
ETRI Journal, Volume 27, Number 5, October 2005 Wonjong Kim et al. 533

We developed a pipelined scheduling technique of
functional hardware and software modules for platform-
based system-on-a-chip (SoC) designs. It is based on a
modified list scheduling algorithm. We used the pipelined
scheduling technique for a performance analysis of an
MPEG4 video encoder application. Then, we applied it for
architecture exploration to achieve a better performance.
In our experiments, the modified SoC platform with 6
pipelines for the 32-bit dual layer architecture shows a
118% improvement in performance compared to the
given basic SoC platform with 4 pipelines for the 16-bit
single-layer architecture.

Keywords: Pipelined scheduling, platform-based SoC
design, MPEG4.

Manuscript received Jan. 12, 2005; revised May 20, 2005.
The material in this work was presented in part at IT-SoC 2004, Seoul, Korea, Oct. 2004.
Wonjong Kim (phone: +82 42 860 6890, email: wjkim@etri.re.kr), June-Young Chang

(email: jychang@etri.re.kr), and Hanjin Cho (email: hjcho@etri.re.kr) are with Basic Research
Laboratory, ETRI, Daejeon, Korea.

I. Introduction

System-on-a-chip (SoC) can be defined as a complex IC that
integrates the major functional elements of a complete end-
product into a single chip or chipset. In general, SoC design
incorporates at least one programmable processor, on-chip
memory, and accelerating functional modules implemented in
hardware. It also interfaces with peripheral devices, and/or the
real world, and encompass both hardware and software
components [1].

The short life cycle and diversification of consumer
electronics have placed a premium on getting products to
market as quickly as possible. Therefore, it is now more
important to design a system that meets the target specifications
on time than to design a solution with better performance at a
cost of delaying the introduction of a product to the
marketplace.

Platform-based design (PBD) is the best-validated industrial
approach for achieving high reuse in SoC design and the
lowest risk in derivative design. Beyond the reuse of individual
IP blocks, PBD reuses complex architectures of hardware and
software components organized for a specific application [2].
PBD can decrease the overall time-to-market for the first
products and expand the considerably early-delivering
opportunities of derivative products.

PBD is a hierarchical design methodology that starts at the
system level. PBD achieves its high productivity through
extensive, planned design reuse. Productivity is increased by
using predictable, pre-verified blocks that have standardized
interfaces. The better planned the design re-use, the less
changes are made to the functional blocks [3], [4].

Several platform types have emerged nowadays as a result of
the evolution of platform-based design. Table 1 summarizes

Pipelined Scheduling of Functional HW/SW
Modules for Platform-Based SoC Design

 Wonjong Kim, June-Young Chang, and Hanjin Cho

534 Wonjong Kim et al. ETRI Journal, Volume 27, Number 5, October 2005

four types of platforms [5]. Note, however, that the boundaries
between these types can blur as providers expand their reach.
In this paper, we focus on the processor-centric and
communication-centric platforms that require adding specific
hardware elements to model each of the applications using
them.

Table 1. Platform types.

Platform type Example

Full-application platforms - Nexperia: Philips Semiconductors
- Open Multimedia Applications
 Platform (OMAP): TI

Processor-centric platforms - Micropack: ARM

Communication-centric
platforms

- uNetwork: Sonics
- AMBA bus architecture: ARM

Fully programmable platforms - Virtex-II Pro: Xilinx

 Figure 1 gives a general platform architecture for processor-
centric and communication-centric platforms. It has two master
modules, a processor and direct memory access controller
(DMAC), and three slave modules (shared memory and
hardware modules) connected via the communication network.
The processor performs software functions, initiates hardware
modules (HW setup) and controls DMAC (DMA setup) for
data transfer between the shared memory and hardware
modules. The communication network can be a single-layer or
multi-layer on-chip bus, or a packet or circuit switch network.

Fig. 1. A general platform architecture for SoCs.

Processor DMACShared
memory

Hardware
module 1

Communication network

Hardware
module 2

Transformative applications such as JPEG images and

MPEG video compression-decompression algorithms should
be cost effective, have high performance, and be flexible in
order to succeed in the market. As a result, most of them are
implemented by an SoC platform that utilizes an off-the-shelf
software (SW) processor core and custom hardware (HW)
coprocessors. The SW processors reduce the cost of the system
and provide flexibility. The custom HW coprocessors
implement the computation-intensive components of the
application and enhance the performance of the system [6], [7].

