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We investigate an image recovery method for sparse-
view computed tomography (CT) using an iterative 
shrinkage algorithm based on a second-order approach. 
The two-step iterative shrinkage-thresholding (TwIST) 
algorithm including a total variation regularization 
technique is elucidated to be more robust than other first-
order methods; it enables a perfect restoration of an 
original image even if given only a few projection views of 
a parallel-beam geometry. We find that the incoherency of 
a projection system matrix in CT geometry sufficiently 
satisfies the exact reconstruction principle even when the 
matrix itself has a large condition number. Image 
reconstruction from fan-beam CT can be well carried out, 
but the retrieval performance is very low when compared 
to a parallel-beam geometry. This is considered to be due 
to the matrix complexity of the projection geometry. We 
also evaluate the image retrieval performance of the 
TwIST algorithm using measured projection data. 
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I. Introduction 

Image reconstruction technology for sparse-view computed 
tomography (CT) has become increasingly important in 
obtaining medical images without any harmful effects [1]–[3]. 
Given a sufficient number of projection views, a high-quality 
CT image can be retrieved; however, human cell damage from 
too much radiation exposure is unavoidable, particularly in 
image-guided surgery and therapy [4]. Therefore, image 
restoration from less projection data is required to avoid 
radiation damage during the measurement process. 

Compressed sensing (CS) technology [5]–[7] has recently 
shown that tomographic images can be well retrieved from far 
less sample data than the Shannon-Nyquist criterion. It has 
been reported that an original image can be exactly 
reconstructed even when using under-sampled data of a 
Fourier space [5]; this led to the development of a new 
reconstruction technique — a CT image retrieval algorithm 
based on a Radon space [8]. Various optimization algorithms 
on the basis of CS theory have been developed for use in image 
reconstruction [9]–[13]. These methods are related to an L1-
norm minimization of an underdetermined linear system. The 
use of a total variation (TV) norm as a constrained term is an 
effective approach for solving such an optimization problem 
[14].  

TV regularization aims to minimize the L1-norm of a 
gradient image showing the sparsifying domain. A CT image 
from a limited number of projections has been accurately 
reconstructed by using a TV minimization and an algebraic 
reconstruction technique [8]. Other first-order gradient 
approaches using forward and backward projection operators 
have been studied for improving algorithmic performance and 
convergence speed [9]–[13]. 
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The iterative shrinkage-thresholding (IST) algorithm is 
derived from a consideration of the L1-norm of the proximal 
gradient method [15] and is now a common tool for image 
recovery — one that is based on the principle of CS [16]–[17]. 
A soft-thresholding filtering algorithm using a pseudo-inverse 
of a discrete difference transform demonstrates a good image 
recovery [13].  

Recently, to improve convergence performance, a two-step 
iterative shrinkage-thresholding (TwIST) algorithm based on a 
second-order approach was developed [18]. In an iterative 
optimization process based on a Fourier space, the TwIST 
algorithm showed a convergence rate better than that of other 
first-order methods. However, there have been no reports that 
this algorithm is applicable to CT image reconstruction based 
on a Radon space. 

In this research, we evaluate CT image reconstruction from a 
small amount of projection data using the TwIST algorithm, 
the results of which are compared with those of some first-
order methods. The reconstruction properties of numerical 
phantom images using a parallel-beam geometry and a 
divergent-beam geometry are investigated, and the 
experimentally measured projection data are also used to carry 
out the analysis. 

II. TwIST Algorithm for CT Image Recovery

Image recovery can be carried out by using the integral of the 
back projection of observed Radon projection data [19], where 
the integral kernel is represented as a convolution of the 
projection data, p(t, θ), and filtering function, h(t).  

 π

cos sin0
( , ) ( , ) ( ) d

t x y
x y t h t     u p .      (1)

For a discrete matrix form, the pixel data of a 2D image, u(x, y), 
and projection data can be represented as a 1D column vector. 
Then, the above equation can be rewritten as 

T 1
p p

u A F HFp ,             (2) 

where F is a 2D matrix representation of a 1D discrete Fourier 
transform, and H is a Fourier-transformed filter term. 
Projection system matrix Ap is related to the CT geometry. 

