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A CMOS direct-conversion mixer with a single 
transistor-level topology is proposed in this paper. Since 
the single transistor-level topology needs smaller supply 
voltage than the conventional Gilbert-cell topology, the 
proposed mixer structure is suitable for a low power and 
highly integrated RF system-on-a-chip (SoC). The 
proposed direct-conversion mixer is designed for the 
multi-band ultra-wideband (UWB) system covering from 
3 to 7 GHz. The conversion gain and input P1dB of the 
mixer are about 3 dB and -10 dBm, respectively, with 
multi-band RF signals. The mixer consumes 4.3 mA under 
a 1.8 V supply voltage. 
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I. Introduction 

The ongoing very-large-scale integration (VLSI) technology 
down-scaling toward deep submicron processes yields many 
advantages and challenges in developing a system-on-a-chip 
(SoC) that includes RF and analog circuits. A key problem for 
the implementation of RF SoC is the reduction of supply voltage, 
even sub-volt supplies (VDD < 1V), as the design rules of the 
CMOS device are scaled down to and beyond 90 nm [1]. Since 
the supply voltage determines the maximum voltage swing level, 
decreasing the supply voltage means decreasing the maximum 
achievable signal level, which degrades the RF performances 
such as linearity and dynamic range. On the other hand, linearity 
requirements have become more stringent as recent wireless 
systems have adopted multi-standards and broadband 
characteristics. Short-range high-speed wireless systems such as 
an ultra-wideband (UWB) wireless personal area network 
(WPAN) [2] require low-power, low-cost, and linear RF 
transceivers. Such wideband systems do not occupy the 
frequency band exclusively and cannot use high-Q bandpass 
filters, so large in-band interference tones exist in the input of the 
receiver chips. High linearity is thus required to prevent 
intermodulation and de-sensitization problems. 

Active mixers, commonly used for frequency conversion in 
most wireless communication systems, determine the linearity 
of the RF receiver. While conventional mixers use Gilbert-cell 
topology as shown in Fig. 1 for multi-mode applications [3], it 
has potential linearity problems due to the number (two or 
three) of stacked transistors with a cascode structure. As the 
supply voltage becomes lower and lower, it is more difficult to 
get bias conditions and a sufficient level of voltage swing under 
a restricted supply voltage. There are some other mixers 
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suitable for low-voltage operation [4], [5], but some features 
such as bandwidth and/or conversion gain are not suitable for 
high-speed multi-band systems.  

In this paper, we propose a low-voltage wideband mixer 
topology suitable for the current and near future mixed signal 
SoC technology. The rest of this paper is organized as follows. 
The circuit topology and the basic operation principle of the 
proposed mixer are explained in section II. Section III presents 
the circuit details for a specific system, a multi-band direct-
conversion receiver. Section IV shows the simulation and 
experimental results, followed by our conclusions in section V. 
 

 

Fig. 1. Conventional Gilbert-cell mixer. 
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Fig. 2. A schematic diagram of the single-level direct-conversion 
mixer. 
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II. Operation Principle 

The proposed low-voltage direct-conversion mixer is 
composed of two drain-coupled NMOS pairs. A simplified 

schematic diagram of the mixer is shown in Fig. 2. A single-
ended RF signal is applied to the gate terminals of M2 and M3, 
and relatively high powered differential LO signals are applied to 
the gate terminals of M1 and M4. Mixing between RF and LO 
signals occurs at the drain-coupled transistor pairs (M1-M2 and 
M3-M4). The transistors M2 and M3 act as transconductance 
stages, and M1 and M4 act as switches. For a simplified 
explanation, we can model M1 and M4 as switches driven by the 
logic signals LO and LO  as shown in Fig. 3. 
 