HW-SW co-design techniques can be used for designing

such SoCs. In HW-SW co-design, the application
specification is transformed into communicating HW and
SW components, which comprise a platform that exhibits the
desired behavior and satisfies the performance constraints.
HW-SW co-design consists of two basic design stages:
partitioning the application specification into HW and SW
components, and scheduling the execution order of these
components.

Figure 2 shows a block diagram of functional modules for an
MPEG-4 video encoder [8], [9]. The encoder has two-step
motion estimation (MEC for coarse, and MEF for fine),
motion compensation (MC), motion vector to motion vector
difference (MVMVD) calculation, DCT and quantization
(DCTQ), inverse quantization and inverse DCT (IQIDCT),
reconstruction (REC), header/texture variable length coding
(HVLC/TVLC), and stream production (SP) modules. It
encodes video frames coming from the “current frame” and
outputs the encoded stream through SP. The “reconstructed
frame” is generated to exploit temporal redundancy between
frames. The encoding procedure is performed based on macro
block data of 16 × 16 pixels.

Fig. 2. Block diagram of MPEG4 encoder.

MEC MEF MVMVD

REC

MC DCTQ

IQIDCT

HVLC

TVLC

SP StreamCurrent
frame

Reconstructed
frame

Table 2 shows the execution cycles for major functional HW

and SW modules. We used a register-transfer level (RTL)
simulator for HW cycles and an ARMulator with ARM7TDMI
model for SW cycles. In this table, the ‘cycles’ column
indicates the maximum number of cycles required to process a
macro block during the simulation of 300 frames of the CIF-
size (352 × 288 pixels) foreman stream.

To encode fifteen frames of CIF size (22 × 18 MBs) per

Table 2. Cycles for major functional modules.

Task Cycles Task Cycles

MEC (HW) 2,500 MC (HW) 1,250

MEF (HW) 1,250 DCTQ (HW) 1,200

MVMVD (HW) 192 TVLC (HW) 1,300

HVLC (SW) 130 IQIDCT (HW) 1,100

SP (HW) 114 REC (HW) 800

ETRI Journal, Volume 27, Number 5, October 2005 Wonjong Kim et al. 535

second with 27 MHz, it should process an MB in 4,500 cycles.
However, based on Table 2 the longest data path requires about
8,300 cycles at 27 MHz for execution without counting the
data transfer cycles between functional modules. To implement
this application on a platform as shown in Fig. 1 satisfying the
performance specification, we have to implement it in a
pipelined architecture.

Although a lot of work has been done for the fine-grained
synchronous pipeline design, little has been done for a
coarse-grained asynchronous pipeline design. More detailed
descriptions of previous works on coarse grained and fine
grained pipeline designs can be found in [6]. For efficient
implementation of the pipelined architecture and
architecture exploration, we developed a pipelined
scheduling technique.

In this paper, we developed a pipelined scheduling technique
of hardware and software modules for platform-based SoC
design. Then, we applied it to an MPEG4 video encoder
application for performance evaluation and architecture
exploration.

II. Pipelined Hardware and Software Scheduling

Transformative applications are dominated by dataflow
operations with few control-flow operations. Also, they can be
easily broken down into distinct functional tasks at a coarse level
of granularity. Each task is computation-intensive and internally
strongly interconnected, having a sparse external communication.
Therefore, transformative applications can be specified by a data
dependency-based task-graph format. Note that these
applications are iterative in nature and execute repeatedly over
different sets of input data. Hence, they are good candidates for
pipelined designs.

1. Platform Architecture

We implement the application on an SoC platform that
consists of one single SW processor, one shared memory, one
DMAC, and several dedicated HW modules, as shown in Fig.
3. The SW processor is a uniprocessing system and has a
local memory for SW execution. Each HW module has its
own buffer memory for efficient pipelined operation. HW
modules support the concurrent execution of multiple HW
tasks. The DMAC is controlled by the SW processor and
controls the data transfer between the shared memory and
HW buffer memories. The shared memory and SW local
memory are single port memories. HW and SW tasks
communicate with each other through the shared bus. We
consider single-layer and multi-layer shared buses as the
communication network in this paper.

