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We developed a pipelined scheduling technique of 
functional hardware and software modules for platform-
based system-on-a-chip (SoC) designs. It is based on a 
modified list scheduling algorithm. We used the pipelined 
scheduling technique for a performance analysis of an 
MPEG4 video encoder application. Then, we applied it for 
architecture exploration to achieve a better performance. 
In our experiments, the modified SoC platform with 6 
pipelines for the 32-bit dual layer architecture shows a 
118% improvement in performance compared to the 
given basic SoC platform with 4 pipelines for the 16-bit 
single-layer architecture. 
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I. Introduction 

System-on-a-chip (SoC) can be defined as a complex IC that 
integrates the major functional elements of a complete end-
product into a single chip or chipset. In general, SoC design 
incorporates at least one programmable processor, on-chip 
memory, and accelerating functional modules implemented in 
hardware. It also interfaces with peripheral devices, and/or the 
real world, and encompass both hardware and software 
components [1]. 

The short life cycle and diversification of consumer 
electronics have placed a premium on getting products to 
market as quickly as possible. Therefore, it is now more 
important to design a system that meets the target specifications 
on time than to design a solution with better performance at a 
cost of delaying the introduction of a product to the 
marketplace. 

Platform-based design (PBD) is the best-validated industrial 
approach for achieving high reuse in SoC design and the 
lowest risk in derivative design. Beyond the reuse of individual 
IP blocks, PBD reuses complex architectures of hardware and 
software components organized for a specific application [2]. 
PBD can decrease the overall time-to-market for the first 
products and expand the considerably early-delivering 
opportunities of derivative products. 

PBD is a hierarchical design methodology that starts at the 
system level. PBD achieves its high productivity through 
extensive, planned design reuse. Productivity is increased by 
using predictable, pre-verified blocks that have standardized 
interfaces. The better planned the design re-use, the less 
changes are made to the functional blocks [3], [4]. 

Several platform types have emerged nowadays as a result of 
the evolution of platform-based design. Table 1 summarizes 
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four types of platforms [5]. Note, however, that the boundaries 
between these types can blur as providers expand their reach. 
In this paper, we focus on the processor-centric and 
communication-centric platforms that require adding specific 
hardware elements to model each of the applications using 
them. 
 

Table 1. Platform types. 

Platform type Example 

Full-application platforms - Nexperia: Philips Semiconductors 
- Open Multimedia Applications 
 Platform (OMAP): TI 

Processor-centric platforms - Micropack: ARM 

Communication-centric  
platforms 

- uNetwork: Sonics 
- AMBA bus architecture: ARM 

Fully programmable platforms - Virtex-II Pro: Xilinx 

 

  Figure 1 gives a general platform architecture for processor-
centric and communication-centric platforms. It has two master 
modules, a processor and direct memory access controller 
(DMAC), and three slave modules (shared memory and 
hardware modules) connected via the communication network. 
The processor performs software functions, initiates hardware 
modules (HW setup) and controls DMAC (DMA setup) for 
data transfer between the shared memory and hardware 
modules. The communication network can be a single-layer or 
multi-layer on-chip bus, or a packet or circuit switch network. 

 
 

Fig. 1. A general platform architecture for SoCs. 
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Transformative applications such as JPEG images and 

MPEG video compression-decompression algorithms should 
be cost effective, have high performance, and be flexible in 
order to succeed in the market. As a result, most of them are 
implemented by an SoC platform that utilizes an off-the-shelf 
software (SW) processor core and custom hardware (HW) 
coprocessors. The SW processors reduce the cost of the system 
and provide flexibility. The custom HW coprocessors 
implement the computation-intensive components of the 
application and enhance the performance of the system [6], [7]. 

HW-SW co-design techniques can be used for designing 

such SoCs. In HW-SW co-design, the application 
specification is transformed into communicating HW and 
SW components, which comprise a platform that exhibits the 
desired behavior and satisfies the performance constraints. 
HW-SW co-design consists of two basic design stages: 
partitioning the application specification into HW and SW 
components, and scheduling the execution order of these 
components. 

