures high geospatial accu-
racy, but it is time consuming and cost ineffective (Zhang
et al., 2000). There have been many studies to automate
geospatial image georegistration (i.e., “target” images) by
image matching to existing ground control data sources
(i.e., “reference” images) (Bentoutou et al., 2005; Cariou and
Chehdi, 2008; Fonseca and Manjunath, 1996; Habib et al.,
2005; Hild, 2001; Kim and Im, 2003; Moigne et al., 2006; Oh
et al., 2010; Ton and Jain, 1989; Shi and Shaker, 2006;
Wong and Clausi, 2007; Choi et al., 2011). Automatic
registration software, such as Autosync in ERDAS Imagine®,
is also available off-the-shelf. The typical automated image
georegistration approach consists of four steps:

1. Feature identification from the target and reference.
2. Feature matching with outlier removal.
3. Establishment of the sensor model parameters.
4. Image resampling, if needed.

Among the procedures, feature extraction and matching
are the most critical steps, and the strategies used to accom-
plish them can vary depending on the data used. Various
types of data such as maps (Dowman et al., 1996; Hild, 2001),
pre-georegistered satellite images (Wong and Clausi, 2007),
stereo satellite images (Oh et al., 2011), and lidar (Abedini
et al., 2008; Habib et al., 2005; Lee et al., 2011)) were investi-
gated to evaluate their potential as reference information.
Different image-matching strategies were also tested; these
included, area-based matching (Cariou and Chehdi, 2008;
Chen et al., 2003), point-feature matching (Abedini et al.,
2008; Bentoutou et al., 2003; Ton and Jain, 1989; Zhang et al.,
2000; Li et al., 2009), line-feature matching (Habib et al.,
2005; Shi and Shaker, 2006), planar feature matching
(Mwafag, 2006), polygonal feature matching (Dowman et al.,
1996), and 3D wireframe use (Schickler, 1994).



In contrast to conventional lower-accuracy 2D georegis-
tration, HRSI requires accurate 3D ground control informa-
tion. This is because typical HRSI spatial resolution ranges
from 50 cm to a few meters. Of the existing, archival data,
a combination of ortho-rectified imagery and a digital eleva-
tion model (DEM) is a popular choice for 3D ground control
information. However, one problem with this combination of
ground control information is that it can be significantly
corrupted by relief displacement. A further problem is
occlusion in the reference image caused by objects on the
ground, such as buildings and trees. These issues remain
unresolved unless the objects are also ortho-rectified, which
is called “true” orthorectification. Note that it is a labor-
intensive and costly task to generate true orthoimages over
a large area because of the production costs involved in the
development of a DEM with accurate breaklines. Therefore,
this study proposes the use of intensity return information
from airborne lidar data as ground control reference data.

Airborne lidar data not only have high 3D positional
accuracy, but also there is no relief displacement. Further-
more, data from lidar point clouds include the intensity of
the returned signal in the near-infrared band of the electro-
magnetic spectrum. Airborne lidar positional accuracy can
range from 15 to 30 cm (roughly less than half a pixel of
HRSI) depending on the error budgets and GPS/INS systems
used. In addition to these attractive properties, a large
amount of lidar data has been acquired for various applica-
tions such as topographic mapping, flood hazard assessment,
and coastal monitoring. In the United States, multiple
agencies including USGS, NGA, FEMA, US Army Corps of
Engineers, NOAA, and NRCS have collaborated to build a
national lidar data set (Stoker et al., 2008). Outside of the
US, other countries have also made an effort to acquire lidar
data. For example, The Netherlands held a nationwide lidar
data collection campaign about a decade ago, and the
elevation map was updated in 2010. Denmark also com-
pleted its national lidar dataset in 2008.

Use of airborne lidar data as ground control information
for aerial image registration (Abedini et al., 2008; Habib
et al., 2005), and data fusion of lidar and satellite images
(Guo and Yasuoka, 2002; Kim and Muller, 2002; Sohn and
Dowman, 2007) has been investigated. While airborne lidar
data show great potential as reference material for automatic
georegistration of HRSI, few studies have utilized available
lidar intensity information for satellite image registration.

