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We propose a novel post-processing algorithm and    
its very-large-scale integration architecture that 
simultaneously uses the passive and active stereo vision 
information to improve the reliability of the three-
dimensional disparity in a hybrid stereo vision system. 
The proposed architecture consists of four steps — left-
right consistency checking, semi-2D hole filling, a tiny 
adaptive variance checking, and a 2D weighted median 
filter. The experimental results show that the error rate of 
the proposed algorithm (5.77%) is less than that of a raw 
disparity (10.12%) for a real-world camera image having 
a 1,280 × 720 resolution and maximum disparity of 256. 
Moreover, for the famous Middlebury stereo image sets, 
the proposed algorithm’s error rate (8.30%) is also less 
than that of the raw disparity (13.7%). The proposed 
architecture is implemented on a single commercial field-
programmable gate array using only 13.01% of slice 
resources, which achieves a rate of 60 fps for 1,280 × 720 
stereo images with a disparity range of 256. 
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I. Introduction 

Many studies on stereo vision for obtaining three-dimensional 
information have been conducted [1]–[4]. Since the release of 
Microsoft Kinect (2009), in particular, researchers are paying 
more attention to applications that use 3D depth sensors. 
However, applications using 3D depth information have trouble 
detecting long and thin objects, such as a human finger, at a 
distance of more than 3 m owing to the performance margins of 
3D depth sensors. To overcome this limitation, Jeong and others 
proposed a stereo matching system using a time-division pattern 
projection [1], and Chang and others modified this system for 
implementation in four field-programmable gate arrays (FPGAs) 
for real-time processing [2]. Chang and others stated that their 
systems can calculate the depth for a 1,280 × 720 resolution 
image at 60 fps in an indoor environment [2]. The 3D system in 
[2] shows excellent depth results in a normal indoor home, but 
the authors claimed that it might suffer from noises, or outliers, in 
a disparity map when there are a number of occlusions or 
textureless regions in input images. 

To counter a weakness of the previous studies, we propose  
a novel combination of post-processing algorithms, which is 
useful for refining raw disparity data. In addition, we propose  
a hardware-friendly post-processing architecture and its 
implementation result in an FPGA in the later sections. Firstly, 
in our proposal, the general left-right consistency checking is 
used to remove mismatched points. Then, we propose a real-
time compact 2D hole filling (HF) method to fill the holes that 
have inaccurate depth values caused by mismatching at 
occlusion regions. In particular, we call this semi-2D HF, 
because we fill up the holes with adjacent background pixels in 
three directions. Furthermore, we propose a tiny variance 
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checking logic using a mean deviation (MD) in substitution of 
the variance, which can reduce the number of multiplication 
operations needed to obtain a square value of a pixel. Moreover, 
this tiny variance checking logic uses the active pattern scene 
and the passive object scene at the same time for improving 
performance in searching textureless regions. Lastly, we propose 
a 2D weighted median filter (WMF) that uses the similarity and 
proximity weight of a passive scene and disparity of a hybrid 
matching to reduce the outlier noise occurring from mismatching. 
Because this is an edge-preserving noise reduction filter, the 
results may not suffer from smoothing artifacts. The proposed 
median filter has been designed using a novel pipelined three-
stage cumulative histogram. 

This paper is composed of six sections. Section II provides 
an introduction to the overall stereo system used to verify the 
proposed post-processing algorithms. Section III describes the 
novel post-processing algorithms. In Section IV, we show its 
experimental evaluations with data sets having ground-truth. In 
Sections V and VI, we describe the hardware architecture and 
its FPGA implementation, respectively. Finally, we provide 
some concluding remarks in Section VII. 

II. System Overview 

In this chapter, we describe the algorithms used in a stereo 
matching system implemented through a previous work [1]–
[2]. In addition, we introduce the proposed post-processing 
algorithm in the next section. 

Figure 1 shows a flow chart of the active stereo matching 
system including the proposed post-processing method at the  

 

 

Fig. 1. Overall flow of stereo correspondence process. 
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last stage. The system consists of a “stereo head” module,  
pre-processing logic, stereo matching logic, and the post-
processing logic proposed in this paper. 

1. Stereo Head 

We use two E2V661 CMOS sensors having a good quantum 
efficiency in the IR band to build the depicted stereo head. The 
resolution of the stereo image is 1,280 × 720 pixels (high-
definition (HD) resolution) at a rate of 60 fps. Image streams 
from the stereo head are transferred to an FPGA board through 
an LVDS BUS. The stereo head also receives control signals 
from a computer through a USB 3.0 BUS. The 
synchronization control signals are transferred to the laser 
diode (LD) and light-emitting diode (LED) modules, which 
indicate the on/off time cycle of the LD and LED devices. 

