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This paper presents an efficient algorithm for using the 
two-axis magnetic compass in portable devices. The 
general magnetic compass module consists of a three-axis 
magnetic compass and a two-axis inclinometer to calculate 
tilt-compensated azimuth information. In this paper, the 
tilt error is compensated using just a two-axis magnetic 
compass and two-axis accelerometer. The third-axis data 
of the magnetic compass is estimated using coordinate 
information that includes the extended dip angle and tilt 
information. The extended dip angle is estimated during 
the normalization process. This algorithm can be used to 
provide the tilt-compensated heading information to small 
portable devices such as navigation systems, PDAs, cell 
phones, and so on. 
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I. Introduction 

Azimuth is the angle between true north and the direction of 
movement. The azimuth can be measured using the following 
techniques: gyrocompassing using the gyroscopes in an inertial 
navigation system [1], [2], GPS application [3], and 
magnetometry using a magnetic compass [4]-[6]. When gyros 
are utilized for calculating the azimuth, the initial azimuth must 
be known. What is worse, an error can be increased because of 
the gyro bias. The multi-antenna method in a GPS application 
is suited to a large system such as an airplane, ship, and so on. 
A stand-alone antenna method can be used only while moving. 
On the other hand, a magnetic compass has a bounded error 
and the size of the compass is small. In particular, a magnetic 
compass can measure the absolute azimuth. Therefore, it is 
widely used in systems that need azimuth information. 

If a magnetic compass is always horizontal to the earth’s 
surface, a two-axis magnetic compass sensor module can 
calculate the azimuth accurately. Otherwise, a tilt error in the 
azimuth is generated. Generally, the magnetic compass module 
consists of three magnetic compass sensors and two 
inclinometers, all used to compensate the tilt error. The three 
magnetic compass sensors must be mutually orthogonal in the 
Cartesian reference frame [5], [6]. However, achieving this 
accurate orthogonality is difficult, and the sensors could be 
misaligned because of the vertical sensor. Also, the size of such 
a sensor module is comparatively large. Therefore, the 
application of the magnetic compass is limited. A small sensor 
module needs to be developed for mobile phones, PDAs, and 
so on, which need the azimuth information. 

Recently, an azimuth calculation technique using a two-axis 
magnetic compass has been investigated [6]. In this technique, 
coordinate frames are defined using the Earth’s dip angle 
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information. Then, the third-axis data of the magnetic compass is 
estimated based on the coordinate frames. Finally, the tilt 
compensated azimuth is calculated. The Earth’s dip angle 
depends on the latitude. The measured value using the magnetic 
compass is, however, different from the calculated value using 
the latitude information because the magnetic compass is 
influenced by the surrounding magnetic field as well as Earth’s 
magnetic field. It is necessary to calculate the accurate dip angle 
when the azimuth is calculated using the magnetic compass. In 
this paper, the dip angle with surrounding disturbance is referred 
to as the extended dip angle (EDA). An EDA searching 
algorithm is proposed to compensate the tilt error accurately in 
the two-axis magnetic compass sensor module. The dip angle is 
estimated simply by tilting the magnetic compass at any 
direction during the normalization process. After normalization 
containing the EDA searching process, the tilt compensated 
azimuth information can be calculated accurately in real-time. 

This paper is organized into six sections. In section II, the 
Earth’s magnetic field is briefly described. Then coordinate 
frames used in this paper are defined, and the relations between 
the frames are formulated using direction cosine matrices 
(DCMs). In section III, an azimuth calculation algorithm using 
a two-axis magnetic compass is introduced. Then, a dip angle 
searching algorithm is presented in section IV. In section V, the 
performance of the proposed algorithm is verified by some 
experiments, and conclusions are drawn in the final section. 

II. Earth’s Magnetic Field and Coordinate Frames 

The Earth’s magnetic field intensity is about 0.5 to 0.6 gauss 
and can be approximated with the dipole model that points 
toward magnetic north. The magnetic field is parallel to the 
Earth’s surface. Generally, a compass that is parallel to the 
Earth’s surface measures an azimuth through the direction of 
the Earth’s magnetic field [5]. The magnetic needle of the 
compass is, however, slant to the Earth except on the equator, 
and the slant angle changes according to the latitude. This angle 
is called the dip angle. The direction of the magnetic field does 
not lean toward the Earth’s center. However, the dip angle is 
generated because the magnetic field is scattered all over the 
Earth. Figure 1 denotes the dip angle according to the latitude. 
The dip angle on the equator is zero and that on the magnetic 
north is 90 degrees. There is a location “D” where the magnetic 
needle points to location “C”. The dip angle changes at a high 
rate according to the latitude over the “AD” section, and the 
rate of change of the dip angle is slow over the “DB” section. 

