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We studied how the passive intermodulation (PIM) 
power arising in air cavity filters could be calculated and 
how the design of the filter could be optimized in order to 
reduce the amplitude of the PIM signal. To do this, using 
simulated results, we optimized the various parameters of a 
filter. PIM in an air cavity filter depends on the power 
dissipated in its cavities. A reduction of this power loss 
therefore decreases the PIM power in the air cavity filter. 
Our experimental results confirm that it is possible to 
design and produce air cavity filters that generate low PIM 
signals. 
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I. INTRODUCTION 

The generation of passive intermodulation (PIM) signals, 
when two or more RF signals are impressed onto a 
transmission line or communication system, can limit the 
channel capacity [1]. PIM signals result from the non-linearity 
in the RF component’s power response [2]. The components 
that can produce PIM signals are various types of wave-guide 
and coaxial structures, filters, combiners, and antennas [3]-[5]. 
PIM signals are extremely troublesome, since once they are 
generated, they cannot be compensated for, because they are 
generated beyond the receive-reject filter. The mechanisms for 
the generation of these PIM signals are known and can be 
grouped as signals involving contact non-linearity and signals 
involving material non-linearity [1]. 

Several researchers have been interested in the PIM problem. 
F. Arazm et al. [6], for example, presented information on the 
generation of intermodulation products arising from non-
linearities at metal-to-metal contacts. They concentrated on 
PIM signals generated at the contact faces between both similar 
and dissimilar metals, which included copper, beryllium-
copper, brass, and various other materials. B. Deats et al. [7] 
predicted the PIM produced by a cable assembly through PIM 
source modeling. J Wilcox et al. [8] calculated the 
intermodulation products arising from the thermal heating of 
coaxial cable walls. In practice, methods for suppressing PIM 
require high quality workmanship. 

Our investigation considers the PIM signals produced by air 
cavity filters. This paper begins with a short review of the PIM 
problem for coaxial structure configurations and extends these 
ideas to discuss the PIM characteristics in an air cavity filter. 
We calculate the power dissipated in each resonator that makes 
up the air cavity filter, and in this way we can see which 
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resonator gives rise to the dominant PIM signal in the pass 
band. We then discuss the levels of PIM signals for various 
cavity sizes of a six-cavity filter and investigate whether we can 
minimize PIM signals by adjusting the inner radius of the 
cavity in the filter when the outer radius is fixed. Our study 
reveals the relationship between RF performance and the 
amount of PIM signal generated. Finally, to verify our design 
and predictions, we describe the manufacture and 
measurement of an experimental filter. 

II. DESIGN AND MODELING 

Because of the finite conductivity of metal, there always 
exists an RF energy loss in the metallic walls of a coaxial 
wave-guide in a volume defined approximately by the 
thickness of the skin depth. The cyclic variations of energy 
within this volume are followed instantaneously by a change in 
temperature. Since metallic conductivity depends linearly on 
temperature, σ = σ0(1–γ∆T), where σ is the metallic 
conductivity, γ is the coefficient of resistivity, and T is the 
temperature [8], it also has harmonic components that will 
produce wall currents at the PIM frequency. These phenomena 
are presented by energy conservation principles and energy 
conversion. 

A study of PIM currents generated in coaxial walls is found 
in [8]. 
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where Js is the PIM source current, b is the outer radius of 
coaxial cable, δ is the skin depth, ω is 2ω1–ω2, and cp is the 
specific heat. 

These PIM source currents support PIM fields. In conclusion, 
the PIM power is equal to 
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where, c, a, and H1(b) are the velocity of light in free space, the 
inner radius of the coaxial cable, and the H-field of frequency 

ω1 at the outer radius b, respectively. This PIM power can 
therefore relate to the two impressed powers, frequencies, 
material constants, and wave-guide structure. 

To study the PIM problem for an air cavity filter consisting 
of several cavities, we investigated the transmission line 
resonators. In many microwave filter designs, a length of 
transmission line, terminating in either an open-circuit or a 
short-circuit, is often used as a resonator. Figure 1 illustrates a 
resonator made from a one-quarter wavelength short-circuit 
transmission line, together with its lumped element equivalent 
circuits [9], [10]. 
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Fig. 1. A transmission line resonator with a short-circuit 
termination.  

 
Here the transmission line admittance Y0 is based on the 

transmission structure. For example, if it is a coaxial structure, 
the admittance is ( )abln2LC ηπ= . 

We can design the filter to be composed of transmission line 
resonators with short-circuit termination. Figure 2 shows an 
equivalent circuit for a six-resonator filter with a 947.5 MHz 
center frequency, 25 MHz bandwidth, and 0.01 dB ripple. This 
filter is built using a coaxial line resonator with an inner radius 
of 6 mm and an outer radius of 18 mm. Each resonator is 
represented as an RLC tank circuit, and these resonators are 
coupled together with j inverters [9]. 

