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A small electronic nose (E-Nose) system has been 
developed using an 8-channel vapor detection array and 
personal digital assistant (PDA). The sensor array chip, 
integrated on a single microheater-embedded polyimide 
substrate, was made of carbon black-polymer composites 
with different kinds of polymers and plasticizers. We have 
successfully classified various volatile organic compounds 
such as methanol, ethanol, i-propanol, benzene, toluene, 
n-hexane, n-heptane, and c-hexane with the aid of the 
sensor array chip, and have evaluated the resolution 
factors among them, quantitatively. To achieve a PDA-
based E-Nose system, we have also elaborated small 
sensor-interrogating circuits, simple vapor delivery 
components, and data acquisition and processing 
programs. As preliminary results show, the miniaturized 
E-Nose system has demonstrated the identification of 
essential oils extracted from mint, lavender, and 
eucalyptus plants. 
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I. Introduction 

Conventionally, most chemical sensors have worked on the 
basis of highly selective physicochemical interactions between 
a designed receptor and an analyte of interest, called a lock-
and-key mechanism. This approach is appropriate when target 
analytes have specific interactions in the presence of controlled 
backgrounds and interferences. However, it is not particularly 
useful for analyzing, classifying, or identifying complex 
chemical mixtures such as perfumes, foods, and oils. For the 
analysis of complex real samples, an intelligent arrayed gas 
sensor system, that is, an electronic nose (E-Nose), was first 
realized more than 20 years ago by Persaud and Dodd [1]. This 
E-Nose system, conceptually similar to the mammalian sense 
of olfaction, is principally composed of an array of vapor 
detection sensors with partial specificity and an appropriate 
pattern recognition algorithm. 

E-Nose systems have attracted much attention due to their 
potential applications in food quality control, medical diagnosis, 
and environmental monitoring of pollutants [2]-[5]. At present, 
there are continuous efforts to improve E-Nose systems even 
though several desk-top or hand-held products are 
commercially available. In particular, a miniaturized and 
intelligent E-Nose module could become a promising digital 
component, possibly integrating into the personal mobile 
phone as digital cameras have done. To fulfill this purpose, a 
small E-Nose must satisfy additional requirements such as 
low-power consumption and mass productivity through batch 
fabrication, together with sufficient sensing abilities in terms of 
sensitivity and selectivity. 

Array-based gas sensors for an E-Nose system have been 
fabricated by using various different kinds of sensing materials: 
metal-oxide semiconductors [6], conducting polymers [7], and 
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carbon black-polymer composites [8] for chemoresistive 
sensors; sorbent polymers [9] for quartz crystal microbalance 
and surface acoustic wave devices; and so on. Among them, 
arrays of carbon black-polymer composite sensors have 
recently received considerable interest due to their excellent 
capability in the classification, identification, and quantification 
of volatile-organic-compound (VOC) vapors [10]-[13]. These 
sensors are broadly responsive to various analytes unlike the 
traditional lock-and-key mechanism. Their sensing properties 
can be easily modulated by choosing organic polymers and 
optional additive plasticizers, and further by regulating relative 
quantities among them, which gives a great deal of flexibility 
in the sensor array design. In addition, they also provide an 
opportunity to fabricate a small-size, light-weight sensor array 
chip with low-power consumption because of their inherent 
ambient-temperature operation. A previous report has shown 
that the size of these sensors could be minimized up to 0.1 mm 
× 0.1 mm by using the conventional microelectromechanical 
system (MEMS) technologies without any significant 
deterioration in sensing capability due to the reduction of the 
detection area [14]. 

Here, we report on the development of a miniaturized E-
Nose module small enough to be directly attached to and 
operated by a personal digital assistant (PDA). Within our 
best knowledge, this system is the first PDA-based E-Nose 
system integrating all vital elements into a PDA-compatible 
size, although there have been some relevant investigations 
[15]-[18]. This system is composed of four major parts: 
mechanical components for sampling; a single 8-channel 
carbon black-polymer composite array chip fabricated on 
flexible polyimide substrate; sensor-interrogating and digital 
interfacing printed-circuit-boards (PCBs); and a real-time 
data acquisition program executed in a PDA. Actual 
performances of our array chip and E-Nose system have been 
evaluated for the classification of eight different VOCs and 
three natural oils, respectively. These results are described 
and discussed below in addition to the embodiment processes 
of the PDA-base E-Nose system. 