2. Modeling Task Graphs and Resource-Conflict Graphs

A given application can be specified as a directed acyclic graph
G(V, E), where V is the set of tasks with the execution cycles and
E is the set of dependency arcs. Major tasks are functional HW
and SW tasks. For bus-based platforms, data transfers controlled
by DMAC (DMA transfer), HW setup, and DMA setup can also
be modeled as tasks. This will give the scheduler further flexibility
to improve the performance of the scheduling result.

Execution cycles of tasks can be estimated by simulation, but
it cannot cover all the input data. For SW tasks, computation
cycles can be estimated from a complexity analysis of the
algorithm. Because HWsetup or DMAsetup tasks performed
by the SW processor consist of a register setting and
calculation of the register values, their computation cycles can
be computed by the number of registers and bus characteristics.
DMA transfer cycles can be estimated with the number of data
to be transferred and the specifications of the DMAC and
memories. Table 3 summarizes the task types according to the
usage of platform resources. Since HW modules support
concurrent operations, they can be performed any time when
all the registers are set by the HW setup. All the task types that
use a common resource cannot be performed at the same time.
Any tasks that have checks in common in a column cannot be
performed at the same time. For example, SW tasks and DMA
setup schedules cannot be overlapped even though they are
assigned different pipelines.

These relations of task types can be represented as a
resource-conflict graph C(T, R), where T is a set of vertices
representing task types and R is a set of edges representing a
resource conflict. Figure 3 shows a resource-conflict graph of
Table 3. In this graph, tasks which have an edge between them
cannot share the scheduling time.

Table 3. Task types for a bus-based platform.

Task type Processor Bus DMAC

SW X

HW setup X X

DMA setup X X X

DMA transfer X X

Fig. 3. Resource-conflict graph for Table 3.

SW HW setup HW

DMAC setup DMA transfer

536 Wonjong Kim et al. ETRI Journal, Volume 27, Number 5, October 2005

3. Problem Definition

Given an application specified as a task graph G(V, E) and
resource-conflict graph C(T, R) with a pipeline initiation
interval as the performance constraint, find a feasible pipelined
schedule and the minimum number of pipelines for executing
the task graph.

The pipeline initiation interval is the time difference between
the start of two successive iterations of the steady state of the
pipeline. Usually, this value is calculated from the specification
of the application.

4. Pipelined Scheduling Algorithm

Since resource constrained scheduling is a non-polynomial
(NP) complete problem, pipelined scheduling is also NP
complete [10]. To achieve optimal solutions of the pipelined
scheduling problem in polynomial time, we developed a
pipelined scheduling algorithm as shown in Fig. 4 by
modifying a list scheduling algorithm. In this figure, ‘head’ and
‘tail’ are virtual start and end modules with 0 execution cycles.

Fig. 4. Modified list scheduling algorithm.

Pipelined_Scheduling (G(V, E) and C(T, R))
{

Set start cycles and pipeline number of all modules to 0;
Calculate_Slack(head, tail);
Initialize(queue);
Add_Candidates(queue, source);
while ((m = Pop(queue))!= NULL) {

Find_Schedule(m);
Set_Schedule(m);
Calculate_Slack(m, tail);
Add_Candidates(queue, m);

}

}

Calculate_Slack(m) calculates the slacks of all the successor

vertices by using as-soon-as-possible scheduling (ASAP) and
as-late-as-possible scheduling (ALAP). The slack of m is
defined as the difference between the scheduling results of
ASAP and ALAP.

Add_Candidates(queue, m) adds candidate vertices to the
queue. Candidate vertices are vertices whose predecessor
vertices are all scheduled. When it adds a candidate, it sorts the
candidate vertices in descending order of priority. The priority
is calculated from a combination of slack, task type, and user-
defined priority.

Pop(queue) returns the first vertex from the queue. It has the
most priority among the candidates in the queue.

Find_Schedule(m) finds a start cycle of m such that no
resource-conflict violation occurs. Each m has three types of
information for its scheduling:

1. start cycle: absolute start cycle of scheduling
2. pipeline cycle = (start cycle) % (initiation interval)
3. pipeline number = (start cycle) / (initiation interval)

Set_Schedule(m) marks the scheduled information of its
resource type using its “pipeline cycle” and “execution cycle”
so that scheduling other modules may not generate resource
conflicts.

This scheduling technique is flexible in that the scheduling
results can be controlled by giving a user-defined priority of
tasks and pre-scheduling of some tasks with Set_Schedule(m).