Figure 2 shows a block diagram of functional modules for an 
MPEG-4 video encoder [8], [9]. The encoder has two-step 
motion estimation (MEC for coarse, and MEF for fine), 
motion compensation (MC), motion vector to motion vector 
difference (MVMVD) calculation, DCT and quantization 
(DCTQ), inverse quantization and inverse DCT (IQIDCT), 
reconstruction (REC), header/texture variable length coding 
(HVLC/TVLC), and stream production (SP) modules. It 
encodes video frames coming from the “current frame” and 
outputs the encoded stream through SP. The “reconstructed 
frame” is generated to exploit temporal redundancy between 
frames. The encoding procedure is performed based on macro 
block data of 16 × 16 pixels.  

 
 

Fig. 2. Block diagram of MPEG4 encoder. 
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Table 2 shows the execution cycles for major functional HW 

and SW modules. We used a register-transfer level (RTL) 
simulator for HW cycles and an ARMulator with ARM7TDMI 
model for SW cycles. In this table, the ‘cycles’ column 
indicates the maximum number of cycles required to process a 
macro block during the simulation of 300 frames of the CIF-
size (352 × 288 pixels) foreman stream. 

To encode fifteen frames of CIF size (22 × 18 MBs) per 
 

Table 2. Cycles for major functional modules. 

Task Cycles Task Cycles 

MEC (HW) 2,500 MC (HW) 1,250 

MEF (HW) 1,250 DCTQ (HW) 1,200 

MVMVD (HW) 192 TVLC (HW) 1,300 

HVLC (SW) 130 IQIDCT (HW) 1,100 

SP (HW) 114 REC (HW) 800 
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second with 27 MHz, it should process an MB in 4,500 cycles. 
However, based on Table 2 the longest data path requires about 
8,300 cycles at 27 MHz for execution without counting the 
data transfer cycles between functional modules. To implement 
this application on a platform as shown in Fig. 1 satisfying the 
performance specification, we have to implement it in a 
pipelined architecture. 

Although a lot of work has been done for the fine-grained 
synchronous pipeline design, little has been done for a 
coarse-grained asynchronous pipeline design. More detailed 
descriptions of previous works on coarse grained and fine 
grained pipeline designs can be found in [6]. For efficient 
implementation of the pipelined architecture and 
architecture exploration, we developed a pipelined 
scheduling technique. 

In this paper, we developed a pipelined scheduling technique 
of hardware and software modules for platform-based SoC 
design. Then, we applied it to an MPEG4 video encoder 
application for performance evaluation and architecture 
exploration. 

II. Pipelined Hardware and Software Scheduling 

Transformative applications are dominated by dataflow 
operations with few control-flow operations. Also, they can be 
easily broken down into distinct functional tasks at a coarse level 
of granularity. Each task is computation-intensive and internally 
strongly interconnected, having a sparse external communication. 
Therefore, transformative applications can be specified by a data 
dependency-based task-graph format. Note that these 
applications are iterative in nature and execute repeatedly over 
different sets of input data. Hence, they are good candidates for 
pipelined designs. 

1. Platform Architecture 

We implement the application on an SoC platform that 
consists of one single SW processor, one shared memory, one 
DMAC, and several dedicated HW modules, as shown in Fig. 
3. The SW processor is a uniprocessing system and has a 
local memory for SW execution. Each HW module has its 
own buffer memory for efficient pipelined operation. HW 
modules support the concurrent execution of multiple HW 
tasks. The DMAC is controlled by the SW processor and 
controls the data transfer between the shared memory and 
HW buffer memories. The shared memory and SW local 
memory are single port memories. HW and SW tasks 
communicate with each other through the shared bus. We 
consider single-layer and multi-layer shared buses as the 
communication network in this paper. 

2. Modeling Task Graphs and Resource-Conflict Graphs 

A given application can be specified as a directed acyclic graph 
G(V, E), where V is the set of tasks with the execution cycles and 
E is the set of dependency arcs. Major tasks are functional HW 
and SW tasks. For bus-based platforms, data transfers controlled 
by DMAC (DMA transfer), HW setup, and DMA setup can also 
be modeled as tasks. This will give the scheduler further flexibility 
to improve the performance of the scheduling result. 