II. Fabrication of PDA-Based Electronic Nose System 

1. Single Flexible Sensor Array Chip 

A sensor array substrate was prepared by modifying the 
fabrication methods used in a flexible-printed-circuit-board 
(FPCB). The fabrication processes were previously reported in 
detail [19] and are possible to produce in mass quantity due to 
their compatibility to the roll-to-roll process of the FPCB 
industry. Figure 1 displays two optical images for the front and 
back sides of a fabricated sensor array chip. The array chip 

with a total size of 18 mm × 18 mm, except for the pad area for 
electrical connection located below, consists of eight gas 
sensors with an active diameter area of 2 mm. Each sensing 
element has a pair of interdigitated detection electrodes on the 
front side of the base polyimide film, while a single 
microheater is positioned on the back side. Both sides are 
protected by using two additional adhesive and polyimide 
sheets machined to have open windows only for the sensing 
and pad areas. The schematic diagram in Fig. 2 shows the 
cross-sectional layer structure of one sensing element. 

The blackish circle-shape blots at the center region of the left 
picture in Fig. 1 are sensors made of different carbon black-
polymer composites. The individual sensor was formed by the 
casting of a composite solution prepared by homogenously 
mixing carbon black nanoparticles and different organic 
chemicals as described in [20]. The front cover film with open 
windows for the sensing areas allows the composite solution to 
be placed reproducibly in a specific and well-constrained area 
during the drop-coating process. Figure 3 shows the chemical 
structures of organic materials used in the 8-channel composite 
array chip. Two additive plasticizers, di(ethylene glycol) 
dibenzoate (DGD) and dioctyl phthalate (DOP), were used to 
attain a fast response and further diversity in the vapor 
detection characteristics [12]. 
 

Fig. 1. Optical images for front (left) and back (right) sides of a
single 8-channel sensor array chip.  

 

 

Fig. 2. Schematic cross-sectional structure for one sensing 
element of the sensor array chip. 
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Fig. 3. Chemical structures of the polymers and two plasticizers used in this work listed with sensor channel number and chemical 
name [abbreviation]: 1, ethyl cellulose [EC]; 2, hydroxypropyl cellulose [HPC]; 3, poly(vinyl stearate) [PVS]; 4, poly(vinyl 
acetate) [PVA]; 5, polystyrene-black-polyisoprene-black-polystyrene [PS-PIP-PS]; 6, poly(vinyl pyrrolidone) [PVP]; 7, 
poly(styrene-co-butadiene) [PS-PBD]; 8, poly(ethylene glycol) [PEG]. Sensors 2 and 4 were plasticized with 50% DGD and 
the plasticizer of DOP was used for sensor 6. 
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In the carbon black-polymer composite sensors, the carbon 

black endows electrical conductivity to the films, whereas 
various polymers are the source of detection diversity. Swelling 
of the composite sensing layer upon exposure to vapor analytes 
generally leads to the increase in sensor resistance, thereby 
providing an extraordinary simple means for monitoring the 
presence of chemicals [10], [11]. 

2. Sensor Signal Processing Circuit Boards 

In order to obtain sensor responses for analyte exposure, 
sensor-interrogating circuits were made on a small PCB with 
the size of 32 mm × 35 mm as shown in Fig. 4. These circuits 
simultaneously measure the resistance changes of all 8 sensors 
in the sensor array chip. They are composed of a voltage 
divider circuit, which is a standard method for measuring large 
resistance change, and a voltage follower circuit to avoid 
electrical interference between the resistance-measuring and 
post-processing circuits. The right picture of Fig. 4 shows the 
real arrangement of the discrete electric devices such as ICs, 
resisters, and diodes, while the left picture displays the 
reference resisters serially-connected to the sensors in the 
voltage divide circuit and the sensor array chip connected by 

the surface-mounted-type FPCB connector (FH10A-12S-
1SHB, Horose). This connector permits repetitive replacement 
of the array chip through movable locking flaps and high 
density in the electrical connections due to a small pitch 
dimension of 1 mm. The lower electrical pads in Fig. 4 are 
directly connected to the electrical socket of a digital interface 
card (DAQ 6062E, NI) inserted into the slot of a PDA (iPAQ 
5550, HP). Measured multivariate analog signals are digitized 
and manipulated in the DAQ card, and then delivered to the 
memory of the PDA. 
 

