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ABSTRACT⎯A new mesh reconstruction scheme for 
approximating a surface from a set of unorganized 3D points is 
proposed. The proposed method, called a shrink-wrapped 
boundary face (SWBF) algorithm, produces the final surface 
by iteratively shrinking the initial mesh generated from the 
definition of the boundary faces. SWBF surmounts the genus-0 
spherical topology restriction of previous shrink-wrapping-
based mesh generation techniques and can be applied to any 
type of surface topology. Furthermore, SWBF is significantly 
faster than a related algorithm of Jeong and others, as SWBF 
requires only a local nearest-point-search in the shrinking 
process. Our experiments show that SWBF is very robust and 
efficient for surface reconstruction from an unorganized point 
cloud. 

Keywords⎯Shrink-wrapping, surface reconstruction, 
unorganized 3D points. 

I. Introduction 
In the past few decades, considerable studies have been 

conducted on the photo-realistic shape reconstruction of real 
objects. Shape reconstruction algorithms have two main stages: 
data acquisition and surface reconstruction. The data acquisition 
stage acquires an accurate, possibly unorganized, 3D point cloud 
from a real object, while the surface reconstruction stage 
converts the point cloud into a smooth surface.  

The 3D point cloud itself is not adequate for other 
visualization operations such as volume calculation. Hence, 
there is a large literature on surface reconstruction from a point 
cloud. According to Curless and others [1], solutions to this 
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problem have proceeded along two basic directions: 
reconstruction from unorganized points and reconstruction that 
preserves the underlying structure of the acquired data. The 
problem of surface reconstruction from unorganized points is 
known to be hard to solve since there is no prior assumption 
about the connectivity of the acquired 3D points, such as 
contour or range image. This letter focuses on the surface 
reconstruction from unorganized points. 

A typical solution provided by Hoppe and others [2] introduces 
a tangent plane and a signed distance function, and produces a 
triangular mesh by a volume-based reconstruction scheme. But 
this method is not always robust in regions of high curvature or in 
the presence of systematic range distortions and outliers. 

In this letter, we propose a new solution for mesh generation 
from an unorganized 3D point cloud based on an iterative 
relaxation scheme, called a shrink-wrapping process. The letter 
is organized as follows. Previous research work on surface 
generation based on shrink-wrapping is briefly described in 
section II. Our shrink-wrapped boundary face algorithm is 
described in section III. Experimental results are given in 
section IV, and section V concludes this letter. 

II. Previous Work on Surface Generation 

Originally, the shrink-wrapping-based mesh generation 
technique was proposed by Kobbelt and others. [3]. They 
introduced a deformable surface scheme for converting a given 
unstructured triangle mesh into one having subdivision 
connectivity based on a simulation of the shrink wrapping process. 

Recently, Jeong and others [4] extended the shrink-wrapping 
concept to produce a mesh model from unorganized points. For a 
given 3D point cloud, they make a bounding cube and linearly 
subdivide the six faces to get an initial cube-shaped mesh. They 
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repeatedly apply the projection (shrinking) and smoothing 
operations to metamorphose the initial mesh into one similar to 
the surface of the original object. Since the initial mesh is always a 
box shape, they have to restrict the topology of the reconstructed 
mesh: a genus-0 spherical topology that does not contain any 
holes in the object’s surface. Therefore, their method cannot be 
applied to objects embedding holes such as a ring. Furthermore, 
for each vertex of the initial mesh, their method has to find the 
nearest point from all of the input points during the shrinking 
process, which is very time consuming. 

In this letter, we also adopt the shrink-wrapping process to 
produce a mesh from unorganized points as in the method of 
Jeong and others [4]. The major difference in our method, 
named the shrink-wrapped boundary face (SWBF) algorithm, 
is the shape of the initial mesh. Instead of using the six faces of 
a bounding box, cell boundary faces defined in the next section 
are used as the initial mesh. This idea enables our method to 
overcome the topological restriction of the previous methods 
and considerably improves the computational time efficiency 
of generating a surface mesh. 

III. Shrink-Wrapped Boundary Face  

Let Oreal be a real world object and },,,{ 21 npppP ⋅⋅⋅=  be 
point cloud sampled from Oreal. No connectivity information 
between points ,,,2,1, nipi ⋅⋅⋅=  is given. In this case, a 
surface reconstruction algorithm is a process that produces a 
polygonal mesh MP from P such that MP

realO≈ . SWBF 
generating MP from an unorganized point cloud P includes the 
following four major stages: (i) partitioning the 3D space into a 
cell space, (ii) defining a boundary face and generating an initial 
mesh, (iii) shrinking, and (iv) surface smoothing. Figure 1 shows 
the conceptual illustrations of our definitions, and a detailed 
description follows in the next section. 