Execution cycles of tasks can be estimated by simulation, but 
it cannot cover all the input data. For SW tasks, computation 
cycles can be estimated from a complexity analysis of the 
algorithm. Because HWsetup or DMAsetup tasks performed 
by the SW processor consist of a register setting and 
calculation of the register values, their computation cycles can 
be computed by the number of registers and bus characteristics. 
DMA transfer cycles can be estimated with the number of data 
to be transferred and the specifications of the DMAC and 
memories. Table 3 summarizes the task types according to the 
usage of platform resources. Since HW modules support 
concurrent operations, they can be performed any time when 
all the registers are set by the HW setup. All the task types that 
use a common resource cannot be performed at the same time. 
Any tasks that have checks in common in a column cannot be 
performed at the same time. For example, SW tasks and DMA 
setup schedules cannot be overlapped even though they are 
assigned different pipelines. 

These relations of task types can be represented as a 
resource-conflict graph C(T, R), where T is a set of vertices 
representing task types and R is a set of edges representing a 
resource conflict. Figure 3 shows a resource-conflict graph of 
Table 3. In this graph, tasks which have an edge between them 
cannot share the scheduling time. 
 

Table 3. Task types for a bus-based platform. 

Task type Processor Bus DMAC 

SW X   

HW setup X X  

DMA setup X X X 

DMA transfer  X X 

 

 

Fig. 3. Resource-conflict graph for Table 3. 
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3. Problem Definition 

Given an application specified as a task graph G(V, E) and 
resource-conflict graph C(T, R) with a pipeline initiation 
interval as the performance constraint, find a feasible pipelined 
schedule and the minimum number of pipelines for executing 
the task graph. 

The pipeline initiation interval is the time difference between 
the start of two successive iterations of the steady state of the 
pipeline. Usually, this value is calculated from the specification 
of the application. 

4. Pipelined Scheduling Algorithm 

Since resource constrained scheduling is a non-polynomial 
(NP) complete problem, pipelined scheduling is also NP 
complete [10]. To achieve optimal solutions of the pipelined 
scheduling problem in polynomial time, we developed a 
pipelined scheduling algorithm as shown in Fig. 4 by 
modifying a list scheduling algorithm. In this figure, ‘head’ and 
‘tail’ are virtual start and end modules with 0 execution cycles. 
 

 

Fig. 4. Modified list scheduling algorithm. 

Pipelined_Scheduling (G(V, E) and C(T, R)) 
{ 

Set start cycles and pipeline number of all modules to 0; 
Calculate_Slack(head, tail); 
Initialize(queue); 
Add_Candidates(queue, source); 
while ((m = Pop(queue) )!= NULL) { 

Find_Schedule(m); 
Set_Schedule(m); 
Calculate_Slack(m, tail); 
Add_Candidates(queue, m); 

} 

} 

 
 
Calculate_Slack(m) calculates the slacks of all the successor 

vertices by using as-soon-as-possible scheduling (ASAP) and 
as-late-as-possible scheduling (ALAP). The slack of m is 
defined as the difference between the scheduling results of 
ASAP and ALAP. 

Add_Candidates(queue, m) adds candidate vertices to the 
queue. Candidate vertices are vertices whose predecessor 
vertices are all scheduled. When it adds a candidate, it sorts the 
candidate vertices in descending order of priority. The priority 
is calculated from a combination of slack, task type, and user-
defined priority. 

Pop(queue) returns the first vertex from the queue. It has the 
most priority among the candidates in the queue. 

Find_Schedule(m) finds a start cycle of m such that no 
resource-conflict violation occurs. Each m has three types of 
information for its scheduling: 

1. start cycle: absolute start cycle of scheduling 
2. pipeline cycle = (start cycle) % (initiation interval) 
3. pipeline number = (start cycle) / (initiation interval) 

Set_Schedule(m) marks the scheduled information of its 
resource type using its “pipeline cycle” and “execution cycle” 
so that scheduling other modules may not generate resource 
conflicts. 

This scheduling technique is flexible in that the scheduling 
results can be controlled by giving a user-defined priority of 
tasks and pre-scheduling of some tasks with Set_Schedule(m). 