Fig. 4. Two pictures for front (left) and back (right) sides of the 
sensor interface PCB.  
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3. Real-Time Data Acquisition and Pattern Recognition 

A data acquisition program is developed using a LabVIEW 
PDA module (NI), which compiles LabVIEW programs to run 
on PDA targets and download the completed application into 
the PDA. It samples and stores the multivariate data with a rate 
of about 2 Hz in real-time. The obtained data can be transferred 
to a desktop computer by Microsoft ActiveSync programs. 

The classification work in an E-Nose system is carried out 
by running pattern recognition programs with the aid of feature 
parameters. In this work, the feature parameter is a relative 
magnitude in sensor resistance change, that is, the percentage 
ratio of maximum resistance change with respect to the initial 
resistance, which has been generally used in the case of a 
chemoresistive sensor system. The detection response, Rdet, 
defined as a representative feature, is expressed by 

0

0max
det

)(
100

R
RRR −

×= ,            (1) 

where Rmax is the maximum resistance of the sensor and Ro is the 
stabilized initial resistance. Actually, the multivariate data were 
pre-smoothed with their neighboring points to suppress unwanted 
high-frequency noise. The pattern recognition was performed by 
using the principal component analysis (PCA) algorithm 
provided in the MatLab (MathWorks) software package.  

A statistical approach was also utilized to define a 
quantitative metric for evaluating the resolving power of the 
sensor array chip in various VOC detection tasks, as previously 
reported [13]. The statistically defined metric is especially 
informative when the detection response is a linear function of 
analyte concentration because in such a case the concentration-
normalized response patterns do not change with respect to the 
analyte concentration. To evaluate the magnitude of this metric, 
the points in d-dimensional space are projected orthogonally 
onto a line. In our sensor array chip, the classification problem 
in eight dimensions is transformed to one-dimensional work. 
When the data are projected into one dimension, it is desirable 
to maximize the distance between the means of the two classes 
being separated, while minimizing their within-class variation. 
Such a ratio can be expressed as a resolution factor RF by  

     
2
2

2
1 σσ

δ

+
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where δ is the distance between the two class means, and σ1 
and σ2 are the standard deviations of the two classes. 

4. PDA-Based E-Nose System and Sampling Method 

A schematic diagram of the PDA-based E-Nose system is 

given in Fig. 5. In viewpoint of hardware, it consists of four 
major parts: sampling components; a sensor array chip and 
sensor interface PCB (the right-upward dashed box in Fig. 5); 
NI DAQ card for analog-to-digital conversion and digital 
interface (the downward dashed region in Fig 5); and mobile 
PDA for data acquisition and processing. Figure 6(a) shows a 
real picture for the E-Nose system in a standby state. The top-
extended accessory is a sensor module with the array chip and 
sensor interface PCB, while the DAQ card inserted into the 
PDA does not appear in Fig. 6(a). 

Three commercially available essential oils extracted from 
mint, lavender, and eucalyptus plants were used as test samples 
for the E-Nose system. These samples are shown in Fig. 6(b) 
together with a dropper and a sampling board with a  
 

 

Fig. 5. Basic schematic diagram for the PDA-based E-Nose system.
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Fig. 6. Pictures for (a) PDA-based E-Nose system and (b) 
analyzed natural oils and sampling components, and (c) 
schematic diagram for a semi-headspace chamber with 
permeable filter paper. 
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rectangular piece of white filter paper (1004-150, Whatman) at 
the surface. The sampling method used here is based on the 
spontaneous evaporation of analyte absorbed by the cellulose 
paper. The sampling process is as follows: Using a dropper, 
transfer one drop of natural oil to the paper of the sampling 
board; wait a few minutes for the sampled liquid oil to 
permeate into the paper or evaporate to the ambient air; and 
then post the sampling board on a sensor array chip mount.  