 

Fig. 3. Simplified functional representation of the proposed mixer 
for a large LO signal.
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The signal, υ1, the AC component of the gate terminal of M1 

in Fig. 2, can be considered as the logic signal LO in Fig. 3. If 
LO is positive, switch S1 in the left side is turned on, and the 
drain of M2 is connected to the source. Thus, the current at the 
positive output terminal, iop, due to the RF signal υ2 is very 
small. On the other hand, switch S4 in the right side is turned 
off, and most of the output current, ion, is the drain current of 
M3. The overall differential output current thus becomes 

)( 23, 3
υ⋅−−=−=−= mMdonopo giiii ,   if υ1 > 0.    (1) 

When LO signal υ1 is negative, S1 is turned off and S4 is on. 
In this case, M2 is active and M3 is in the triode region.  

22, 2
υ⋅−==−= mMdonopo giiii ,   if υ1 < 0.     (2) 

Thus, the sign of the overall differential output current is 
determined by the sign of LO, and the output signal is  

)(sgn 122 υυ ⋅⋅= mo gi .              (3) 

If the LO signal is periodic with frequency fLO, the sgn (υ1) 
term becomes a periodic square wave function. Fourier series 
expansion gives  
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This expression is the same as that of the traditional single-
balanced active mixer. Since higher harmonic terms are easily 
removed by low pass filters connected to the output of the 
mixer, we can obtain the frequency conversion component. 
While a single-balanced mixer may suffer from a high DC 
offset problem, the proposed mixer doesn’t care about the 
problem because the multi-band UWB system has no sub-
carrier near DC (DC to 4.125 MHz). A simple AC-coupling 
capacitor can be used for eliminating a DC term. 

III. Circuit Design 

The proposed direct-conversion mixer is designed for the 
multi-band system covering from 3 to 7 GHz. Each RF signal 
band has a bandwidth of over 500 MHz, and the multiple LO 
signals are used for direct down converting the corresponding 
bands of RF signals. Each LO frequency is the same value as 
the center frequency of the RF signal for direct-conversion. 
Table 1 lists the band plan for the multi-band system of this 
work, and Fig. 4 depicts the proposed frequency allocation of 
the multi-band direct-conversion receiver. 

A block diagram of the direct-conversion receiver including 
the proposed mixers is shown in Fig. 5. The output signal of a 
single-ended low-noise amplifier enters into both the I-channel 
and Q-channel mixers. The I-channel mixer receives a single-
ended RF signal and differential LO signals, having 0° and 
180° phases from the output of the quadrature voltage-
controlled oscillator for generating the differential in-phase 
baseband signals. The Q-channel mixer receives the same 
single-ended RF signal and 90° shifted differential LO signals, 
having 90° and 270° phases for differential quadrature 
baseband signals. 

The mixer topology has a single transistor-level structure. 
The single transistor-level mixer has several advantages 
compared to the conventional two or three-level stacked 
Gilbert-cell mixers, whose topology is shown in Fig. 1. 
Because the single transistor-level mixer needs a smaller 
supply voltage than the conventional mixers, it can reduce DC 
 

Table 1. Band plan for the multi-band high-rate WPAN system. 
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Fig. 4. Frequency plan of the RF receiver for the multi-band 
WPAN system. 
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Fig. 5. A block diagram of the direct-conversion receiver 
including the proposed mixers for a multi-band UWB 
system. 
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power consumption. It can also be integrated with analog and 
digital circuits sharing the same low supply voltage, which is 
desirable for a mixed signal SoC. The on-chip spiral inductor L1 
in Fig. 2 is used for wideband input impedance matching for 
three different RF frequency bands. Because the maximum 
available gain of a CMOS decreases as frequency increases, the 
matched impedance point for an RF input port was intentionally 
selected at a higher frequency range for the purpose of the flat 
gain-bandwidth characteristic of a UWB system. 

IV. Performances of the Mixer 

The direct-conversion mixer was designed with 0.18 µm 
CMOS technology. Fixing the baseband frequency to 100 MHz, 
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simulated gain variations of the mixer in three RF bands as a 
function of LO power are shown in Fig. 6. Each conversion 
gain of the three RF bands increases as LO power increases 
from -10 to 10 dBm. The conversion gains at PLO = 0 dBm 
are 2.5, 2.7, and 2.8 dB with the center frequencies of the 
three RF bands at 3.432 (fc1), 3.96 (fc2), and 4.488 GHz (fc3), 
respectively. 