An active pattern is projected by a diffractive optical element, 
which was designed to diffract an 808 nm laser beam in the IR 
bandwidth. The projector uses a pseudorandom pattern 
designed by taking into account the brightness and density of 
the active pattern. It also has LEDs of the same IR band, and 
through it stereo cameras can acquire non-pattern images. The 
reason we use the IR band is because it is invisible to the 
human eye and allows us to control the light source. 

2. Pre-processing 

During the pre-processing stage, tasks such as image 
sharpening, noise removal, and rectification are conducted for 
image streams incoming from the left and right cameras. A 
bilateral filter, which is a non-linear, edge-preserving, and 
noise-reducing smoothing filter [3], is only applied to the 
“pattern-off image” used for guiding or aggregating the cost 
values. On the other hand, an un-sharp masking filter having an 
image sharpening effect is applied to both a “pattern-on image” 
and a “pattern-off image,” which are used for calculating the raw 
cost volume. The mask filter values in Table 1 are optimized to 
reduce the hardware resources for the divider by using a bit shift 
operation as a substitute for a divider in a convolution process. In 
addition, we use the Caltech method [5] to perform rectifications 
of the stereo images in the pre-processing stage. 

Because the rectification task is one of the most important 
 

Table 1. Pre-processing algorithms. 

Function Algorithms 

Rectification Caltech toolbox [5] 

Noise reduction filter Bilateral filter [3] 

Sharpening filter Mask: –1 –2 –1; –2 28 –2; –1 –2 –1 
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Fig. 2. Images used in rectification and their results in proposed 
system: (a) left camera (54 images), (b) right camera (54 
images), and (c) example of left image/right image; its 
rectified left image/right image. 

(a) (b) 

(c)

 

Table 2. Parameters used in rectification. 

Parameter Description 

fc Focal length, 2 × 1 matrix 

cc Principal point, 2 × 1 matrix 

alpha_c Skew coefficient, scalar value 
Intrinsic 

kc Distortion coefficient, 5 × 1 matrix 

Om Rotation coefficient, 3 × 1 matrix 
Extrinsic 

Tc Translation coefficient, 3 × 1 matrix 

 

 
parts of a stereo matching process when considering the 
epipolar constraint, we use one hundred and eight images taken 
by the stereo head facing a checker board at various locations 
to extract the rectification parameters [1]. Figure 2 shows the 
images used in our rectification process. Camera Calibration 
Toolbox, developed by Caltech [5], has been widely used in 
many researches of stereo vision. It provides the best 
performance among the released software. Intrinsic parameters 
generated in the process of calibration are shown in Table 2 and 
are generated independently from the left and right cameras. 
Each calibration parameter — fc, cc, alpha, and kc — 
represents a camera’s internal elements, such as focal length, 
principal point, asymmetric coefficient, radial distortion, and 
tangential distortion. Extrinsic parameters, Om and Tc, are 
calculated using variables obtained from stereo cameras and 
can describe both the rotation and the translation transformation 
of the two coordinate systems, respectively. Rectification 
processes implemented here are described in [5]–[6] in detail. 

3. Stereo Matching Algorithm 

The general stereo matching algorithm consists of matching  

 

Fig. 3. Stereo matching algorithm. 
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cost computations (raw cost), cost aggregation, and disparity 
computations [4]. In addition to such processing, we also need 
to take passive and active images into account in calculating 
and aggregating the cost volume at the same time [1]. Figure 3 
shows the overall active stereo matching algorithm used in the 
system. The stereo matching algorithm comprises the cost 
computations, cost aggregation, and disparity computations. 

A. Cost Computation (Raw Cost, AD-CT) 

We calculate the raw cost volume using “the absolute 
intensity difference (AD) – Hamming distance of census 
transform (CT),” the AD-CT, in this paper. The reason for 
combining the AD and the Hamming distance of CT cost 
measures is that the AD-CT provides better matching accuracy 
than either the individual AD measure or CT measure [7]. The 
AD-based cost function, AD ( ),dC p  and CT-based cost function, 

CT ( ),dC p  are calculated as follows: 
AD

c cc {Intensity}
( ) ( ) ( ) ,dC p I p I p d


         (1) 

 CT ( ) HammingDistance CT( ),CT( )dC p p p d  ,  (2) 

where d is disparity and Ic(p) and CT(p) are the intensity and 
CT value at a pixel p. In addition, the combined raw cost, Cd(p), 
is obtained by 

AD CT( ) ( ) ( (1 ) )d d dC p C p C p    ,        (3) 

where α balances the AD and CT terms. 