The basic idea of the strategy proposed in this paper is
that the HRSI georegistration problem can be simplified to a
2D image georegistration problem by projecting the lidar
point cloud with its known 3D ground coordinates to the
HRSI space using available support data such as rational
polynomial coefficients (RPCs). The equations used are the
well-known RPC ground-to-image projection equations (Dial
and Grodecki, 2002; Fraser and Hanley, 2005). Throughout
this paper, the lidar intensity return image generated by
lidar point-cloud projection will be called a high-resolution
lidar intensity return image (HRLI). Note that, in this context,
the term “high resolution” implies that the HRLI is of the
same spatial resolution as the HRSI. However, the HRLI also
represents the incorrectly georegistered lidar intensity return
image because it is generated by the available yet often
erroneous RPCs. Therefore, the correct position should be
searched for by image matching to the HRSI. This is, how-
ever, the most challenging step in our proposed strategy
because there will be spatial and spectral discrepancies
between the HRLI and HRSI. Note that the wavelength used in
most lidar systems is 1,064 nm, which is in the near-
infrared band of the electromagnetic spectrum; this is
slightly outside of the HRSI spectral range for a panchromatic
image. Unfortunately, this spectral difference often leads to

failure of the conventional area-based matching. This paper
therefore proposes a new image-matching method, named
relative edge cross correlation (RECC), to overcome the image
discrepancy caused by the heterogeneous HRSI/HRLI data
combination. Finally, the robust image matching between
HRLI and HRSI enables correction of the support data (RPCs or
physical parameters) for accurate georegistration.

Experiments were carried out using three panchromatic
Kompsat-2 images of one meter spatial resolution and 15 km
swath width. The HRLI covering almost the entire HRSI region
was generated by RPC-projecting the airborne lidar, and was
followed by RECC matching for the RPC refinement parame-
ters. Affine and polynomial-based RPC correction models
were tested using a final outlier check procedure, and the
experiment showed about one-pixel accuracy at the check-
points distributed over all the images.

The paper is structured as follows. In the next Section,
the proposed method is explained, followed by the genera-
tion of the HRLI, and the method of utilizing HRLI for HRSI
georegistration. The robust image matching, consisting of
edge-matching and outlier-removal techniques, is also
presented. The results and analysis of the experiment are
presented followed by Conclusions.

Proposed Method
A flowchart of the proposed method is presented in Figure 1.
The input data are HRSI and their RPCs along with reference
data are in the form of airborne lidar data over the target
area. First, the lidar data are projected into the HRSI space
using the provided RPCs. This is followed by rasterization of
the projected lidar data to form the HRLI, which as previously
mentioned, is the lidar intensity return image. Image patches
around matching points from the HRLI and HRSI are extracted
and then matched based on the proposed edge-matching
technique, namely RECC. RECC is complemented by
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Figure 1. Flowchart of the proposed method.



concentration value (CV) computation to determine if the
RECC-based matching results can be trusted for reliability.
After the matching of all p patch pairs, m points are assumed
to be successfully matched and are used to estimate the RPC
refinement parameters such as affine or polynomials. Note
that the image georegistration is simplified to a 2D problem
because of the projection of the lidar data into the HRSI
space. During the RPC refinement parameter estimation, the
final outlier check is carried out based on Baarda’s data
snooping (Baarda, 1968). The procedure is performed
iteratively until no outlier is detected. Finally, the remaining
n out of m matching points that survive all the iterations are
used for the RPC refinement parameter estimation.

Projection of Lidar to the HRSI Space for HRLI Generation
The rational function model (RFM) is the most widely used
replacement sensor model for HRSI, because HRSI vendors
provide its coefficients (i.e., the RPCs) instead of the rigorous
model (Grodecki, 2001). An advantage of using the RFM is
that users are not required to know specific information
about the satellite sensors. Furthermore, for a given eleva-
tion range, there is little difference in the projection accu-
racy of the RFM as opposed to the rigorous model (Grodecki,
2001). The basic RFM equation is developed in such a way
that image coordinates can be computed from given ground
coordinates. While the RFM equation is a nonlinear equation
of 80 coefficients (RPCs), the RFM of 78 coefficients is often
used because the first term in the denominator is usually set
to one to avoid coefficient scale ambiguity.

Even though the provided RPCs’ accuracy keeps improv-
ing with the development of precise orbit determination
technology, there is still a need for postprocessing using
actual or surrogate (secondary) ground control to achieve
accurate georegistration. Note that the positional accuracy of
typical RPCs provided by ground station data depends on the
satellite and the terrain; the Kompsat-2 RPC error, for
example, ranges up to hundreds of pixels.