A magnetic compass is used for calculating the azimuth by 
measuring the intensity of the Earth’s magnetic field. Several 
coordinate frames need to be defined when the magnetic 
compass is used to compute the azimuth. The coordinate 

 

Fig. 1. Dip angle according to the latitude. 
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frames used in this paper are a body frame, horizontal frame, 
navigation frame, magnetic navigation frame, and magnetic 
frame. The body frame ( Xmc, Ymc, Zmc ) has its origin at the 
magnetic compass module, and each axis points along each of 
the orthogonal sensitive axis of the magnetic compass. The 
horizontal frame ( Xh, Yh, Zh ) is the body frame when the tilt 
angles are zero. The navigation frame ( Nn, En, Dn ) is a local-
level frame with its axes pointing true North, East, and down. 
The magnetic navigation frame ( Nmn, Emn, Dmn ) is the rotated 
navigation frame by the declination about the vertical axis. And 
the magnetic frame ( Nm, Em, Dm ) is the rotated frame by the 
dip angle about the east axis of the magnetic navigation frame. 
The magnetic needle is flat on the Nm − Em plane. 

Figure 2 shows the relations between the coordinate frames 
where φ, θ, and ψ denote roll, pitch, and azimuth angle, 
respectively, while γ  and λ denote declination and dip angles, 
respectively. The DCMs between the coordinate frames can be 
obtained from Fig. 1 as follows [7]. 
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Fig. 2. Rotations between the coordinate frames. 
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III. Algorithm for Azimuth Calculation 

The output of the magnetic compass must be normalized 

before applying the algorithm. At first, the outputs of the 
magnetic compass are measured during the compass turns on 
the z-axis on a horizontal plane. Then, the maximum and 
minimum values of the magnetic compass data are obtained. 
The normalization process considering the dip angle is 
performed with the following equation: 

 ( ) xxmcmc SFBiasXX −= ,              (5) 

 
2
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= ,  and             (6) 
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cos2
XX

SFx −
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where X is the x-axis, Xmc is the output of the magnetic 
compass, mcX  is the normalized x-axis magnetic compass,  
and Xmax and Xmin are the maximum and minimum values of 
the magnetic compass on a horizontal plane, respectively. Biasx 
denotes the bias of the x-axis magnetic compass and SFx the 
scale factor. The normalization of the y-axis is achieved by the 
same process as for the x-axis. 

The output of the magnetic compass in the magnetic frame is 
normalized using (5) at any location as 

 [ ] [ ]TT
mmm DEN 001= .         (8) 

With this prerequisite, we are able to state the main result of 
this section. 

It is necessary to estimate the z-axis magnetic compass data 
in order to calculate the azimuth information when a two-axis 
magnetic compass is used. For normalized compass 
output, 1222 =++ mcmcmc ZYX , and mcZ  can be written as 

 )(1 22
mcmcmc YXZ +−±=  .             (9) 

The sign of the solution cannot be determined with the proposed 
sensor set. This is the limitation of the conventional idea. The 
following Theorem 1 is proposed to overcome this limitation. 

Theorem 1. Consider the normalized output of the magnetic 
compass and DCMs as stated in (1) through (4), where it is 
assumed that the dip angle and tilt information are known. 
Then, the third-axis measuring information of the two-axis 
magnetic compass is estimated as 
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Proof. For the proof of Theorem 1, the equation is 
formalized using the relations between the coordinate frames. 
The relation between the body frame and the magnetic frame 
can be made as 
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yields 

 ( )















=
















−

mc

mc

mc
h
b

n
h

m

m

m
m
mn

Z
Y
X

CC
D
E
N

C
1

.            (12) 

Substituting (1) through (4) into (12) gives 
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where 

 ψ~cos1 =x , ψ~sin1 =y  .             (14) 

The lower row vector of (13) can be extracted as 
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After normalization, this equation can be denoted as follows: 

λφθφθθ sincoscossincossin =++− mcmcmc ZYX .  (16) 

Because (16) does not have any information about azimuth, the z-
axis data of the magnetic compass can be estimated as given in 
(10). Therefore, we can estimate the third-axis measuring 
information of the magnetic compass using a two-axis magnetic 
compass if the dip angle and tilt information are known. This 
result is not needed to solve the sign, unlike in (9).           � 

The tilt information can be computed by using an 

inclinometer. Nowadays, an accelerometer is widely adopted 
as an inclinometer. Using the two-axis accelerometer, the tilt 
angles of the magnetic compass at rest can be calculated as 
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where ay and ay denote the outputs of the x-axis and the y-axis 
accelerometers, respectively, and g indicates the gravity 
acceleration. 