III. Experimental Results

We used the pipelined hardware and software scheduling
technique to the application given in Fig. 2. First, we scheduled
the application for a single-layer 16-bit bus-based platform as
shown in Fig. 5. In this case, the resource conflict-graph in Fig.
3 can be used.

Fig. 5. Single-layer bus architecture.

SRAM

SDRAM

System bus

DMAC

MV MVD TVLC SP

MEC MEC
buffer RECMEF/

MC
MEF
buffer

REC
buffer

ARM7TDMI DCTQ/
IQIDCT

Figure 6 shows a scheduling result for the single-layer bus-
based architecture in Fig. 5. The scheduling result includes
hardware modules (HW), software modules (SW), DMA
transfer (DMA), and HW/DMA setup (FW). SW modules are
header variable length coding (HVLC), intra refresh (IR)
decision, rate control operations (PreRC and PostRC), pre-
calculations for DMA transfers, and post processing for HW
modules. FW modules are named with HW modules or DMA
transfers followed by “Init.” MEC has two buffers named
SWC0 and SWC1. Also, MEF/MC has two buffers named
SWF0 and SWF1, and SWF1 has three regions for luminance
(Y) and chrominance components (U/V). In this case, the bus
usage is about 75%.

Then, we explored the platform architecture to improve the
performance by using the developed scheduling technique.
Because the bus usage is very high, we tried two variations of
the architecture: bus-width expansion and bus partitioning.

Bus-width expansion can reduce FW (HW setup and DMA
setup) cycles and DMA transfer cycles. FW cycles can be

ETRI Journal, Volume 27, Number 5, October 2005 Wonjong Kim et al. 537

Fig. 6. A scheduling result for the architecture shown in Fig. 5.

0 1000 2000 3000 4000 4500

SWC0lnitPre
IRDecision

MEFMC

MEC MEFMC

IFWriteInit SWC1lnit SWC0Init
MECInit

SWF1Yinit
SWF0lnit

MECPost MEFMCInit

SWF1VInitPre

PreRC

SWF1UInitPre

SWF1Ulnit
SWF1Vlnit

HVLC

DCTQ/IQIDCT

DCTQ/IQIDCT
MVMVD

MVMVDInit
DCTQInit

MEFMCPost

PostRC

TVLCInit
TVLC

REC

SPInit
RECInit

SP

TVLCPost

RECWriteInit

HW DMASW FW

IFWrite SWC1 SWC0 SWF0 SWF1Y SWF1
SWF1V

RECWrite

P4

P3

P2

P1

reduced as much as the bus-width expands. However, DMA
transfer cycles are dependent on the SDRAM features and
DMAC characteristics. By analyzing the two characteristics,
we obtained the reduction factor of DMA transfer cycles. In
our case, it is 0.67 for doubling the bus-width.

By analyzing the data transfer within the bus system, we
partitioned the bus into two buses. One is to control the HW
modules and DMAC and the other is to transfer data between
HW modules and SDRAM.

Figure 7 shows a dual-layer bus-based platform, which is
implemented by partitioning the shared bus given in Fig. 5. In
this case, the resource-conflict graph should be slightly
modified because the DMA transfer and HW setup can be
performed concurrently.

Fig. 7. Dual-layer bus architecture.

SRAM

SDRAM MEC MEC
buffer

System bus

MEF/
MC

ARM7TDMI

DMAC

MV MVD DCTQ/
IQIDCT

REC

TVLC SP

SDRAM bus

MEF
buffer

REC
buffer

Table 4 summarizes the scheduling results for the variable

bus architectures. When four pipelines are used, we could
improve the frame rate performance by 45% for the 32-bit
dual-layer architecture compared to the 16-bit single-layer

architecture. We achieved the best performance with seven
pipelines for the 32-bit single-layer architecture and six
pipelines for the 32-bit dual-layer architecture. The 32-bit dual-
layer architecture with six pipelines has a 118% better
performance than the 16-bit single-layer architecture with four
pipelines and can process over 30 frames per second. Note that
when the number of pipelines increases, more buffers will be
required for the boundaries of the pipelines, which will increase
the area. As a rule-of-thumb, a 6-pipeline architecture may
require 50% more buffers compared to a 4-pipeline
architecture. Also, note that if the pipeline cycle is less than the
HW module cycles, those modules should be modified to
support multi-pipeline processing.