The projection of airborne lidar point clouds to the
HRSI space references the lidar points to the HRSI image
coordinate system. Rasterization can be simply thought of
as the filling of the empty image with lidar intensity return
values. However, there are two minor issues associated
with rasterization, namely, the presence of multiple lidar
points on a single image pixel and the presence of holes
(null points).

The projection of multiple lidar points onto the same
image pixel can be expected because the lidar point
density is usually higher than the HRSI spatial resolution.
This becomes especially prominent along height breaklines,
such as a building wall in a non-occlusion area, where the
local point density increases enormously. An example of
the multiple points-per-single-pixel problem near a building
edge is depicted in Figure 2. Because of the elevation angle
and azimuth of the HRSI imaging, some lidar points such
as the solid square and star in Figure 2 fall within the HRSI
occlusion area. On projection into the HRSI space, these
occluded lidar points, whose positions differ, are refer-
enced to the same image pixel. Ideally, these lidar points
should not be projected because, in fact, they are not
visible in the HRSI. To complicate matters, they will have
different intensity return values; therefore, this effect
should be avoided. A simple remedy is to select the lidar
point having the highest elevation from among the points
assigned to a single pixel during the rasterization process;
these are the circle points in Figure 2. While this remedy
may not be optimal where there are multiple lidar points
over smooth terrain, it will not result in significantly poor
rasterization because lidar data usually have higher spatial
resolution than the HRSI.

In contrast, the presence of a hole can occur, especially
over areas of zero or low point density, mainly because of
an irregular lidar point distribution caused by rugged
terrain. Holes are also common at the side of a lidar strip
because of the conventional line-scanner saw-tooth scan
pattern. As shown in Figure 2, lidar occlusion areas lead to
data-less pixels in the generated HRLI. These holes should be
removed, because otherwise they will significantly disturb
the edge extraction procedure. Application of the median
filter is a popular but simple hole-removal method, although
other filtering techniques such as a linear interpolation can
be used. Figure 3 shows the result of median filtering of the
image on the left to produce the image on the right, in
which the holes have been successfully removed.

Edge information is extracted for matching from the
generated HRLI. In this study, the well-known Canny-
operator (Canny, 1986) is used because it is the most
popular among the many edge extraction operators.

HRLI Patch Selection
The HRLI represents the incorrectly georegistered lidar
intensity return image because it is generated using the
provided RPCs, which are often erroneous. The goal is to
perform image matching between the HRLI and HRSI for the
determination of the RPC error.
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Figure 2. HRLI generation issues: multiple lidar points
per pixel and the presence of holes in the HRSI
space.

Figure 3. An example of applying the median filter to
HRLI: (a) before (b) after (image size: 160 � 160 pixels).

(a) (b)



The image matching is made for each HRLI image patch
of a predefined size, taking into account the conventional
error margin of the RPCs, which usually appears in the HRSI
product-level specification. Figure 4 depicts the HRLI patch
size relative to the HRSI search area, as well as the patch
interval by which each patch is shifted in performing the
search. Theoretically, a patch interval of a single pixel could
be used for the search pattern. However, this is an ineffi-
cient and impractical search approach. It is important,
therefore, to select both an efficient patch size and interval.
For example, the patch size should be large enough to
contain rich edge information for successful edge matching.
Furthermore, a large patch size could guarantee a better
matching success rate than a smaller patch, but it greatly
increases the computational cost. The patch interval is
directly related to the number of patches to be extracted
from the HRLI; note that georegistration of HRSI requires a
number of well-distributed control points over the entire
image, e.g., more than 20 points for redundancy. Therefore,
the use of a small patch interval can increase the number of
matching points needed over the entire HRSI image to better
estimate the georegistration parameters. However, note that
this also affects the computational cost, in that a smaller
patch interval will be computationally expensive, especially
if combined with a large patch size.