In (17), it is assumed that the tilt angle is smaller than 180 
degrees. 

When a two-axis magnetic compass is used, the magnetic 
compass must be at rest on the horizontal surface. This is the 
limitation of the conventional idea. The following Theorem 2 
shows that a two-axis magnetic compass can calculate the 
azimuth angle accurately even if the tilt angle is not 0. 

Theorem 2. Consider the third-axis measuring information 
of the two-axis magnetic compass and the coordinate 
transformation equation (13). It is assumed that the declination 
angle, the dip angle, and the tilt information are known. Then, 
the azimuth calculation equation with a two-axis magnetic 
compass is as follows: 
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Proof. For the proof of Theorem 2, the upper-two row 
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This equation can be rearranged to calculate the variables x1 
and y1 as 
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where 
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 φθφθθ cossinsinsincos mcmcmc ZYXa ++= ,   (21a) 

 φφ sincos mcmc ZYb +−= .           (21b) 

Note that a and b are equivalent to Xh and -Yh, respectively, in 
(1). 

From (19), x1 and y1 can be obtained as 
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Therefore, the azimuth can be calculated as 
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.
cossinˆsinsincos

sinˆcos
tan

tan

1

1















++

+−
=







=

−

−

φθφθθ

φφ

ψ

mcmcmc

mcmc

ZYX

ZY

a
b

(24)
 

Therefore, we can calculate the azimuth information using a 
two-axis magnetic compass if the dip angle and the tilt 
information are known. However, the azimuth estimated by 
(24) has an error by the declination angle as can be seen in Fig. 
2(b). The declination angle can be compensated. First, the 
declination angle information can be downloaded from [8] and 
can be used in a wide area without change. Second, the 
inclination angle and the various error angles can be estimated 
using an in-motion alignment filter when the magnetic 
compass is utilized in navigation systems [9]. Therefore, the 
azimuth can be calculated.                           � 

In this section, it is proved that the tilt-compensated azimuth 
can be calculated using a two-axis magnetic compass and a 
two-axis accelerometer if the dip angle is known. 

IV. Algorithm for Extended Dip Angle Estimation 

The dip angle is necessary to calculate the tilt-compensated 
azimuth when a two-axis magnetic compass is utilized. The dip 
angle varies according to the latitude and is fixed to the location. 
Usually, the dip angle is calculated using the latitude 
information as 

 ( )Ltan2tan 1−=λ  ,                (25) 

where, L denotes the latitude. 

The measured dip angle is, however, different from the 
known value because of the surrounding magnetic field of the 
magnetic compass. The following Theorem 3 is proposed to 
estimate the dip angle distorted by the surrounding magnetism. 

Theorem 3. Consider Theorem 1 and Theorem 2. If either 
the roll angle or the pitch angle is not zero, and the azimuth 
information is known, the EDA is then calculated as follows: 
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Proof. Inserting (10) into (18) yields 
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where λe is the EDA. The normalization cannot be 
accomplished when the EDA is unknown. During 
normalization through rotating the magnetic compass on the 
horizontal plane, (5) can be represented as follows: 

 ( ) emcexxmcmc XSFBiasXX λλ coscos =−= .   (30) 

Substituting (30) into (29) gives 
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Equation (31) can be rearranged as 
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Therefore, the EDA can be calculated using (32) and (33) as 
follows: 
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In (34), there are two problems. First, the denominator may be 

zero if both tilt angles are zero. Second, the azimuth information 
is necessary. The two problems are solved as follows: The two-
axis magnetic compass can calculate the azimuth information 
accurately on the horizontal plane after normalization without 
dip angle. Then, the magnetic compass is rotated along the x-axis 
or y-axis for any fixed azimuth to avoid the singular problem. 
Therefore, the EDA is calculated using (26).              � 

V. Experimental Results 

An experiment was carried out to verify the performance of 
the proposed algorithm. At first, an experimental magnetic 
compass module is implemented as shown in Fig. 3. In this 
module, the extra z-axis magnetic compass is used to 
compare with the estimated third-axis measuring information. 
The biaxial magnetic compass and the biaxial accelerometer 
used in this experiment are TMC2000 (Tokin) and 
ADXL202E (analog devices), respectively. The magnetic 
compass is a fluxgate type detector to detect terrestrial 
magnetism. 