B. Cost Aggregation 

According to [8] and [9], the cost aggregation is a correction 
process for raising the discriminative of the raw cost. The 
aggregated cost, AG ( ),dC p  is expressed as a multiplication of 
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the support weight, w(p, q) and raw cost, Cd(q), as follows: 

AG

ω
 ( ) ( , ) ( ),

p
d dq

C p w p q C q


           (4) 

where p is a pixel whose depth needs to be estimated, q is a 
neighboring pixel of p, and p  is the window centering on 
pixel p. 

Supporting weight-based cost aggregation carries with it 
certain problems, such as computational complexity and a 
lengthy execution time. Thus, various methods that reduce the 
computational complexity and operate rapidly have been 
proposed in [10]–[11]. Herein, domain transform (DT) 
aggregation is used owing to its hardware-friendly property. 
For DT aggregation, dXI and dYI of an image are the 
horizontal and vertical gradients at the intensity domain, and σs 
and σr are the spatial (proximity) parameter and intensity range 
(similarity) parameter, respectively [11]. 
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The cost aggregation is performed in the horizontal direction 
(left-to-right and right-to-left). Using the results from the 
horizontal direction, then, the cost aggregation is performed in 
the vertical direction (top-to-bottom and bottom-to-top), as 
follows: 

 AG _ L AG _ L
, , ,[ ] [ ] [ 1]xg

d y d y d yC x C x a C x   ,        (8) 

 1AG _ R AG _ L AG _ R
, , ,[ ] [ ] [ 1]xg

d y d y d yC x C x a C x   ,     (9) 
AG _ T AG _ R AG _ T

, , ,[ ] [ ] [ 1]yg

d x d x d xC y C y a C y   ,     (10) 

1AG _ B AG _ T AG _ B
, , ,[ ] [ ] [ 1]yg

d x d x d xC y C y a C y   ,    (11) 

where AG _ L AG _ R AG _ T, , ,d d dC C C and 
AG _ B
dC are the 

aggregation cost of left-to-right, right-to-left, top-to-bottom, 
and bottom-to-top, respectively. In addition, AG _ B

dC  in 
equation (11) is the final result of the cost aggregation. 

C. Disparity Computation 

Winner-takes-all, which is a local minimization method, is 
applied to find the minimum cost on a pixel-by-pixel basis. The 
estimated disparity, d(p), is then found by 

 AG _ B( ) arg min ( )
dd S dd p C p ,          (12) 

where Sd is the set of all possible disparities and AG _ B ( )dC p  is 
the aggregated cost. 
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III. Proposed Post-Processing Algorithms 

Figure 4 shows a flow chart of the post-processing 
algorithms proposed in this paper. We previously introduced 
these algorithms and their results in [12]–[13], but more 
detailed explanations are described here. The post-processor’s 
input consists of two raw disparity maps including the 
occlusion region from the left-referenced stereo matcher and 
the right-referenced stereo matcher. In the first place, the Left-
Right Consistency Check (LRCC) makes the disparity map 
into a single channel by removing the occlusion region. In the 
second place, 2D HF fills the holes caused by the above 
occlusion checking process with the adjacent disparity inferred 
background. In addition, in the next step, we use a variance 
check (VC) to remove the output in the textureless region. In 
the last step, the WMF is used for removing the streak noise in 
the disparity map. Note that it is an advantage to locate the 
noise reduction filter after the VC because it can also fill a hole 
caused the VC. 

1. LRCC 

A consistency check is conducted with the left and right 
disparity maps. If the difference between the left and right 
disparity in the same index exceeds a predefined threshold then 
that disparity is an invalid value caused by an occlusion or a 
mismatching point. 

 L RDLRC( ) ( ) ( ) ,dp D p D p         (13) 

L lrcc
lrcc

lrcc

( ) DLRC( ) th ,
( )

1 DLRC( ) th ,

D p p
d p

p


  

       (14) 

where p is a pixel in the reference image, DLRC(p) is the 
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disparity map after consistency checking, DL(p) is the left-
referenced disparity at pixel p, and DR(pd) is the right-
referenced disparity at pixel pd shifted from p with d or DL(p). 
If the DLRC(p) of the corresponding pixel is less than or equal 
to a threshold (thlrcc) fixed in advance, then the output, dlrcc(p), 
should become DL(p), which means this disparity has a high 
confidence at this point. Otherwise, the output should become 
“–1,” which means its value is invalid; thus, it has to be defined 
as a hole. 