The wideband characteristics of the mixer and conversion 
gain as a function of RF power are simulated; Figs. 7 and 8 
show the results. The curves show that the input P1dBs of the 
three bands are about -7 dBm. 

A photograph of fabricated RF integrated circuit mixers is 
shown in Fig. 9. The chip size is 0.9 mm × 0.8 mm. The 
performance of the mixer was characterized with an evaluation 
test circuit board for a single transistor-level mixer. A block 
diagram of the test setup and a photograph of the PCB are 
shown in Fig. 10. The PCB baluns, with center frequencies at 
 

 

Fig. 6. Simulated conversion gain variations of three RF bands as
a function of LO power (fBB=100 MHz, PRF= -30 dBm).

-10 -5 0 5 10

LP power (dBm) 

-10

-5

0

C
on

ve
rs

io
n 

ga
in

 (d
B)

 

fc1 
fc2 
fc3 

5

10

 
 

 

Fig. 7. Simulated conversion gain variations of three RF bands as
a function of the bandwidth of the baseband (PLO= 0 dBm, 
PRF= -30 dBm). 
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fc1, fc2, and fc3, were designed to make differential LO signals 
from each single-ended LO signal.   

Measured conversion gains versus LO power and RF power 
are shown in Figs, 11 and 12, respectively. With a fixed LO 
power at 0 dBm, the conversion gain of each RF band is about 
3 dB and the input P1dB is around -10 dBm. The measured 

 
 

Fig. 8. Simulated conversion gain as a function of RF power 
(PLO= 0 dBm, fBB= 100 MHz). 
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Fig. 9. Photograph of the fabricated mixers.  
 

 

Fig. 10. Measurement setup for a mixer (a) and a photograph of 
the PCB (b). 
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IP3s of the mixer at 100 MHz of baseband frequency 
corresponding to three RF input signals are shown in Fig. 13. 
The IIP3 of a mixer varies from 0 to -2 dBm with increasing 
the center frequency of the RF signals from fc1 to fc3. Also, the  
 

 

Fig. 11. Measured conversion gain variations of three RF bands as 
a function of LO power (fBB= 100 MHz, PRF= -30 dBm). 
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Fig. 12. Measured conversion gain as a function of RF power 
(PLO= 0 dBm, fBB= 100 MHz). 
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Fig. 13. The IP3s of the propsed direct-conversion mixer (PLO= 
0 dBm, fBB = 100 MHz). 
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Fig. 14. Conversion gain variations as a function of baseband 
frequency. 
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Table 2. The performances of the proposed mixer and a comparison 
with other low voltage mixers. 

Parameters This work [4] [5]1) [6] 

Topology Source/Drain 
coupled  

Folded 
mirror 

Folded 
mixer 

Gilbert-cell

RF frequency (GHz) 3 - 5 0.9 0.9 1.9 

# of Tr. stack 1 2 2 3 

Supply voltage (V) 1.8 1.8 1.25 1.8 

Conversion gain (dB) ~3 2.5 –6.5 0.5 

Input IP3 (dBm) > –2 1 15 –6 

Current (mA/mixer) 4.3 5 3 4.8 

 1) Simulated results

 

conversion gain variation with baseband frequency is shown in 
Fig. 14. Table 2 compares the performances of the proposed 
drain-coupled down-conversion mixer with those of the 
previous works for low voltage operation. The previously 
reported mixers have at least a two-transistor stacked topology, 
and this might restrict the gain under a low supply voltage. 

V. Conclusion 

A novel direct-conversion mixer with a single transistor-level 
topology is presented in this paper. The single transistor-level 
mixer structure can be operated under a much smaller supply 
voltage compared to the conventional two or three-level stacked 
Gilbert-cell mixers, which is suitable for the low power and 
highly integrated RF SoC. Experimental results of the proposed 
direct-conversion mixer show good agreement with the 
simulation results for multi-band operation in a 3 to 5 GHz range. 
The conversion gain and input P1dB of the mixer are about 3 dB 
and -10 dBm, respectively, with the multi-band RF signals. 
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