The EDA at the experimental position is about 48.72 
degrees. This value is calculated by seeking the pitch angle 
that maximizes the x-axis output of the magnetic compass. 
Figures 4 and 5 show the results of the EDA estimation. 
When the EDA is calculated using (26), the tilt angles must 
not be zero degrees. It becomes apparent from the diagram in 
Fig. (5) that the error of the calculated EDA is decreased with 
increasing the tilt angle. In this paper, the calculated EDA is 
adopted when the tilt angle is over 30 degrees. The result of 
the EDA estimation is presented in Fig. 5 and Table 1. From 
these results, it can be seen that the calculated EDA has a 
small error of less than 1 degree. 

A second experiment was carried out. The pitch angle is 
fixed on 30 degrees. Then the magnetic compass module is 
rotated along the z-axis. Figure 6 shows the azimuth error 
when the tilt error is not compensated. As can be seen in this 
figure, the azimuth information cannot be used unless the tilt 
error is compensated. Figures 7 and 8 show the performance 
of the proposed algorithm. At first, the dip angle is calculated 
using (25). The calculated dip angle is 56.91° because the 
latitude of Seoul is about 37.5°. The result is denoted in Fig. 7. 
Then, the dip angle is estimated by the proposed EDA  

 

Fig. 3. Block diagram of the experimental magnetic compass 
module. 
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Fig. 4. EDA error according to pitch angle. 
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searching algorithm. The result is shown in Fig. 7. In this 
experiment, the z-axis magnetic compass was additionally 
equipped as in Fig. 3. Figures 7(a) and 8(a) show the 
experimental z-axis data, the estimated z-axis data, and the 
estimation error. As can be seen in these figures, the dip angle 
calculated by using the latitude information makes the 
inaccurate z-axis data of the magnetic compass. This error also 
makes the azimuth error as can be seen in Fig. 7(b). However, 
the EDA estimated by the proposed algorithm makes the small 
azimuth error as can be seen in Fig. 8(b). 

VI. Conclusion 

In this paper, an efficient error compensation algorithm for a 
two-axis magnetic compass is proposed. The third-axis data of 
the magnetic compass is estimated using the extended dip 
angle and the tilt information. And the extended dip angle is 
estimated simply by tilting the magnetic compass module 
during the normalization process. The validity of the proposed 
algorithm is analyzed by some experiments. In these  



286   Seong Yun Cho et al. ETRI Journal, Volume 27, Number 3, June 2005 

 

0 100 200 300 400 500 600 700 800 900 1000
-100

-80

-60

-40

-20

0

20

40

60

80

100

R
ol

l, 
pi

tc
h 

& 
di

p 
an

gl
e 

(d
eg

)

Sample

Roll angle

Pitch angle

Calculated dip angle

(c) Azimuth = 225 (deg)
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(b) Azimuth = 135 (deg)
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(d) Azimuth = 315 (deg)
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(e) Azimuth = 45 (deg)
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Fig. 5. Results of the EDA estimation. 

 

Table 1. Estimation results of the EDA. 

Figure Condition Result 

Azimuth = 45° 
5(a) 

Roll angle = 0, Pitch angle change 
49.01° 

Azimuth = 135° 
5(b) 

Roll angle = 0, Pitch angle change 
49.22° 

Azimuth = 225° 
5(c) 

Roll angle = 0, Pitch angle change 
47.64° 

Azimuth = 315° 
5(d) 

Roll angle = 0, Pitch angle change 
49.85° 

Azimuth = 45° 
5(e) 

Pitch, Roll angle change 
47.24° 

Azimuth = 315° 
5(f) 

Roll, Pitch angle change 
49.77° 

Mean 48.79° 

Standard deviation 1.09° 

True EDA 48.72° 

 

 
 

Fig. 6. Azimuth error when tilt error is not compensated. 
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experiments, it is confirmed that the proposed EDA estimation 
algorithm estimates the EDA accurately and easily. Moreover, 
the azimuth is calculated without tilt error. It is expected that 
the proposed algorithm will be useful in the systems that need a 
small-size magnetic compass module such as a portable 
navigation system, mobile phone, PDA, virtual reality system, 
and so on. 
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Fig. 7. Dip angle is calculated using the latitude. 
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(a) Z-axis data of the magnetic compass 
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Fig. 8. Dip angle is calculated by the proposed algorithm. 
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(a) Z-axis data of the magnetic compass
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