2. 2D HF 

The occlusion area in stereo vision is defined as the region 
observed from only one of two images. Because, in most cases, 
an occlusion area is located in the background region, it is 
simple and useful to choose the nearest background disparity 
for a hole where an occlusion has been removed [14]. There 
will be no artifacts in the output disparity map as long as the 
stereo scene remains in the front-to-parallel plane [15]. To 
choose the nearest background disparity for a hole, it is 
necessary to sample the adjacent valid disparities in eight 
directions to find the minimum disparity inferred background. 
However, because it requires a high complexity to implement 
in hardware, we use its approximation for searching in three 
directions to find the minimum value. After sampling the non-
hole disparities in three directions, it is necessary to select the 
minimum disparity among them to fill in the hole. 

3. VC 

Having low uniqueness in the cost function in (11), the 
textureless areas are more likely to be generally mismatched. 
Because the low uniqueness tends to cause a monotonous 
energy graph, it is difficult to determine a disparity having the 
minimum value in the energy graph, and it may thus cause a 
noisy disparity map. Therefore, it is important to find the 
textureless region to treat this problem. 

A VC is a way to use the variance as a criterion for making a 
decision on the existence of texture in a region. Thus, we can 
easily remove a disparity having a low confidence in a 
textureless region with the VC. We use the “pattern-on image” to 
calculate the variance and remove the region having a variance 
below a predefined threshold. Equation (15) is a function used to 
calculate the window-based variance value, and (16) is the 
function used to calculate the (absolute) MD in substitution of 
the variance for a simple hardware implementation. 

2 2
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where N is the size of a window currently processed, NPp 
means the neighborhood pixels in the window, xi is a pixel’s 
intensity, and NPp

 is the mean of the neighborhood pixels in 
the window. 

4. WMF 

A median filter is generally used to remove high-frequency  
noise such as “salt and pepper” noise. This is useful to remove 
a noise disparity and interpolate a hole with adjacent valid 
disparities [16]. Applying a median filter to a disparity map, we 
need to assume that there are sufficient valid disparities in the 
window including a noise disparity. However, if a window is 
located near the center of an object’s edge, then the selected 
medial value may be incorrect. Thus, the disparity near the 
edge would suffer from a blurring effect with a general median 
filter. 

To avoid this problem, we designed a novel edge-aware 
WMF having the coefficients used in a bilateral filter [3] by 
modifying the conventional WMF in [17]. For an effective 
hardware implementation, we use a median filter based on a 
cumulative histogram, as in [18]. To construct a histogram, the 
first step is to bin the range of values, and then count how 
many values fall into each interval. A rectangle is drawn with a 
height proportional to the count and width equal to the bin size 
in the histogram graph. Finally, we integrate the histogram to 
obtain the cumulative histogram. In addition, the median value 
is the index of the total count/2. The main difference between a 
general median filter and WMF is that one has to add not (+1) 
but (+weight) for the bin counter when the sample hits this bin. 

We use the Gaussian function for the weight, as with a 
bilateral filter, because it considers the similarity and proximity 
for the image. Equation (17) is the weight for the median filter 
used in this paper. 

2 2

, ,
,

s d

exp 0.5 exp 0.5p q p q
p q

c g
w

 

       
                    

, (17) 

where , , ( ) ( ), || .p q p qc I p I q g p q      

IV. Experimental Evaluation of Proposed Algorithm 

In this chapter, we show the experimental results of a 
simulation with the proposed algorithm before implementing 
its hardware architecture. In the experiments, we use two types 
of dataset, one is the well-known Middleburry stereo image set 
[4], [19], and the other is a real-world stereo image set used in 
[1], to find the optimal parameter for the best performance and 
hardware implementation. The purpose of the first experiment 
is to discover the best performance of the proposed algorithm 
with the well-known passive stereo image sets, and the second 
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experiment is for finding an optimal parameter to be used    
in designing a very-large-scale integration (VLSI) with a     
real-world active stereo image set having ground-truth. 

1. Experiments Using Passive Middleburry Stereo Image Sets 

Table 3 shows a comparison of the proposed algorithm for 
four well-known Middleburry stereo image sets in [4], [19]. 
When our algorithm is used in the experiment, the error rate for 
all pixels of the four image sets is 8.3%, which is lower than 
Jeong’s (13.7%) [1] and Jin’s (17.2%) results [20]. 