If we define the filtered projection ˆ ( , )p t   as F–1HFp, 
especially in a noiseless projection data, then a simple linear 
equation is obtained as follows: 

pp A u .        (3) 

The CT image recovery process is then mathematically 
represented by the above equation. In particular, for an 
insufficient amount of measurement data, a CS-based 
algorithm can successfully restore a sparse signal from an L1-
norm minimization subject in accordance with the constraint in 

(3). The sparsity of an unknown signal and the incoherency of 
a system matrix are the main measure of a successful 
application of CS theory [5], [7]. First, the desired image 
should have a sparse representation in a known transform 
domain. If the sparse signal, usd, is represented by a sparsifying 
operator, Ψ, then (3) can then be written as 

p sd p sd p A Ψu A u .   (4) 

We also find that the coherence of system matrix pA  should 
be very low for a good image recovery. 

A CS recovery method that makes use of TV regularization 
becomes an alternative, where a sparsifying operator, such as a 
wavelet transform, is not required. The TV term can play the 
role of a sparsifying operator of a discrete gradient transform. 

If the pixel values of the image are denoted by um, n, then the 
TV norm is as follows [14]: 
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(5) 
The TV norm is an L1-norm of the gradient image; the gradient 
image space is known as the sparse domain. TV regularization 
has been proven to be an effective method for image 
reconstruction from under-sampled data. 

Image recovery can be conducted using a proximal gradient 
method for solving a convex optimization problem, 

2

2 TV
min λ Au p u ,  (6) 

where the objective function consists of the least squares 
together with the TV term, and λ is a regularized parameter. 
Generally, under an L1-norm penalty, the proximal gradient 
solution becomes the IST algorithm. The IST algorithm can be 
derived from the Majorize-Minimization technique or forward-
backward splitting method [15], [17]. 

Considering a second-order regime, the TwIST algorithm 
was developed, which has been known to be a robust and 
stable image reconstruction method [18]. The iterative formula 
of the TwIST algorithm is represented as follows: 

1 1(1 ) ( ) ( ),k k k k
        u u u u        (7) 

 T( ) ( )   u u A Au p  ,      (8) 

where Ψ becomes a TV operator. In our reconstruction 
algorithm, we adopt projection operators A and AT as forward 
and filtered back projections (FBP) based on (2), respectively. 
The parameters α and β are calculated from the spectral radius, 
ρ.  

Let ξ be a real number such that T
10 ( )i mK   A A , 
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where ( )iK   is the ith eigenvalue of its argument, and κ is 
defined as 1 / .m   Then, we have 

1
1
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
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
.                 (9) 

The performance of the algorithm is determined by parameters 
α and β, which can be expressed as follows: 

2 1,                      (10) 

 12 / m     .             (11) 

The above parameters are defined values from an analysis of a 
system matrix eigenvalue; however, in a real simulation 
environment, the values are arbitrarily tuned for the optimal 
conditions. 

III. Simulation Results 

1. Parallel-Beam CT Image Reconstruction 

We first evaluate the image recovery of a parallel-beam CT 
geometry by using the TwIST algorithm, and analyze the 
properties as compared to other first-order methods. The 
algorithms were written in MATLAB. Figure 1 shows an 
image reconstruction of a Shepp–Logan phantom with a size 
of 256 × 256 pixels. Projection data, which is acquired from 32 
projection views, is uniformly distributed in the range [0, 2π], 
and used for a CS image reconstruction. A one-dimensional 
detector, having a pixel size of 367, can cover the projection 
data in a diagonal direction of an image according to a 
rotational angle. The pixels of both image and detector were set 
to have the same resolution, and this value does not affect the 
simulations.  