Relative Edge Cross Correlation (RECC)
Lidar intensity returns differ significantly from HRSI spectral
information, and this often leads to the failure of conven-
tional spectral-based matching such as matching based on
NCC. Also, there exists substantially heterogeneous edge
information between HRLI and HRSI because of the different
sensor characteristics. Consequently, the use of conventional
edge-matching algorithms may require extensive postpro-
cessing to reliably select meaningful edge information for
matching. However, the underlying assumption of the study
is that HRSI has a very narrow instantaneous field-of-view
(IFOV), with a smooth trajectory that produces little geomet-
ric distortion, consisting mostly of a shift error. Moreover, it
is assumed that the provided RPCs can serve as suitable
constraints upon the search area. Therefore, the correct
image location of the HRLI can be pinpointed, by moving the
matching window to an area of the HRSI where there is both
meaningful edge information and suitable HRSI/HRLI overlap.
Based on this, the simple RECC edge similarity matching
method is proposed. The method uses a relatively large
window size consisting of hundreds of pixels designed to

contain sufficiently high-quality edge similarity information
between HRLI and HRSI. This edge similarity is measured
using Equation 1, which computes the normalized number
of overlapping edge pixels over the edge image of the HRLI
and of the HRSI according to:

(1)

where, RECC is relative edge cross correlation, L is an edge
image of the HRLI patch, R is an edge image of a sub-array of
the HRSI, and Lij and Rij are the digital numbers associated
with image L and image R, respectively, at line i and sample
j (this digital number is one if it is on the edge, otherwise it
is zero). Therefore, if an edge pixel exists in both images,
Lij � Rij will be one; otherwise, it will be zero. The numera-
tor is the sum of the pixels and the denominator is the total
number of edge pixels that appear in the two images.

Equation 1 is similar to the well-known NCC matching
equation and can be computed by using a computationally
expensive moving window over the region of interest (ROI).
This computational cost can be significantly reduced if the
following two terms are computed using the convolution
theorem in the frequency domain. The summation in
Equation 2 can be computed by convolving the HRSI with a
window all of whose elements are one. Multiplication and
summation in Equation 3 can be performed by multiplying
Fourier-transformed images of HRLI and HRSI, F(L) and F(R),
respectively, followed by its inverse Fourier transform.

(2)

(3)

Note that the RECC value is an indicator of relative matching
among the candidate matching points in the ROI. Since
the number of edge pixels, which is the denominator of
Equation 1, can vary depending on the scene contrast, the
RECC value will also vary. Therefore, there should be another
step to determine if a RECC value indicates reliable matching.
However, unlike NCC for which the usual threshold is 0.75,
it is not possible to establish a RECC threshold value. This
situation impacts upon effective edge matching, which
ideally should be minimally affected by outliers.

One usually assumes a unique corresponding matching
point in the reference image; however, this is not true in the
case of this application. Figure 5 shows the computed RECC
values around a region of maximum RECCs in a region that
differs significantly from its surrounding values. It indicates
that, for this test data, the edge matching is successful for
both the line and the sample direction. Note that the image
center of the HRSI of Figure 5 represents the initial search
location, and the “x” mark with the surrounding box is the
matched position. Figure 6 is an example of the RECC value
distribution for a different data set. Note that edge informa-
tion in these images is not very distinct. In contrast to the
previous example, this distribution demonstrates a more
uniform array of RECC values around the maximum value in
both the line and the sample direction. Therefore, this
matching result cannot be trusted even though the maximum
value can be obtained.

In this regard, the CV can be a useful indicator of the
edge matching. CV is determined by a simple computation
performed by averaging distances from the maximum RECC
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Figure 4. Representation of the patch size and interval.



to subsequent RECC values starting at the next highest until
the nth (in decreasing order) maximum value, as defined in
Equation 4:

(4)

where CVn is the concentration value based on the maxi-
mum to nth largest RECC values, and (rmax, cmax) and (ri, ci))
are the image coordinates of the positions of the maximum
RECC and ith largest RECC values, respectively.

A smaller CV means that prominent RECC peak values
are concentrated in a small region and it indicates a high
possibility of correct matching. In contrast, a higher CV
means that peak RECC values are sparsely distributed and
that it is difficult to select a prominent RECC peak point.
For example, in Figure 5, the average distance from the

CVn �  
a

n

i�1
3(r max � ri)2 � (c max � ci)2

n

maximum peak to the next four peaks (CV4) is 1.1 pixels
such that the maximum peak can be easily distinguished,
and, hence, it represents a reliable matching point. In
contrast, in Figure 6, CV4 is 53.2 pixels, indicating that it is
difficult to determine which peak represents a reliable
matching location.