2. Experiments Using an Active Real-World Stereo Image Set 

Before designing the hardware architecture, it is necessary to 
find the optimal parameters, such as the window size, similarity, 

 

Table 3. Results of Middleburry dataset. 

Image sets 
[4] and [19] 

Tsukuba Venus Teddy Cones  

Left image 

 
Ground truth 

AD-CT in 
hybrid [1] 

Proposed 

(using only 
intensity) 

Average 
ratio (%) 
of bad 
pixels

Jin’s [20] 11.56 5.27 21.50 17.58 17.24

Jeong’s 
[1] 

11.67 6.62 19.60 16.73 13.7 

Bad 
pixels 

(%, 
all) Proposed 6.55 1.66 14.9 10.8 8.3 

 

Table 4. Optimal parameters for proposed logic. 

Module Parameter Optimal

Error (%) 

(for all pixels, 

threshold=1) 

Effect 

Raw 
disparity 

N.A N.A 10.12 
Before applying our 

algorithms 

LRCC Threshold 3 6.26 
Removing occlusion 

region 

VC 
Window size 

threshold 

9 × 9 

5.5 
6.12 

Removing texture-
less region 

WMF 

Window size 

Sigma of proximity 

Sigma of similarity 

Iteration 

7 × 7 

33 

3 

1 

5.77 
Edge-preserving 

spark noise reduction

 

proximity, and threshold (see Table 4). To find them, we 
evaluated the algorithms with an active real-world stereo image 
set having the ground-truth used in [3], where its full resolution 
is 1,280 × 854, as shown in Fig. 5(e), the valid resolution of the 
ground-truth is 1,020 × 600, as shown in Fig. 5(c), and its 
disparity range is 256. Using these optimal parameters after 
evaluation, we could achieve a high performance and cost-
effective usage of hardware resources in designing the VLSI 
concurrently. 

The percentage of bad pixels, or error rate (that is, pixels 
whose absolute disparity error is greater than one), is 10.16% 
for all pixels and 4.67% for non-occluded pixels. Because there 
is no post-processing task in occlusion regions to complement 
them in the ground-truth [1], we concentrated on the results of 
the percentage of bad pixels for not non-occluded pixels but all 
pixels in the following experiments. In addition, for the same 
reason mentioned above, we do not apply HF to a raw disparity 
map in the evaluation experiment using the ground-truth in [1]. 
After applying the LRCC to the raw disparity, the error rate for 
all pixels decreases from 10.16% to 6.26%, and its optimal 
threshold is equal to a value of three, as shown in Fig. 6. After 
applying the VC to the raw disparity from LRCC, the error rate 
for all pixels decreases from 6.26% to 6.12% when its optimal 
 

 

Fig. 5. Ground-truth of real-world image set: (a) pattern-off 
image (left), (b) pattern-on image (left), (c) ground truth, 
(d) occluded region map (black pixels are in occluded 
region), (e) raw disparity map, and (f) valid parity map 
(non-occlusion) [3]. 

(a) (b) (c)

(d) (e) (f)

 

 

Fig. 6. Parameter for LRCC: (a) threshold from 1 to 255 and (b) 
threshold from 1 to 10. 
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Fig. 7. Parameters for VC: (a) window size and threshold vs. 
error and (b) threshold vs. error (window size = 9 × 9,
threshold = 11 × 0.5). 
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Fig. 8. Parameters for WMF: (a) sigma (proximity and similarity) 
vs. error, (b) iteration vs. error, (c) similarity vs. error 
(with fixed proximity), and (d) proximity vs. error (with 
fixed similarity). 
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Fig. 9. Optimal parameters and their results: (a) LRCC (threshold 
= 3), (b) error of LRCC = 6.26, (c) VC (window 9 × 9, 
threshold = 5.5), (d) error of VC = 6.12, (e) WMF 
(window 7 × 7, sigma proximity = 33, sigma similarity = 
3, iteration = 1), (f) error of WMF = 5.77, and (g) 
comparison of errors. 
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Fig. 10. Refinement for four regions having thin structure: (a)
image, (b) raw disparity map, (c) LRCC, (d) VC, and (e)
WMF. 
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parameters are a window size of 9 × 9 and a threshold of 5.5, as 
shown in Fig. 7. After applying the WMF to the raw disparity 
processed by VC, the error rate for all pixels decreases from 
6.12% to 5.77%, where the optimal parameters for the filter are 
a window size of 7 × 7, a sigma value for a proximity of 33, a 
sigma value for a similarity of 3, and an iteration count of 1, as 
shown in Fig. 8. The complete results are shown in Figs. 9 and 
10 (resizing the region of interest), and the optimal parameters 
are reported in Table 4. 