Since the chip mount is exposed to the air as demonstrated in 
Fig. 6(a), the sampling board can be easily attached to or 
detached from the chip mount by hand through an adhesive 
layer at the bottom side of the sampling board. Figure 6(c) 
shows the schematic cross-sectional structures of the sampling 
board and the chip mount. In an attached state, a small 
detection chamber with a vacant hexahedron of 10 mm × 10 mm 
× 2 mm is formed between the sensor array chip and the 
analyte-wetted paper. The analyte concentration is determined 
using the evaporation rate of natural oil from the sampled paper 
and the diffusion rate from the inside to the outside of the 
chamber due to the concentration gradient. Judging from the 
time profiles of the sensor responses in real measurements, the 
analyte concentration was fairly well saturated into the 
equilibrium value within a few minutes by the two driving 
forces, which implies that this method could be utilized as a 
sampling technique for the PDA-based E-Nose system. 

In fact, we initially tried to test a closed detection chamber and 
the injection of analyte vapor by means of a gas-tight syringe 
instead of the semi-closed chamber previously described. 
However, we experienced some difficulties in achieving perfect 
gas-tight components and fast, easy gas exchange. In addition, 
the pumping-only sampling scheme, used previously in a 
portable E-Nose system based on a laptop personal computer 
[16], was also given up due to the bulk dimension and relatively 
high power consumption of the mini-diaphragm pump. 
Consequently, the PDA-based E-Nose system has adopted the 
manual semi-headspace sampling method with a permeable 
cellulose paper in order to fulfill the requirements of small size, 
simple manipulation, and low-power consumption. 

III. Results and Discussion 

1. Evaluation on the Flexible Sensor Array Chip 

The fabricated sensor array chip was evaluated in terms of 
the detection response for various VOC vapor exposures in 
controlled conditions using the sampling method of flow 
injection. Gas-sensing measurements were carried out by 
placing the array chip in a small chamber with electrical 
feedthroughs, and by blowing air-diluted analyte vapor over it 
with a flow rate of 500 mL/min while simultaneously 

monitoring resistance changes for the eight composite sensors 
in Fig. 3.  

Figure 7 shows the typical response time-profiles of four 
sensors with channel numbers from 1 to 4 upon exposure to 
toluene vapor. The toluene vapor diluted in synthetic dry air 
was injected into the detection chamber for 2 minutes, which 
was followed by a resistance recovery interval of 5 minutes. 
The toluene concentration was regulated to increase from 40 to 
2000 ppm for the successive measurements. The 
measurements show a gradual rise in sensor resistance with an 
increase of the toluene concentration. The baseline resistances 
of all used sensors are in the range of 2 to 200 kΩ, and the 
maximum sensor resistances increase within 3 % of their initial 
stabilized values when exposed to 1000 ppm toluene. For 
example, sensor 2 with the largest sensitivity has an initial 
resistance of 46.76 kΩ and a maximum value of 48.15 kΩ for 
1000 ppm toluene exposure, as shown in Fig. 7, which 
corresponds to a detection response of 3.0. Other important 
sensing characteristics include sensing-time behaviors, that is, 
the time to reach a saturated state for the duration of analyte 
exposure and to recover sensor resistance into an initial 
position. Even though these sensing times strongly depended 
on the sensing materials and analyte vapors used, they were 
found to be fast: the response and decay times were generally 
 

 

Fig. 7. Sensor response profiles of the four composite sensors 
from 1 to 4 for successive toluene vapor exposures, with 
the increase of concentration shown in ppm. 
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Fig. 8. Plots of detection response vs. toluene concentration
obtained from the four sensors in Fig. 7. 
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Fig. 9. (a) PCA plot calculated from the detection response
patterns of the 8 different VOCs, as presented by the first
two principal axes of PC1 and PC2, and (b) enlarged
PCA plot of the dotted box in (a) for showing the visual
distinguishability among analytes. 
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less than 1 minute and 5 minutes, respectively. These short 
times allow our sensor array chip to be utilized in a sensing 
system for point-of-care applications. 

Figure 8 shows the dependences of detection responses on 
toluene concentration for the four sensors in Fig. 7. They 
follow a linear relationship between the toluene concentration 
and the resulting response magnitude within a measured 
concentration range of less than 2000 ppm. This behavior is 
consistent with the previous results obtained in the carbon 
black-polymer composite system [10], [11]. 