An experiment was carried out to show the feasibility of
using the CV as a threshold for RECC matching. The RECC
image matching error was computed for over 200 matching
points between the HRLI and HRSI by comparing with the
correct matching positions, and the error is plotted for RECC
and CV as shown in Figure 7. First, the RECC versus error
graph shows that the RECC is not highly related to matching
accuracy. A large RECC seems to show great accuracy when
there are only a few matching points, which is at the
expense of the redundancy needed for automated georegis-
tration. Note that most of the good matching points have
RECC values in the range of 0.06 to 0.09, and these are not
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Figure 5. A RECC distribution around the maximum showing (a) good matching,
(b) HRLI, and (c) HRSI.

(a)

(b) (c)



suitable indicators by which to successfully filter out
inaccurate image matching. It can be concluded, therefore,
that it is not reasonable to use a high RECC value as a
threshold to remove low accuracy matching. Second, the CV
versus error plot shows that most of the highly accurate
matching points have small CVs. This indicates that using a
small CV as a threshold to remove outlier matching can
secure both redundancy and high accuracy, even if a small
CV still cannot guarantee an outlier-free situation, and
requires a final outlier check process.

Finally, the well-known image-matching techniques such
as NCC and scale-invariant feature transform (SIFT) (Lowe,
1999) were attempted in order to match the HRLI and HRSI.
These results were compared to the RECC matching. A built-
up area was selected for the test to ensure the inclusion of
rich feature information, as shown in Figure 8. This figure
shows the matching results of the SIFT and RECC techniques.
The NCC did not provide any successful matching points. In
other words, all the correlation values were smaller than the

threshold 0.75. SIFT provided only two matching points,
which, unfortunately, were incorrect. The test results clearly
show that the NCC and SIFT techniques did not effectively
handle the spectral difference between the HRLI and HRSI.

Georegistration Model with Outlier Removal
Since the georegistration problem is simplified to a 2D case
for the shift, well-known affine and second-order polyno-
mial models can be used as indicated in Equation 5, where
the second-order coefficients are set to zero for the affine
model and only a1 and b1 are used for the shift model:

(5)

where, s, l are the original image coordinates of the conju-
gate points (sample and line) and s’, l’ are the georegistered
coordinates of the conjugate points.

lœ � b1 � b2s � b3l � b4s2 � b5sl � b6l2

sœ � a1 � a2s � a3l � a4s2 � a5sl � a6l2
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Figure 6. A RECC distribution around the maximum showing that (a) the
matching cannot be trusted, (b) HRLI, and (c) HRSI.

(a)

(b) (c)



Even though RECC with CV should be highly resistant to
outlier influence, the existence of outliers after this stage is
still a concern. This study therefore employs Baarda’s data
snooping method as a safeguard against additional unde-
tected outliers infecting the georegistration problem. For
details, refer to Baarda (1968).

Experiment
Data
Three Kompsat-2 images were tested for the proposed
method. Table 1 shows the specification of each image.
Kompsat-2 data have 15,000 pixels per line and a ground
sample distance (GSD) of about one meter. The test target

area is Daegu, Korea, located at about 35.89°N and 128.49°E,
where the highest terrain elevation is about 400 m ASL.
A number of ground checkpoints were acquired from stereo
aerial images over the entire area for the purpose of accu-
racy assessment. Figure 9 depicts the distribution of check-
points. Note that the image coordinate error of the provided
RPCs was estimated to be in the range of 31 to 146 pixels for
the checkpoints.

HRLI Generation
Airborne lidar data were projected to the HRSI space and
rasterized for the HRLI. Note that HRLI has the same one-
meter spatial resolution as HRSI. Figure 10 is the generated
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(a)

(b)

Figure 7. Image matching error (pixels) as a function of (a) RECC, and (b) CV (the
triangles show the error for 200 matching points).

Figure 8. RECC and SIFT test results for image-matching comparison between (a) HRLI, and
(b) HRSI (circles: RECC results; triangles and connecting lines: SIFT results).

(a) (b)



HRLI showing some data voids at the upper-left, upper-right,
and lower-left corners. Some additional data voids exist in
other parts of the image, especially in the upper side where
data voids along the lidar strips are observed, mostly
because of a lack of lidar strip overlap.