Table 4. Scheduling results for various architecture.

Bus width Bus layer Pipelines MB cycles Frame rate

16-bit Single layer 4 4,500 15.2 (100%)

16-bit Dual layer 4 4,150 16.4 (108%)

32-bit Single layer 4 3,410 20.0 (132%)

32-bit Dual layer 4 3,090 22.1 (145%)

32-bit Single layer 7 2,290 29.8 (196%)

32-bit Dual layer 6 2,060 33.1 (218%)

IV. Conclusions

In this paper, we described a pipelined scheduling of

538 Wonjong Kim et al. ETRI Journal, Volume 27, Number 5, October 2005

hardware and software modules for platform-based SoC
designs. We applied it to the architecture exploration of
platforms for a performance analysis. We could achieve a
118% performance improvement in the frame rate by
exploring various architectures. The techniques used in this
paper can be applied to a decoder, codec, or other multimedia
processing applications such as JPEG or H.264 codec. The
scheduling results can also be used for firmware coding of
embedded processors.

References

[1] Grant Martin and Henry Chang, Winning the SoC Revolution:
Experiences in Real Design, Kluwer Academic Publishers, 2003.

[2] G. Martin, “The Reuse of Complex Architectures, Guest Editor’s
Introduction,” IEEE Design & Test of Computers, Nov.-Dec.
2002.

[3] H. Chang, Ll Cooke, M. Hunt, G. Martin, A. McNelly, and L.
Todd, Surviving the SoC Revolution, Kluwer Academic
Publishers, 1999.

[4] W. Kim, S. Kim, Y. Bae, S. Jun, Y. Park, and H. Cho, “A Platform-
Based SoC Design of 32-bit Smart Card,” ETRI J., vol. 25, no. 6,
Dec. 2003, pp. 510-516.

[5] G. Martin and F. Schirrmeister, “A Design Chain for Embedded
Systems,” IEEE Computer, vol. 35, issue. 3, March 2002, pp.
100-103.

[6] K. S. Chatha and R. Vemuri, “Hardware-Software Partitioning
and Pipelined Scheduling of Transformative Applications,” IEEE
Trans. VLSI Systems, vol. 10, no. 3, June 2002, pp. 193-208.

[7] S. Lee, “Pipelined Macroblock Processing to Reduce Internal
Buffer Size of Motion Estimation in Multimedia SoCs,” ETRI J.,
vol. 25, no. 5, Oct. 2003, pp. 297-304.

[8] S.-M. Kim, J.-H. Park, S.-M. Park, B.-T. Koo, K.-S. Shin, K.-Bum.
Sun, I.-G. Kim, N.-W. Eum, and K.-S. Kim, “Hardware-Software
Implementation of MPEG-4 Video Codec,” ETRI J., vol. 25, no.
6, Dec. 2003, pp. 489-502.

[9] ISO/IEC 14496-2, Information Technology – Coding of Audio-
Visual Objects – Part 2: Visual, 1999.

[10] K. Melhorn, Graph Algorithms and NP-Completeness, New York,
Springer-Verlag, 1977.

Wonjong Kim received the BS degree in
electronics engineering from Chonnam
National University in 1989. He received the
MS and PhD degrees in electronics engineering
from Hanyang University in 1992 and 1999. He
joined Electronics and Telecommunications
Research Institute (ETRI) in 2000 as a Senior

Member. His research interests include CAD for VLSI, SoC design
methodology, and multimedia SoC design.

June-Young Chang received the BS degree in
computer science from Chonnam National
University in Gwangju, Korea, in 1985, the MS
degree in computer science from Chungang
University in Seoul, Korea, in 1987, and the
PhD degree in computer science from
Chonnam National University in 1996. He

joined ETRI in 1999 in the area of electronic design automation
responsible for developing logic synthesis tools. His current research
interests include SoC platform design for multimedia applications and
SoC design methodology.

Hanjin Cho was born in Seoul, Korea on July
8, 1960. He received the BS degree in electronic
engineering from Hanyang University in 1982.
He received the MS degree and PhD degrees in
electrical engineering from New Jersey Institute
of Technology in 1987, and the University of
Florida in 1992. He joined ETRI in 1992, where

he currently works in SoC design methodology development and
wireless multimedia SoC design as a project manager.