V. Hardware Design for Proposed Algorithms 

We implemented the algorithms proposed in this paper into a 
single FPGA. In this chapter, we introduce the hardware 
architecture in detail. The proposed post-processing hardware 
consists of four sub-blocks in a cascaded manner, which are a 
consistency check, HF, a VC, and a WMF. Figure 11 shows the 
top architecture of the proposed post-processing hardware. It  
uses a normal intensity image with no structured-light patterns 
to calculate the weight coefficients for a WMF. On the other 
hand, it uses a structured-light image to calculate a local 
window’s variance for a VC, because a region having no 
structured-light pattern might have low confidence in the 
disparity map, as in a textureless region in passive stereo vision. 

Because the HF may have some artefacts near the hole, its 
function needs to be excluded for a real-world environment. In 
addition, unlike the Middleburry image sets captured in a  
limited number of environments, there are a large number of 
environments in the real world. Thus, the optimal parameter 
values for the proposed algorithms could vary depending on  
the scene. For the reason mentioned above, we added internal  
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Fig. 11. Proposed hardware architecture for post-processing. 
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memory registers to control the optimal parameters of 
algorithms in the hardware design except the tap size of the 
filter. Table 3 shows the optimal parameters derived from the 
previous experiments for active real-world images to be used in 
designing a VLSI. When we apply the proposed algorithm to 
the raw disparity using the parameters in Table 3, the error rate 
decreases from 10.12% to 5.77% for the image set. 

1. 3-Way HF 

We designed 1-way HF logic, initially, and applied it to the 
vertical and horizontal directions to design a 3-way HF logic. 
Figure 12(b) shows the pseudocode of RTL for the 1-way HF 
logic, which finds the minimum nonzero disparity inferred as 
the nearest background disparity in a particular direction. In 
addition, Fig. 12(a) shows the top scheme of 3-way HF logic 
using the 1-way HF mentioned above. The 1-way HF scans 
and processes a line image from left to right. To reuse the 1-
way HF for a right-to-left processing, extra logic is needed; that 
is, a horizontal mirror block that is able to convert the 
horizontal axis. After all, the 1-way HF for the left-to-right 
direction obtains input data, or disparity, directly, while that  
for the right-to-left direction needs a horizontal-mirror-block 
flipping axis of the input data in the horizontal direction before 
obtaining the input data to reuse the 1-way HF.  

In the case of the top-to-bottom direction, the HF logic needs 
to buffer a line to reuse the 1-way HF. In addition, at the 
“Minimum” stage in Fig. 12(a), it needs to synchronize the 
three data paths, top-to-bottom, left-to-right, and right-to-left. 
Let t(p) be the clock tick used in the processing of the 1-way 
HF, and let t(L) be the clock used in buffering a line. In addition,  

 

Fig. 12. Proposed scheme for 3-way HF: (a) top scheme for 3-
way HF and (b) scheme for 1-way (horizontal/vertical)
HF. 
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note that the clock tick used in the mirroring is also equal to 
t(L). Then, the path of top-to-bottom is equal to “t(L) + t(p) + 
t(L);” that of left-to-top is equal to “t(p) + t(L)×2.” Finally, that 
of right-to-bottom is equal to “t(L) + t(p) + t(L).” 

At the final stage in Fig. 12(a), or the “Compare” stage, 
when the input data have a hole, whose value is “–1,” the 
output is the nearest minimum value in the three directions; 
otherwise, the output is the delayed input data. 

2. VC 

Equation (16) is a function to calculate the MD in 
substitution of the variance for a simple hardware implantation. 
Figure 13 shows the hardware scheme for a VC consisting of 
the MD and VC logic. An arithmetic mean of input data inside 
a 9 × 9 window is calculated by a mean calculator, shown in 
Fig. 13(b), in the first step. In addition, after calculating the 
absolute difference between the mean and input data, the MD 
is calculated by the mean calculator again, which is the 
arithmetic mean of the absolute difference, as shown in    
Fig. 13(a). We designed the window block generation to gather 
the candidate data of the current processing window with 
buffering, as shown in Fig. 13(c). It should be noted that we do 
not use a sequential data operation, such as an integral image,  
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Fig. 13. Proposed scheme for VC with MD: (a) top scheme for
VC, (b) scheme for mean calculator, and (c) scheme for
block generation (also used in WMF). 
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because of reusability in the weight-based filter calculations. 
After obtaining the MD value, it is necessary to compare it 
against a threshold fixed in advance to conduct a VC. 