E-Nose systems that rely on array-based sensing require 
some type of training set and data-processing algorithm in 
order to classify an analyte upon presentation to the sensor 
array. In this respect, the performance and range of 
applicability of such sensor arrays are intimately coupled to the 
data reduction algorithms and the computational capabilities 
required to achieve the sensing task of concern. The linear 
concentration dependence of the detection response is ideal for 
the minimum possible training set and the minimum 
requirements on computational capabilities to classify a 
particular analyte. The PDA-based systems have more serious 
limitations in computational resources, so that the necessity for 
the linear response function becomes more important. 

Additional flow-injection-based gas-sensing measurements 
were also performed to confirm the classification capability of 
the sensor array chip among various kinds of VOCs. These 
analytes include three alcohol compounds, methanol, ethanol, 
and i-propanol; three hydrocarbons, n-hexane, n-heptane, and 
cyc-hexane; and two benzene-like chemicals, benzene and 
toluene. Except for the 2000 ppm toluene, the concentration of 
these compounds was arbitrarily chosen to be 5000 ppm. The 
measurements were carried out five times for each analyte 
under the same experimental conditions. 

The feature parameters were calculated using (1) from the 
measured sensing profiles for the eight VOCs. The multivariate 
data were further analyzed using the PCA algorithm, which is 
one of most extensively used statistical pattern recognition 
methods. This simple method can provide quantitative, visual 
results for the classification among different VOCs by 
expressing the response vectors in terms of linear combinations 
of orthogonal vectors, that is, principal components, along a 
new set of coordinate axes. These components account for a 
certain amount of variance in the data and are ordered so that 
the first principal component, PC1, has the largest amount of 
variance, followed by the next greatest component, PC2, and 
so on. Figures 9(a) and 9(b) show the obtained PCA results 
presented by the two most important principal coordinates, 
PC1 and PC2, which account for the variances of 84.7 and 
8.8 %, respectively. The three alcohol compounds appear to be  
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Table 1. Resolution factors quantifying the classification capability of the 8-element carbon black-composite sensor array. 

 methanol i-propanol hexane heptane cyc-hexane toluene benzene 

ethanol 12.1 22.3 53.3 61.7 65.7 60.2 24.8 

methanol  48.0 80.8 110.0 113.9 100.6 27.5 

i-propanol   58.5 76.3 85.4 73.5 22.5 

hexane    3.6 16.5 24.8 7.6 

heptane     20.0 34.0 8.0 

cyc-hexane      27.8 7.0 

toluene       0.9 

 

well separated from other analyte groups, while the three 
hydrocarbons and two benzene-like groups are located nearby, 
as shown in Fig. 9(a). This implies that the alcohol groups are 
better recognized than those of hydrocarbon and benzene-like 
compounds in the used sensor array chip. Furthermore, the 
enlarged plot of Fig. 9(b) clearly demonstrates the capability of 
classifying or identifying the three hydrocarbons and the two 
benzene-like compounds. 

In order to quantify the classification ability among VOC 
groups, the resolution factors were calculated in full 8 
dimensions by using the equation defined by (2). Table 1 gives 
the obtained resolution factors among the analyzed eight VOCs. 
As expected above, the alcoholic VOCs have relatively high 
resolution factors of larger than 20 except for the classification 
task between methanol and ethanol with a value of 12.1. The 
two worst cases are benzene vs. toluene and n-hexane vs. n-
heptane, which have resolution factors of less than 5. These 
cases can be rationally understood with the fact that they have 
the closest similarities in their chemical structures and 
properties. 

2. Evaluation on the PDA-Based Electronic Nose System 

The operation performance of the PDA-based E-Nose 
system was evaluated through the classification task among the 
three essential oils from mint, lavender, and eucalyptus plants. 
Each measurement for the oils was accomplished five times 
successively by saving the response time-profile data, which 
were composed of initial stabilized resistances for 1 minute, 
resistance variation upon 2-minute exposure to one of the 
natural oils, and a recovery profile in ambient air. Since the 
recovery time to restore the sensor resistance into an initial 
value was found to be larger than 15 minutes, these successive 
measurements were performed with a time interval of about 25 
minutes. The pictures in Figs. 10(a) and 10(b) demonstrate the 
variation of sensor resistances for the oil vapor exposure and 
the following recovery process, respectively, during the real-