III. Experimental Results 

We used the pipelined hardware and software scheduling 
technique to the application given in Fig. 2. First, we scheduled 
the application for a single-layer 16-bit bus-based platform as 
shown in Fig. 5. In this case, the resource conflict-graph in Fig. 
3 can be used. 
 

 

Fig. 5. Single-layer bus architecture. 
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Figure 6 shows a scheduling result for the single-layer bus-
based architecture in Fig. 5. The scheduling result includes 
hardware modules (HW), software modules (SW), DMA 
transfer (DMA), and HW/DMA setup (FW). SW modules are 
header variable length coding (HVLC), intra refresh (IR) 
decision, rate control operations (PreRC and PostRC), pre-
calculations for DMA transfers, and post processing for HW 
modules. FW modules are named with HW modules or DMA 
transfers followed by “Init.” MEC has two buffers named 
SWC0 and SWC1. Also, MEF/MC has two buffers named 
SWF0 and SWF1, and SWF1 has three regions for luminance 
(Y) and chrominance components (U/V). In this case, the bus 
usage is about 75%. 

Then, we explored the platform architecture to improve the 
performance by using the developed scheduling technique. 
Because the bus usage is very high, we tried two variations of 
the architecture: bus-width expansion and bus partitioning. 

Bus-width expansion can reduce FW (HW setup and DMA 
setup) cycles and DMA transfer cycles. FW cycles can be  
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Fig. 6. A scheduling result for the architecture shown in Fig. 5. 
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reduced as much as the bus-width expands. However, DMA 
transfer cycles are dependent on the SDRAM features and 
DMAC characteristics. By analyzing the two characteristics, 
we obtained the reduction factor of DMA transfer cycles. In 
our case, it is 0.67 for doubling the bus-width. 

By analyzing the data transfer within the bus system, we 
partitioned the bus into two buses. One is to control the HW 
modules and DMAC and the other is to transfer data between 
HW modules and SDRAM. 

Figure 7 shows a dual-layer bus-based platform, which is 
implemented by partitioning the shared bus given in Fig. 5. In 
this case, the resource-conflict graph should be slightly 
modified because the DMA transfer and HW setup can be 
performed concurrently. 

 
 

Fig. 7. Dual-layer bus architecture. 
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Table 4 summarizes the scheduling results for the variable 

bus architectures. When four pipelines are used, we could 
improve the frame rate performance by 45% for the 32-bit 
dual-layer architecture compared to the 16-bit single-layer 

architecture. We achieved the best performance with seven 
pipelines for the 32-bit single-layer architecture and six 
pipelines for the 32-bit dual-layer architecture. The 32-bit dual-
layer architecture with six pipelines has a 118% better 
performance than the 16-bit single-layer architecture with four 
pipelines and can process over 30 frames per second. Note that 
when the number of pipelines increases, more buffers will be 
required for the boundaries of the pipelines, which will increase 
the area. As a rule-of-thumb, a 6-pipeline architecture may 
require 50% more buffers compared to a 4-pipeline 
architecture. Also, note that if the pipeline cycle is less than the 
HW module cycles, those modules should be modified to 
support multi-pipeline processing. 
 

Table 4. Scheduling results for various architecture. 

Bus width Bus layer Pipelines MB cycles Frame rate

16-bit Single layer 4 4,500 15.2 (100%)

16-bit Dual layer 4 4,150 16.4 (108%)

32-bit Single layer 4 3,410 20.0 (132%)

32-bit Dual layer 4 3,090 22.1 (145%)

32-bit Single layer 7 2,290 29.8 (196%)

32-bit Dual layer 6 2,060 33.1 (218%)

 

 

IV. Conclusions 

In this paper, we described a pipelined scheduling of 
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hardware and software modules for platform-based SoC 
designs. We applied it to the architecture exploration of 
platforms for a performance analysis. We could achieve a 
118% performance improvement in the frame rate by 
exploring various architectures. The techniques used in this 
paper can be applied to a decoder, codec, or other multimedia 
processing applications such as JPEG or H.264 codec. The 
scheduling results can also be used for firmware coding of 
embedded processors. 
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