The sinogram in the Radon space and the recovered image 
through the FBP prior to the application of CS theory are 
shown in Figs. 1(a) and 1(b), respectively. The image retrieved 
by the FBP algorithm is in an inadequate state and shows many 
streaky artifacts owing to the projected geometry. As is well 
known, several-hundred projection views should be used to 
acquire a reliable image for a medical examination. However, 
we note that there is a fundamental difficulty in restoring the 
original information exactly using only the FBP algorithm. As 
shown in the inset of Fig. 1(c), the boundary of the restored 
image through 360 projection views is smoothened. In a CT 
geometry, a smoothing of a restored image edge at a fine 
resolution is inevitable even in an image recovery using a 
greater number of projection views.  

CS theory demonstrates that an original image value can be 
recovered accurately even under a relatively low number of 
projection views if the CS condition is satisfied [5]. Figure 1(d)  

 

Fig. 1. Image recovery of parallel-beam CT geometry using 
iterative shrinkage algorithms: (a) sinogram, (b) FBP 
reconstruction for 32 projection views, (c) FBP 
reconstruction for 360 projection views, (d) IST 
reconstruction image, (e) FIST reconstruction image, and 
(f) TwIST reconstruction image for 32 projection views.

(a) (b) 

(c) 

(e) (f) 

(d) 

 
displays the reconstructed image through the IST algorithm. As 
previously stated, the main iteration part of the algorithm is 
composed of forward and FBPs between a real space and a 
Radon space. A Hann filter was used for backward projection 
of the algorithm. The algorithm overshot in not using the filter, 
which will be discussed later. The magnified inset shows a 
better shape of the image edge compared to the FBP-recovered 
image shown in Fig. 1(c) despite the use of only 32 projection 
views. However, the reconstructed image does not show as 
sharp a boundary as the original image. 

We carried out the image retrieval process using the fast 
iterative shrinkage-thresholding (FIST) algorithm, which is 
known as a CS algorithm with a higher performance level [16]. 
The projection views for this algorithm were chosen over π. A 
better image is obtained, as shown in Fig. 1(e), but when 
applied to a CT image, the image quality is not largely 
enhanced. Figure 1(f) shows an image reconstructed through 
the TwIST algorithm, where the inset shows boundaries as 
sharp as those in the original image.  

Figure 2 shows an image profile along a vertical line in the  
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Fig. 2. 1D profiles along vertical line in middle of original image, 
FBP reconstruction image, and TwIST reconstruction 
image. 
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Fig. 3. Convergence rate of (a) TwIST algorithm and (b) 
comparison of convergence performance with other 
first-order methods. 
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middle of the image. The restored image pixel values by the 
TwIST algorithm perfectly match those of the original image. It 

is very interesting that even when capturing only a few 
projection views, the image information can be retrieved within 
one-pixel resolution during CT image reconstruction. 

Figure 3 shows the convergence performance of the TwIST 
algorithm. The convergence is observed by the root-mean-
square error (RMSE) as a function of the number of iterations. 
To increase the convergence performance, determining the 
optimal values of parameters α and β is crucial [18]. As 
described previously, the parameters are calculated by 
considering the eigenvalues of a system matrix. Under optimal 
conditions, α and β are 1.9 and 0.42, respectively. The 
acceptable range of these parameters is narrower than that of a 
Fourier-based system matrix, which will be discussed later by 
analyzing the property of the projection system matrix related 
to the Radon transform. The image reconstruction drastically 
converges until about 70 iterations, and then continues to 
converge gently. At near 70 iterations, a sharp boundary does 
not appear in the restored image. 

The TwIST algorithm shows a higher convergence 
compared to other iterative methods shown in Fig. 3(b). The 
convergence speed is several-orders of magnitude faster than 
the IST and FIST algorithms. To compare the convergence 
ability, all algorithms were optimized by varying the 
convergence variables. From this, we found that in CT image 
reconstruction, the TwIST algorithm is increasingly more 
stable and robust. 