3. WMF 

Fahmy proposed an architecture for a WMF for 1-directional 
data in [18], and it is easy to expand it for 2-directional data 
with a simple modification when the weights for the data are 
invariant. However, when the weight varies pixel by pixel, it is 
impossible to use the scheme in [18]. Finally, we designed a 
WMF for data having varying pixel by pixel weights.  

We propose a novel architecture consisting of a filter mask 
calculator and median calculator for a WMF based on a 
cumulative histogram. Figure 14 shows the novel WMF 
architecture. Although, in Fig. 14(b), the filter mask calculator 
has to calculate the exponential function of (17), as a 
substitution, we use look-up-table ROM having a 16-level 
weight to reduce the hardware resources. In addition, we found 

that this reduction is safe, because there is little difference 
between the outputs of the full function and look-up-table 
based on certain experiments. As shown in Figs. 14(c) and 
14(d), each bin node consists of an adder and comparator. In 
addition, there has to be 256 bins for our system because each 
disparity level needs to have one bin. In Fig. 14(d), a 
“bin_node_adder” in each bin obtains two inputs, the first 
being a weight and the second a “inc_en,” which is an 
incremental sign. In addition, it outputs “sum(node(n)),” which 
is the sum of the weights having a valid inc_en. 

On the other hand, median_location_calculator outputs the 
med_location, which is half of the sum of all weights.    
Then, after comparing med_location and sum(node(n)), 
bin_node_comparator sets med_en(n) to “1” when 
sum(node(n)) is greater than med_location; otherwise, it is “0.” 
Lastly, a priority encoder outputs the index (n) of the first bin 
whose med_en(n) is “1” when being searched in an 
incremental direction. 

VI. FPGA Implementation 

Figure 15(b) shows the FPGA system (named TriNet) where 
the proposed architecture is implemented. It consists of a stereo 
emulator 15(c) and a stereo head 15(a). In detail, we use the 
E2V661 CMOS sensor having a good quantum efficiency in 
the IR band to build the stereo head. The taken stereo image’s 
resolution is 1,280 × 720 pixels (HD resolution) at a rate of  
60 fps and has 8-bit gray-scale data per pixel. 

In addition, the stereo emulator consists of four FPGAs, 
DDR3 SDRAM, an application processor having a USB3.0 
client function, and a video stream de-serialization module 
having an HDMI connector. In addition, the stereo head 
consists of stereo cameras, active projectors, an application 
processor having a USB3.0 client function, and a video stream 
serialization module having an HDMI connector. 

Figure 16 shows the real-time results of TriNet. It has the 
functions of image stopping and capturing to make a test bench 
database. The reduction of the outlier in the disparity map can 
be noted from Fig. 16(b) through to Fig. 16(e). The proposed 
design can achieve 60 fps for 1,280 × 720 IR stereo images for 
a 256-level disparity range at a 58 MHz clock speed.  

In addition, we have compared the proposed system to a 
commercial 3D depth sensor to evaluate it not quantitatively 
but qualitatively. Microsoft’s “Kinect One” (Kinect version 2, 
emerging in 2014) is considered as the state of the art among 
the sparse 3D depth sensors emerging up to now. Although 
Kinect One is based on a time-of-flight method similar to radar, 
we’re able to compare ours to it because it can provide the 
depth in image format. 

Figure 17 shows the environment used to compare Kinect 
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Fig. 14. Proposed scheme for WMF: (a) top scheme for WMF, (b) scheme for filter mask calculator, (c) scheme for median calculation,
and (d) scheme for each bin_node (nth bin_node). 
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1 with the proposed system. In the figure, it can be seen that we 
positioned Kinect 1, Kinect 2, and TriNet at different distances 
from subjects so as to give them the same field of view as the 
subjects; 240 cm, 200 cm, and 300 cm, respectively. And the 
distance from TriNet to a background wall is 350 cm. Figure 18 

shows the results of the three systems — Kinect-1 18(a); 
Kinect-2 18(b) and 18(d); and the proposed system 18(c) and 
18(e) — for various scenes in an indoor environment. 
Observing the results, one can notice that the shape and edges 
of 18(b) and 18(c) are sharper than that of 18(a). In addition,  
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Fig. 15. Stereo vision system (TriNet) processing of proposed
algorithms: (a) stereo head, (b) stereo vision system,
and (c) stereo emulator (FPGA). 
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Fig. 16. Real-time FPGA results of proposed post-processing
architecture: (a) intensity image (left), (b) disparity map
(left ref.), (c) disparity map (LRCC), (d) disparity map
(HF), and (e) disparity map (WMF). 
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Fig. 17. Environment for comparing TriNet (including proposed
algorithm) and commercial Kinect series (ver. 1, ver. 2).
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Fig. 18. Results of comparing TriNet (including proposed
algorithm) and commercial Kinect series (ver. 1, ver. 2).
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Table 5. Usage of FPGA for proposed architecture 
(XC7V2000TFLG1925-SP2). 