III. SIMULATION OF PASSIVE 
   INTERMODULATION 

We simulated the circuit using the model in Fig. 2 and by 
circuit analysis calculated the voltages in each of the resonators 
for the six-cavity filter. The voltages in each of the resonators 
are shown in Fig. 3. The voltages in each resonator are 
symmetric with respect to the center frequency because the 
resonance frequencies of our individual resonators are 
symmetrically the same. We see that the voltages in resonator 2 
and resonator 3 dominate at both the lower band edge and the 
upper band edge. These voltages in the resonators gave us a 
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Cc1 

Fig. 2. The lumped-element model of a six-resonator filter. 

Resonator 1 Resonator 2 Resonator 3 Resonator 4 Resonator 5 Resonator 6

Cc2 Cc3 Cc4 Cc5 Cc6 Cc7

Rin 

Vin -Ce
c1 

R1 L1 C1 
-Cc2 -Cc2 

R2 L2 C2 
-Cc3 -Cc3 

R3 L3 C3
-Cc4 -Cc4

R4 L4 C4
-Cc5 -Cc5

R5 L5 C5 
-Cc6 -Cc6 

R6 L6 C6 -Ce
c1

RL

C1 = 2.001403 pF CC1 = CC7 = 481.36 fF   Ce
C1 = Ce

C7 = 471.67 fF 
C2 = 2.001362 pF CC2 = CC6 = 51.227 fF 
C3 = 2.001424 pF CC3 = CC5 = 34.835 fF 
C4 = 2.001424 pF CC4 = 32.789 fF 
C5 = 2.001362 pF L1 = L2 = L3 = L4 = L5 = L6 = 14.098 nH 
C6 = 2.001403 pF R1 = R2= R3 = R4 = R5 = R6 = 409.38 kΩ 
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Fig. 3. Voltage versus frequency responses for each cavity 
resonator of the six-cavity filter.  

 
hint about the contribution of the individual resonator to the 
power loss and PIM signal power. Resonators 2 and 3 will 

 
contribute the most to the PIM signal in a six-cavity filter. 

The PIM signals produced by the components result from 
the conversion of RF energy loss (PIM∝PLoss

2) [11], [12]. The 
power dissipated by the resistance in resonant circuit PLoss is 
defined as follows. 
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where R1 and R2 are the resistance of equivalent parallel 
resonant circuits. 

The power loss in the resonant circuit is inversely 
proportional to the resistance R. To reduce the PIM power in 
the resonator filter, it would be necessary to reduce the power 
loss that is proportional to the PIM power in the air cavity filter. 
Table 1 shows the resistances, maximum voltages, power 
losses, and relative PIM signal levels of a resonator for various 
cavity sizes. In this case, the input power was 20 W. 
 

Table 1. The resistances, maximum voltages, power losses, and 
         relative PIM signal levels for air cavity filters of various 

cavity sizes. 

Inner/Outer
Radius (mm)

R (kΩ) VMax. (V) PLoss (mW) 
PIM/PIM(6/18)

(dB) 

6/12 144.86 432.844 925.88 7.68 

6/18 409.38 559.363 382.14 0 

6/24 695.31 633.919 164.91 –7.31 

 

 
In this example, all the PIM signal levels are based on the 

voltage and resistance in the coaxial resonator structure. The 
increase of the outer conductor radius carried a larger resistance 
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and larger voltage at a given power, and the PIM power 
generated was smaller. The total relative ratios of PIM power 
were 7.68 dB, 0 dB, and –7.31 dB at b = 12 mm, 18 mm, and 
24 mm, respectively. In this example, the reference power level 
is the PIM power of an air cavity filter made up of cavities with 
an outer radius b=18 mm, an inner radius a=6 mm, and a 0.01 
ripple. We used the same reference power level for the 
remaining example calculations. 

We now consider the linear response of the filters, for 
example, the bandwidth, insertion loss, ripple, and center 
frequency for filters of various sizes. Figure 4 shows the 
insertion loss estimated for various filters (b=12, 18, 24 mm) at 
an input power of 20 W. The insertion losses, estimated at 935 
MHz/960 MHz were  –0.78 dB/–0.65 dB, –0.44 dB/–0.37 dB, 
and –0.33 dB/–0.28 dB with b = 12 mm, 18 mm, and 24 mm, 
respectively. This means that the PIM signal response and 
insertion loss response have coherence. 
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Fig. 4. The insertion loss characteristics of three different types
of filters.  

 
For practical applications, it is important to investigate 

whether the PIM power can be minimized by any means, for 
example, by adjusting the inner radius of the cavity in the filter 
when the outer radius is fixed. Figure 5 gives the power loss 
and relative PIM signal levels for various inner radii of the 
coaxial air cavity filter. 

The resistance and voltage in the coaxial resonator are 
inversely proportional to the inner radius. The power dissipated 
in the coaxial resonator structure that makes up a filter has a 
minimum value in a specific range. The optimized inner size 
that minimizes the PIM signal of the filters is between 4.8 mm 
and 5.2 mm. This means that the transmission line impedance 
Z0 is 74.5 Ω to 79.3 Ω. 