2. Fan-Beam CT Image Reconstruction 

Figure 4 shows the reconstructed results of fan-beam CT 
images through the previously described iterative shrinkage 
algorithms. The distances from the detector to fan-beam 
source and object image are 800 mm and 600 mm, 
respectively. The phantom image has a size of 256 × 256 
pixels, and the one-dimensional detector array is 256 bins in 
size. The resolution of an image pixel is set to be 0.5 mm 
with respect to 1 mm of detector resolution and thus, the fan 
angle in this geometry is enough to cover the full detection of 
image projection data. The filtered back projection algorithm 
was composed from modifying the Feldkamp–Davis–Kress 
(FDK) algorithm — widely utilized for a cone-beam 
geometry [20]. Figure 4(a) shows an image reconstructed 
using the fan-beam FBP algorithm, where 64 projection 
views distributed over 2π are used. A Hann filter was used to 
prevent algorithm overshoot. 

The IST and FIST algorithms reveal a similar retrieval 
behavior as the parallel-beam CT image recovery, as illustrated 
in Figs. 4(b) and 4(c). However, in an image reconstructed 
using the TwIST algorithm, as shown in the magnified inset of 
Fig. 4(d), there is no clear edge to the image. Therefore, we  
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Fig. 4. Reconstruction results of fan-beam CT image using 
iterative shrinkage algorithms: (a) fan-beam FBP 
reconstruction for 64 projection views, (b) IST 
reconstruction image, (c) FIST reconstruction image, 
and (d) TwIST reconstruction image. 
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Fig. 5. 1D profiles along vertical line in middle of original image, 
fan-beam FBP reconstruction image, and TwIST 
reconstruction image. 
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found that even the TwIST algorithm does not search the 
accurate information of the original image in a fan-beam 
geometry. Figure 5 shows the profile data of the vertical line of 
the reconstructed image. After 300 iterations, the image profile 
is recovered similarly to that of the original image, but the edge 
information is still insufficient. 

As shown in Fig. 6, which displays the variations of the 
RMSE as a function of the number of iterations, the minimum 
value is larger than that of the parallel-beam CT image for all 
other algorithms considered. The TwIST algorithm shows that  

 

Fig. 6. Comparison of convergence performance between TwIST 
algorithm and first-order methods for fan-beam CT image 
recovery. 
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Fig. 7. Reconstruction property of anthropomorphic head 
phantom image using TwIST algorithm: (a) 
reconstructed image using fan-beam FBP and TwIST, 
and (b) image profiles along vertical line. 
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the RMSE of the restored image sharply decreases until about 
30 iterations, at which the value smoothly decreases. Parameters 
α and β were optimally found to be 1.6 and 0.5, respectively. 
Both parameters have a narrow window, similar to that of the 
parallel-beam geometry. Here, the IST and FIST algorithms 
were also optimized to compare their performances. Although 
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the TwIST algorithm has a better convergence speed than that 
of other algorithms, a large enhancement of the algorithm 
performance does not appear. 

Figure 7 shows the retrieval property of the anthropomorphic 
head phantom image using the TwIST algorithm, where α and 
β are reset to 1.6 and 0.3, respectively. This phantom image is 
much more complex in the spatial frequency domain and 
therefore indicates that the sparsity of the image is larger than 
that of the Shepp–Logan phantom. It can be seen that the 
image is well recovered when using 64 projection views, but 
the convergence rate is relatively slow. The algorithm also 
reveals a limitation in precisely finding the information of the 
original image, as shown in Fig. 7(b) of the central 1D profile 
data. 

3. Experimental Phantom Study 

Figure 8 shows the reconstruction characteristics of a 
cylindrical phantom image from the measured projection data 
using a cone-beam CT apparatus. The specifications of the 
cone-beam CT apparatus are briefly as follows: a flat-panel 
detector of 960 × 960 pixels is placed at a distance of 1,436 mm 
from the cone-beam source, and the distance between the cone-
beam source and the object image is 1,000 mm. The pixel size 
is 0.444 mm. The projection data of 65 views measured from 
the cylindrical phantom are shown in Fig. 8(a). Figure 8(b) 
shows a 512 × 512 pixels image reconstructed using the fan-
beam FBP algorithm. To apply the proposed fan-beam 
algorithm, the central slice projection data was chosen. A high-
quality image reconstructed from 320 projection views is 
displayed in Fig. 8(c), where the interval of the rotational angle 
of the cone-beam source is set to 1.12°. 