Block name Slice (305,400) Memory (36 kbits)

LRCC 336 0.11% 1 

HF 508 0.16% 10 

VC 1,377 0.45% 9 

WMF 37,534 12.29% 10 

Total 39,755 13.01% 30 (135 Kbyte) 

 

 
for the region of interest, the results from the proposed system 
(18(e)) are more precise and less blurred than those from 
Kinect-2 (18(d)). Moreover, the depth error between the real 
distance (measured by telemeter) and our measured distance is 
below 1 cm for a subject near the center of an image at a 
distance of 3 m, except in occlusion or textureless regions. 

Table 5 describes the resources (slice and memory) used in the 
FPGA for implementing the proposed architecture. Because the 
weight calculation needs a lot of multiplication operations and 
look-up tables, it should be noted that the WMF uses a larger 
proportion of the total system resources than any other type of 
logic. Accordingly, we used 13.01% of slices at Xilinx Virtex®-7 
to implement the proposed post-processing algorithm. 

Lastly, Table 6 shows a comparison of the specifications 
among other reported researches on real-time stereo vision 
implementation. According to the table, the proposed system 
has competitive performance in comparison to the other 
reported researches. In addition, because we use both passive 
and active stereo at the same time, the system is robust in  
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Table 6. Reported stereo vision systems to date. 

Name of reported 

stereo vision system 
Image size 

Disparity 
range 

Rectification Hz
Projection

method

DeepSea ASIC 

(2004) [21] 
512 × 480 52 Firmware 200 Passive

MSVM-III FPGA 

(2004) [22] 
640 × 480 64 No 30 Passive

Jin’s FPGA 

(2010) [20] 
640 × 480 64 FPGA 230 Passive

SGM FPGA 

(2010) [23] 
640 × 480 128 FPGA 30 Passive

Jeon’s GPU 

(2013) [11] 
400 × 300 64 No 24 Passive

This paper (TriNet) 1,280 × 720 256 FPGA 60 Hybrid

 

 
various illuminations. 
 
VII. Conclusion 

We present a novel post-processing algorithm and its VLSI 
architecture for a high-quality depth map in hybrid active 
stereo vision. In particular, the proposed system simultaneously 
uses passive and active stereo vision information to improve 
the reliability of the three-dimensional disparity in a hybrid 
stereo vision system. The proposed architecture consists of four 
hardware-optimized sub-blocks in a cascade manner; that is, 
consistency checking, HF, VC, and WMF. In particular, the 
proposed real-time, compact semi-2D HF method uses less 
resources than the 8-way method to fill holes indicating 
inaccurate depth values caused by mismatching at occlusion 
regions. In addition, the proposed tiny VC logic using an MD 
in substitution of the variance for reducing resources 
simultaneously uses the active pattern and passive object 
scenes for improving performance in searching textureless 
regions. Lastly, a novel architecture, 2D WMF, uses the 
similarity and proximity weight of a passive scene and disparity 
of a hybrid matching to reduce outlier noise occurring from 
mismatching. 

The proposed architecture implemented on a single FPGA, 
where only 13.01% of slices of a XC7V2000TFLG1925 are 
used, can achieve 60 fps for stereo images having 1,280 × 720 
resolution. In addition, it has a 256-level disparity range. 
Although the proposed algorithm is for the disparity of active 
stereo vision, it somehow shows a good performance for the 
Middlebury stereo image sets, which are datasets for passive 
stereo vision. The experimental results show that the error rate 
of the proposed algorithm (8.30%) is less than that of the raw 
disparity (13.7%) for these datasets. In addition, the error rate 
decreases from 10.12% to 5.77% for a real-world dataset. 

Finally, we present the output images from Microsoft’s Kinect- 
1 and our system for the same scene to compare their results 
qualitatively. In these comparing experiments, the results from 
the proposed system are more precise and less blurred than 
those from Kinect-1 and Kinect-2. In addition, the depth error 
is below 1 cm for a subject near the center of an image at a 
distance of 3 m, except for occlusion or textureless regions. 
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