We also wanted to determine whether the PIM power can 
be reduced by an optimization process that adjusts the filter 
size without degrading or varying other filter specifications. 
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Fig. 5. The power loss and relative PIM signal level 
versus impedance of the coaxial air cavity filters
with different inner radii: (a) wide scale, 
(b) narrow scale.  

 
Figure 6 shows the variation of the relative PIM signal level, 
attenuation, and return loss of the filter with its pass band 
ripple. 

Figure 6(a) shows that increasing the ripple of the filter 
causes an increase of the PIM signal level and the 
attenuation. This means that an increase of the pass band 
ripple degrades the PIM performance but improves the 
attenuation performance. Figure 6(b) shows that a decrease 
of the pass band ripple improves the return loss in the 
filter’s pass band. These results indicate that the general RF 
specification might be at odds with a low PIM signal power. 
Therefore, minimizing the PIM signal power may produce a 
filter that does not have the required linear filter 
specifications. 
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Fig. 6. Variation of the RF and PIM power characteristics of
six cavity filters with the pass band ripple: 
(a) variation of the relative PIM power values and
the attenuation with the pass band ripple, 
(b) variation of the relative PIM power values and
the return loss values with the pass band ripple.  

IV. MEASUREMENT RESULTS AND 
DISCUSSION 

To verify the PIM power assumptions using the power 
dissipated in the resonators, we manufactured and measured 
experimental filters. The filters consisted of an aluminum 
substrate coated with a thin zinc layer and plated with 8 µm 
thick silver. The design and manufacture of the six-cavity filters 
is based on the result shown in Table 1. Figure 7 shows the 
insertion loss within the required frequency range for various 
outer radius sizes. 

 Fig. 7. The measured RF filter characteristics for different
outer radius values: (a) b=12 mm, (b) b=18 mm, 
(c) b=24 mm. 
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The insertion losses at 935 MHz/960 MHz were –0.78 dB/  
–0.72 dB, –0.46 dB/–0.37 dB, and –0.28 dB/–0.24 dB at b = 
12 mm, 18 mm, and 24 mm, respectively. These results 
conform to the predictions in Fig. 4. The notable result of the 
RF measurement is that an increase of the outer radius size 
reduces the insertion loss in a six-cavity filter. 
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Fig. 8. The measured PIM characteristics of six cavity filters
for three different outer radius values: (a) b=12 mm,
(b) b=18 mm, (c) b=24 mm. 
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For the PIM measurements we used a Summitek 
Instruments’ PIM Analyzer (SI-900A), a 1/2 inch coaxial cable 
assembly, and a 7/16 inch DIN Male to N Male adapter. The 
PIM levels of these components were below –170 dBc. 

Figure 8 shows the PIM measurement results for the 
manufactured filters. 

The average PIM levels of the GSM band were –151.36 dBc, 
–157.24 dBc, and –169.53 dBc at b = 12 mm, 18 mm, and 24 
mm, respectively. Where input powers were 2×43 dBm, we 
made three measurements with two hours between 
measurements. The repeatability was ±2 dB and the maximum 
measurement uncertainty ±1 dB. These results are in 
agreement with the assumptions in Table 1. We consider the 
measured results to be very good. Table 2 compares the 
experimental (Figs. 7 and 8) and theoretical (Table 1 and Fig. 
4) results. 
 

Table 2. The comparison between the experimental (Fig. 7, Fig. 8)
and theoretical (Table 1, Fig. 4) results. 

Theoretical Experimental 
Inner/Outer

Radius 
(mm) 

Insertion 
loss (dB) 

(@935MHz/
960 MHz) 

PIM/PIM
6/18) 
(dB) 

Insertion 
loss (dB) 

(@935MHz/
960 MHz) 

PIM/PIM
(6/18) 
(dB) 

6/12 –0.78/–0.65 7.68 –0.78/–0.72 5.88 

6/18 –0.44/–0.37 0 –0.46/–0.37 0 

6/24 –0.33/–0.28 –7.31 –0.28/–0.24 –12.29 

  
 

We think that the difference between the theoretical and 
experimental PIM power was caused by the difference of the 
filter insertion loss. For the 6/12 cavity filter, for example, the 
relation between the PIM power and insertion loss was obvious 
(Table 2). 

V. CONCLUSIONS 

This paper explained how the PIM power arising in an air 
cavity filter could be calculated. These calculations were used 
to reduce the level of PIM signals by optimizing the filter 
cavity sizes. We calculated and measured the PIM power levels 
of three different sizes of air cavity filters, with cavity outer 
radii of 12 mm, 18 mm, and 24 mm. We found not only that 
the cavity’s characteristic impedance must be between 74 Ω 
and 79 Ω to minimize the PIM power in an air cavity filter, but 
also that the general RF performance under these conditions 
would not be at its best if it was designed for low PIM power. 
This showed that our method for optimum design is successful 
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when the PIM power and other characteristics of the cavity 
filter are considered. 
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