Analysis on Patch Size and Interval
The proposed matching technique was first tested for image
No. 1 by changing the patch size and interval. The number
of matching points was counted, as presented in Figure 11.
In performing the RECC matching, a CV4 threshold of 1.5 pixels
was used. As expected, a larger patch size tends to yield
more matching points, but it is also more computationally
expensive. On the other hand, a small patch size such as,
100 � 100 pixels did not seem to provide a good number of
matching points. Note that the patch size should be large
enough to contain rich edge information. Also, as the patch
interval increases, the number of matches decreases. Patch
intervals of 3,000 and 4,000 pixels that yield less than 
20 points may not be redundant for modeling the affine and
polynomial-based entire image transformation. To ensure
redundancy in the number of matching points throughout
the image, a smaller interval is preferred, but it should be
noted that a smaller interval requires a higher computational
cost. To obtain a reasonable number of matching points,
more than 20 over the entire image, for example, a patch
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TABLE 1. SPECIFICATION OF KOMPSAT-2 TEST DATA

Image number No. 1 No. 2 No. 3

Acquisition date 01/03/2009, 01:34 12/312009, 01:19 02/07/2010, 01:07
Incidence/Azimuth 6.2°/249.1° 14.1°/256.1° 5.8°/91.7°
Ground Sampling Distance (line/sample) 1.004/1.003 m 1.050/1.031 m 0.981/0.988 m
Image size (line/sample) 15,500 � 15,000 15,500 � 15,000 15,500 � 15,000
No. of checkpoints 86 81 86
RPCs mean error [pixels] (sample/line) 41.40/31.49 64.67/135.76 29.34/146.43

Figure 9. Kompsat-2 data with checkpoint distribution. Figure 10. Generated HRLI showing some data voids.

Figure 11. Relationship of the number of matching points
to the patch size and patch interval for RECC with CV
1.5 pixels (image No. 1).



interval of less than 2,000 pixels, with a patch size of more
than 400 � 400 pixels, should be used.

Affine and polynomial parameters were estimated and
their accuracy computed using checkpoints from the match-
ing test results. The mean errors were computed and are
plotted in Figure 12. The error tends to decrease as patch
size increases and as the patch interval decreases. The
accuracy seems to stabilize from a patch size of 400 � 400
pixels or 500 � 500 pixels. Note that the horizontal error of
1.4 pixels corresponds to about one-pixel accuracy in each
line and sample direction. No outlier was detected in the
final outlier-detection process, indicating that the proposed
RECC matching was deemed reliable. A larger patch interval,
which yields a smaller number of matching points, would
not be adequate to estimate polynomial parameters because
the polynomial model has more parameters than the affine
model. A smaller patch interval (such as, 1,000 pixels)
yields the most stable accuracy. Therefore, overall, a patch
size of 500 � 500 pixels, with an interval of 1,000 pixels
was deemed to yield the best results for the data set.

However, it should be noted that these optimal numbers
may not work for a different data set.

CV Threshold
Six different CV4 thresholds were tested using a 500-pixel
patch size and a 1,000-pixel interval to explore the number
of matches and matching accuracy, as presented in Figure
13. Figure 13a shows that the number of matches tends to
increase as the threshold is increased. In Figure 13b, before
outlier removal was performed, CV4 thresholds of 1.5, 2, 3,
and 4 pixels yielded a similar accuracy of about one pixel in
each sample and line direction. However, the matching
accuracy worsened for threshold values of 5 and 6 pixels.
When the outlier detection based on Baarda’s data snooping
was applied, one and four outliers were detected where the
CV4 threshold values of 5 and 6 pixels, respectively, were
used. As can be seen from Figure 13b, by removing these
outliers, matching accuracy improved significantly. How-
ever, as long as the redundancy in the estimation is suffi-
cient, there is no reason to increase the threshold limit.
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Figure 12. Georegistration accuracy versus the patch size and patch interval (based on Image
No. 1) for the (a) affine model, and (b) second order polynomial.

(a) (b)

Figure 13. Effect of the CV4 threshold on (a) number of matching points and (b) mean accuracy.