time operation. 
The measured multivariate data proceeded to the same 

methods described above: extracting the detection response for 
each sensor as the feature parameter and performing the PCA 
program with the aid of these parameters. Figure 11 shows 3-
dimensional (3D) response bar patterns, that is, a plot of the 
sensor response vs. the sensor number and measurement time, 
for the three analyzed oils: Fig. 11(a) for mint, Fig. 11(b) for 
lavender, and Fig. 11(c) for eucalyptus. These 3D plots provide 
information on the absolute sensing magnitude of each sensor 
element and the sensing reproducibility through repetitive 
measurements. Normalized polar plots are also given at the 
top-left corner in each figure. The three polar pattern shapes are 
found to be different according to the oil samples, suggesting 
the possibility of identifying the oils. Some of the detection 
responses are observed to be larger than one hundred times 
those of the previous case of VOC detection. The response 
variation according to the successive measurements is 
discussed below in conjunction with the pattern recognition 
results from the viewpoint of the reliability of the semi-
headspace sampling method. 

 
 

Fig. 10. Photographs taken during (a) the measuring period for 
the oil samples and (b) the following recovery process.

(a) (b) 
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Fig. 11. Bar plots of the detection response magnitudes with
respect to the sensor number for the five measurements
of (a) mint, (b) lavender, and (c) eucalyptus oils. The 
inset polar plots are also presented for the normalized
average detection responses. 
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Fig. 12. PCA results obtained from five successive measurements 
for the essential oils of mint, lavender, and eucalyptus. 

-0.6 -0.4 -0.2 0.0 0.2 0.4 -0.2
0.0 

0.2 
0.4 

PC2

PC1 

0.0

0.1

0.2

P
C

3 

eucalyptus 

lavender 

mint 

 
 

As direct evidence for the successful classification among 
the three oils, the PCA pattern recognition results are presented 
in Fig. 12. The dashed ellipsoids show the recognition 
boundaries of the three oils in the three principal axes of PC1, 
PC2, and PC3 with variances of 74.4, 21.4, and 3.5 %, 
respectively. Although there are some scatterings among the 
obtained data, these trained data sets have clearly separated 
regions defined by the boundaries so that we can recognize the 
natural oils, unambiguously. Considering that these results have 
been obtained from five successive measurements after only 
one sampling process for mint and eucalyptus, they show good 
grouping behaviors and are not strongly dependent on the 
elapsed time from the sampling. Since each measurement takes 
approximately half an hour, the final fifth measurement is 
performed two hours after the first one. However, this is not 
true in the measurements for lavender: successive 
measurements undergo significant reduction in the response 
magnitude and great movement in the PCA space. These 
observations could be interpreted with the change in partial 
vapor pressures of evaporated VOCs from the lavender-
sampled board as a function of the elapsed time. Generally, the 
absolute total amount of evaporated VOCs becomes smaller as 
the time elapses, and the relative population of the remaining 
constituents in the sampling board can vary due to the 
difference in their volatility. If deduced from the PCA results, 
the relative constituent populations are not varied greatly in the 
cases of mint and eucalyptus, while the lavender suffers 
significant variations. In fact, the lavender data in Fig. 12 were 
obtained with repeated samplings. The three data positioned in 
the lower-right side were measured immediately after sampling, 
and the two upper-left circles correspond to the second 
measurements. These results suggest that the grouping 
behaviors can be greatly improved under carefully controlled 
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sampling conditions, which are very important in order to 
improve the recognition precision of the E-Nose system in 
practical tasks such as classifying unknown oils. 

IV. Conclusion 

A small E-Nose system based on a PDA has been developed 
and has demonstrated the successful classification between 
three essential oils extracted from mint, lavender, and 
eucalyptus plants. This system is composed of manually-
operated sampling components, a sensor array chip, small 
sensor-interface PCBs, and data acquisition and processing 
programs. Among them, the key element of the E-Nose system 
is the 8-channel sensor array chip fabricated by using carbon 
black-polymer composites on a flexible polyimide substrate. 
Next, we will continuously try to miniaturize and improve the 
E-Nose system by means of the integration of an on-chip 
circuit and the use of MEMS components, for example, a valve, 
a pump, and a preconcentrator. 
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