 
 

Fig. 1. Conceptual illustrations of our definitions: (a) measured
3D point cloud and (b) illustration of the terms in the 2D
view of the rectangular area of (a). 
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1. Partition of the 3D Space into a Set of Cubes 

First, we estimate a bounding box BP of P. Since the outside 
of BP may not produce any surface patch, we are concerned 

only with the inside of BP. From the bounding box of P, we can 
define a cell and cell space as follows.  

Definition 1. The cell space of a cloud of unorganized 3D 
points, P, is defined to be a dissection of BP by three orthogonal 
sets of equally spaced parallel planes and is denoted by CP. 
Each cube, a component of the cell space, is called a cell and is 
denoted by c or c(i, j, k).  

The size of each cell, or the resolution of the cell space, 
should be carefully selected according to the density of P . 
With the assumption that the density of the point sampling for 
each unit surface area is the same (or at least nearly similar), the 
major factor for selecting an adequate resolution could be the 
density of the point sampling. If the resolution is too low 
(compared with the point sampling density), the resulting mesh 
becomes coarse and cannot represent the detailed topology of 
the object. If it is too high, there may some unwanted holes in 
the resulting surface mesh. But its precise value is not very 
crucial compared with the previous method of [4]. 

2. Generating the Initial Mesh 

Assume that a cell space CP is given from the original 
unorganized points P with a certain resolution. The cells in CP 
can be divided into two groups as follows.  

Definition 2. The boundary cell, denoted as cb, is defined to be 
a cell containing one or more physical 3D points of P. Otherwise, 
the cell is defined to be an outer cell and is denoted as co. 

Since P is acquired only from the surface of Oreal, we cannot 
classify whether a cell is inside or outside of the object. We can 
only differentiate a boundary cell from an outer cell contained 
inside or outside of the object. Boundary cell cb will have a 
high possibility of embedding the real surface, Oreal. 

The neighbors of cell c are assumed to be cells which are 
adjacent to one of the six faces of c and are denoted as n(c). Udupa 
and others [5] used the term O(1)-adjacency for this kind of 
neighbor definition. We can define the boundary face as follows. 

Definition 3. For boundary cell cb, six faces exist in the 
directions of the O(1)-adjacent neighbor cells. A face of cb is 
defined to be a boundary face fb if the adjacent cell is an outer 
one. Otherwise, the face is defined to be an inner face and is 
denoted as fi. 

A boundary face can be interpreted as a simple 
approximation of the actual object surface, which is contained 
in the corresponding boundary cell. Consequently, the initial 
mesh can be defined from the boundary faces as follows. 

Definition 4. The initial mesh denoted as MI is defined to be 
the set of boundary faces as  
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}|)({ Pbbb
I CccfM ∈∀=  ,            (1) 

where cb represents the boundary cell in CP. 
The initial mesh MI in our method is a crude approximation 

of the surface of P (or Oreal) for further processing, but the 
important thing is that it usually preserves the topology of the 
original object unless the hole in object surface is too small 
compared with the resolution of the cell space. The crude 
surface is then iteratively metamorphosed into the original 
surface by shrinking and smoothing operations. 

3. Shrinking 

A shrinking step is applying an attracting force to each 
vertex—that is, a vector between the initial mesh MI and the 
given point cloud P. For a vertex qi of MI, there is a boundary 
cell cb containing it. We search for the nearest 3D point in P 
minimizing the Euclidean distance from qi to that point. Unlike 
in the method of [4] requiring a global search for optimal 
results, shrinking in SWBF can be done in a local manner to 
obtain a similar result. Since the nearest point pnear should 
always be inside of cb or inside of the O(3)-adjacent neighbors 
of cb, it is sufficient to search for only the 3D points inside a 
total of 27 cells for the nearest one from a mesh vertex. This 
greatly saves the processing time for the shrinking process. 
After finding pnear, the attracting force pushes qi toward pnear as 

}{ inearii qpqq −+← α .             (2) 

The weight α (0.0 to 1.0) determines the amount of the 
attracting force. Since there is a possibility of sharing the same 
point by more than two mesh vertices, the full attraction force 
( 1=α ) may cause a non-manifold region in the surface. To 
avoid this, we provided a weight of less than 1.0 and 
experimentally chose α  to be 0.5.  

Theorem 1. The shrinking step previously described 
transforms the initial mesh MI in time proportional to the 
number of points in the original unorganized point cloud P. 