(a) (b)



Automatic Georegistration based on the Proposed Method
Based on the analysis carried out previously, HRSI georegis-
tration of the tested Kompsat-2 images was performed using
a 500 � 500 pixel patch size, 1,000-pixel interval, and a CV4
threshold of 1.5 pixels. Table 2 presents the georegistration
accuracy results generated from the checkpoints for three
different transformation models, namely, a shift, affine and
second-order polynomial model.

When only shift parameters (a1, b1) were estimated,
large errors were observed, especially in the line direction.
In the case of images No. 1 and No. 3, the affine and
polynomial models provided much better accuracy and the
mean accuracy was bounded at the sub-pixel level in the
line and sample directions. Note that no outlier among the
matched points was indicated for the images No. 1 and No. 3
such that all the matched points were kept. However, in the
case of image No. 2, six outlier matched points were
detected and removed at a confidence level of 99 percent.

After removing them, the mean accuracy dropped to a sub-
pixel level.

Figure 14 depicts the location of patches and check-
point errors in image No. 2. The figure also shows which
patches were successfully matched and which were
removed as outliers. Note that the patches are well distrib-
uted over the entire image area, except where the lidar
data are missing. When the HRLI was overlaid over image
No. 2, it was found that all of the outlier patches were
located along the lidar strip for which there was little
lidar strip overlap. The authors feel that the ground
accuracy of the lidar strip is relatively low when com-
pared with conventional lidar accuracy, especially in an
east/west direction, because of the inaccurate strip adjust-
ment. In the case of images No. 1 and No. 3, the dubious
lidar strip did not yield any successful matching. This
lidar strip will have to be checked with the checkpoints or
with additional field surveys.
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TABLE 2. AUTOMATIC GEOREGISTRATION ACCURACY (UNIT: PIXEL)

Before outlier removal After outlier removal

Image Model Mean (sample/line) Max (sample/line) Mean (sample/line) Max (sample/line)

No. 1 Shift 0.83 / 4.35 2.90 / 10.86 –
Affine 0.90 / 1.10 3.44 / 4.31 –
Polynomial 0.85 / 1.01 3.55 / 4.25 –

No. 2 Shift 1.05 / 4.05 3.62 / 8.59 –
Affine 1.06 / 1.02 5.39 / 3.83 0.83 / 1.01 3.61 / 3.81
Polynomial 1.13 / 0.95 5.64 / 4.20 0.77 / 0.95 3.24 / 4.19

No. 3 Shift 0.84 / 4.67 3.40 / 11.99 –
Affine 0.72 / 0.94 2.81 / 3.14 –
Polynomial 0.70 / 0.89 2.27 / 3.19 –

Figure 14. The patches removed as outliers in image No. 2.



Summary and Conclusions
This study proposes a new method for automatic refinement
of HRSI RPC using airborne lidar intensity return information.
The proposed approach was developed based on the attrac-
tive properties of high point density, accuracy, and the relief
displacement-free characteristics of airborne lidar point
clouds. Lidar intensity return information is first projected
into the HRSI space using RPC and rasterized for HRLI. Note
that the difference between the HRLI and HRSI indicates the
georegistration error of the RPC. This difference is deter-
mined over the entire image by the FFT-based RECC and CV to
overcome the spectral differences. Finally, the rigorous
Baarda’s data snooping outlier-removal process is carried out
for the final check of outliers.

Experiments were carried out for three Kompsat-2
images over the Daegu area in South Korea. Before applying
the proposed method to the dataset, well-known image-
matching techniques such as NCC and SIFT were tested to
show the ability of the proposed matching method to handle
high spectral differences. Detailed analysis of the RECC
matching patch and CV parameters was then carried out to
determine the optimal matching patch size, interval, and CV
threshold. Based on the analysis, 500 � 500 pixels of patch
size, 1,000 pixels of interval, and 1.5 pixels of CV threshold
were selected. From the RECC matching with the parameters,
a number of matches were obtained for the entire Kompsat-2
image region. The rigorous outlier-removal process in the
RPC refinement could capture and locate the inaccurate
matching points that were located along a dubious lidar
strip. After removing them, the RPC could be refined to a
sub-pixel level of accuracy, showing the potential of the
proposed methodology.

Future work will include more experiments on diverse
HRSI over different terrains. More extensive performance
comparisons of the method will need to be applied to the
conventional automated georegistration methods. We also
recommend analysis of the effects of the object space
conditions such as the texture content when making the
selection of an optimal matching patch size.
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