Figure 8(d) shows the image reconstructed from 65 
projection views using the TwIST algorithm. The algorithm 
removes streaky artifacts and retrieves a clear image. We found 
that the TwIST algorithm shows a high image recovery from 
the projection data of a sparse number of views measuring the 
divergent-beam geometry. 

IV. Discussion 

The performance of an image reconstruction using CS 
theory is determined through a condition known as the 
restricted isometry property (RIP) [6], which is as follows: 

2 2 2

2 2 2
(1 ) (1 )s s    u Au u .        (12) 

For an effective retrieval of the image information, the 

isometry constant s  should be less than 1. A low s  

indicates that the column vectors of system matrix A are nearly 

orthonormal. The following is another expression where the  

 

Fig. 8. Reconstruction characteristics of cylindrical phantom 
image from measured projection data using cone-beam 
CT apparatus: (a) measured projection data, (b) fan-
beam FBP reconstruction for 64 projection views, (c) 
fan-beam FBP reconstruction for 320 projection views, 
and (d) TwIST reconstruction image. 
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(c) (d) 

 
coherence of column vectors ai, j is very low [21]: 

 ( ) max ,i j
i j




A a a .             (13) 

A Gaussian random matrix and Fourier matrix satisfy the 
above conditions well. A perfect image reconstruction is 
known to be achievable from the sparse Fourier-transform data, 
which demonstrates an exact reconstruction principle (ERP) 
[5]. 

In CT geometry, the projection system matrix Ap in (3) has a 
large condition number and an ill-posed problem is thus 
evident [8]. An interpolation process inducing data noise is 
inevitable because of the coordinate mapping between the 
image space and the Radon space. Therefore, appropriate 
regularization methods to prevent algorithm overshooting are 
required. In the iterative shrinkage algorithm, we confirmed 
that a filtering process of the back projection together with the 
TV regularization plays an important role in restraining this 
effect. Careful observation of algorithm performance according 
to filter species is needed — something we will look to address 
in future works. 

A projection operator of a parallel-beam CT is assumed to be 
a simpler form compared with other geometries. The TwIST 
algorithm recovers the accurate information of an original 
image in a parallel-beam geometry. From this, we found that 
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the coherence of the system matrix is sufficiently low to satisfy 
the ERP condition. On the other hand, the IST algorithm has 
difficulty in exactly recovering the original image even under 
optimal conditions. The algorithms based on a first-order 
approach showed a limitation for controlling overshoot facts. In 
fan-beam CT image recovery, an accurate image is not 
retrieved even by the TwIST algorithm. The fan-beam CT has 
a divergent beam geometry, and thus a rebinning process is 
imposed on the reconstruction process as compared to a 
parallel-beam geometry [19]. This is considered to lead to a 
poor performance in solving the measurement matrix. 

The TwIST algorithm is well suited to the reconstruction of a 
CT image from sparse-view projection data. However, its 
ability to find exact image values does not reach that of a CS 
process using a simple Fourier transform. The incoherence of 
the system matrix is less than that of a simple Fourier sensing 
matrix. This fact is due to the complexity of the projection 
system matrix. In our parallel-beam geometry, the smallest and 
largest eigenvalues of the system matrix calculated from the 
optimal values of α and β appear to be 0.0063 and 9.041, 
respectively. Here, the maximum eigenvalue is greater than 1, 
which is anomalous in conventional convergence matrix 
systems. This may be due to an asymmetry in the forward and 
backward projection matrix. As mentioned, a filtering process 
in a backward projection is inevitably added. For a detailed 
understanding of this effect, a further analysis of the projection 
matrix is required. We also found that a retrieval method based 
on the Fourier basis of the system matrix will enhance the 
performance of algorithm convergence. 

V. Conclusion 

CT images were successfully recovered from sparse-view 
projection data by using the TwIST algorithm. The TwIST 
algorithm, based on a projection and filtered back projection, 
shows a better performance than other first-order methods. A 
parallel-beam CT image can be restored accurately, but in a 
divergent-beam geometry, a perfect recovery of the image was 
not accomplished, which is considered to be due to the 
complexity of the system matrix. 
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