Proof. As previously described, it is sufficient to consider 
only the 3D points inside a total of 27 cells when searching for 
the nearest one from a mesh vertex qi of MI. From the view 
point of a 3D point p in P, the distance calculation from p to the 
mesh vertices can be done only for those vertices embraced in 
the 27 cells: the cell cb containing p and 26 O(3)-adjacent 
neighbors of cb. There are eight supporting vertices in each cell, 
and some of them participate in the initial mesh MI as vertices. 
Thus, a point p in P should be considered when searching for 
the nearest vertex from at most 216 (=27 × 8) mesh vertices. 
Consequently, the time complexity for the shrinking step is 

O(216n)=O(n), where n is the total number of points in the 
original unorganized point cloud P.                    � 

Compared with the method of [4], our method is much faster 
since it requires O(mn) time for a shrinking step, where m is the 
total number of mesh vertices in MI. Since m should increase 
nearly proportionally to n in physical experiments, the actual 
time complexity of [4] becomes O(n2) for a shrinking step. 

4. Surface Smoothing 

The smoothing step tries to relax the shrink-wrapped surface 
for achieving a uniform vertex sampling, and we have adopted 
the same method used in [4]. We employ the approximation of 
Laplacian ℒ as in [6]. This is the average vector of 1-neighbor 
edge vectors of a given vertex, and thus a surface shrinkage 
effect may occur. Therefore, we take only the tangential 
component of ℒ, which is perpendicular to the vertex normal. 
The processing time of the smoothing step is proportional to 
the number of vertices in the initial mesh MI since for a mesh 
vertex qi of MI there are at most six neighboring vertices, 
O(6m) = O(m). 

IV. Experiments 

Figure 2 illustrates the difference between SWBF and the 
method proposed by Jeong and others [4] for a synthetic ring 
data containing a hole in the surface. When embedding any 
kind of topology, the initial mesh in SWBF is the key for 
resolving the genus-0 spherical topology restriction of previous 
shrink-wrapping-based reconstruction methods, which can be 
seen by the comparable results in Figs. 2(d) and 2(g). Notice  

 
 

Fig. 2. Comparison with [4] (cell resolution=21): (a) input data, 
(b) - (d) results from [4], and (e) - (g) results by SWBF. 

(a) Input point cloud 

(b) Initial mesh in [4] (c) After 4 iterations (d) Resulting mesh

(e) Initial mesh in SWBF (f) After 4 iterations (g) Resulting mesh
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Fig. 3. Reconstruction result for the General data: (a) input point 
cloud, (b) shrink-wrapped surface (3 iterations), and (c) 
reconstructed surface in Gouraud shading. 

(a) Input point cloud (b) Result (mesh) (c) Result (shading)

 
 

Table 1 Reconstruction summary for the General data. 

Input point cloud Number of 3D points 1,658,574 

Maximum resolution Y:200 

Number of boundary cells 96,164 Cell space 
Average number of points 

in a boundary cell 17.2473 

Number of vertices 198,267 
Reconstructed mesh 

Number of triangular faces 398,784 

 

 
that the initial mesh in SWBF, Fig. 2(e), also envelops all of the 
original 3D points in Fig. 2(a). As shown in the resulting mesh 
in Fig. 2(g), four iterations of the shrink-wrapping process 
would be sufficient in SWBF for general cases. But as Fig. 2(d) 
shows it is still not enough in [4] because the shape of the initial 
mesh, shown in Fig. 2(b), is far from the real object. 

Figure 3 shows the reconstruction results for the General 
data. As you can see in Fig. 3, SWBF works well for 
generating a mesh even with only three occurrences of the 
shrinking and smoothing process. Table 1 summarizes the 
reconstruction results. The overall processing time was less 
than 60 seconds on a Pentium 2.0 MHz PC. Since SWBF 
searches only O(3)-adjacent neighbors in finding the nearest 

points, it is much faster than previous works [2], [4]. In our 
experiment, even one iteration of the shrinking process based 
on a global search, as in [4] for the General data, takes more 
than several hours. 

V. Conclusion 

In this letter, we introduced a novel mesh reconstruction 
algorithm from an unorganized point cloud. SWBF overcomes 
the genus-0 spherical topology restriction of the previous 
shrink-wrapping based mesh generation methods by using the 
boundary faces as the initial mesh. Furthermore, it is much 
faster since it requires only a local nearest-point-search in the 
shrinking process. According to experiments, SWBF is found 
to be very robust and efficient, and is expected to be a general 
solution for reconstructing a mesh from an unorganized point 
cloud. 
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