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ABSTRACT⎯An alternative human interface enabling 
people with severe motor disabilities to control an assistive 
system is presented. Since this interface relies on the biosignals 
originating from the contraction of muscles on the face during 
particular movements, even individuals with a paralyzed limb 
can use it with ease. For real-world application, a dedicated 
hardware module employing a general-purpose digital signal 
processor was implemented and its validity tested on an 
electrically powered wheelchair. Furthermore, an additional 
attempt to reduce error rates to a minimum for stable operation 
was also made based on the entropy information inherent in 
the signals during the classification phase. In the experiments, 
most of the five participating subjects could control the target 
system at their own will, and thus it is found that the proposed 
interface can be considered a potential alternative for the 
interaction of the severely disabled with electronic systems. 
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I. Introduction 
As a result of a variety of accidents or diseases such as a spinal 

cord injury (SCI) or amyotrophic lateral sclerosis (ALS), many 
people suffer from a severe loss of motor function. These people 
are forced to accept a reduced quality of life, depending on the 
care of other individuals. Even though useful human-computer 
interfaces based on speech or biometrics have been developed to 
communicate with computers, most of them are aimed at 
providing people without disabilities with more convenient or 
advanced means, while neglecting individuals with severe 
disabilities. Thus, the needs for a novel interface to help the 
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disabled lead a more improved life have been addressed, and 
corresponding effort has also been made in the fields related to 
rehabilitation engineering and user interface (UI) development. 

One attempt attracting considerable attention in those fields 
involves the utilization of biosignals such as an 
electroencephalogram (EEG) or electromyogram (EMG) 
obtainable from the human body as a means for interaction 
with the surrounding world. In the field of brain-computer 
interface (BCI), meaningful information derived directly from 
a user’s brain activity has been used to manipulate systems. 
However, despite the definite advantage unique to EEG signals 
that allows a system to be controlled only by one’s thoughts, 
the poor signal-to-noise ratios in the spontaneous EEG signals 
and the lack of consistency in the signal patterns still make their 
application impractical. Compared to such drawbacks of EEG 
signals, EMG signals have more possibility to be applied to a 
wide range of users due to their easy controllability and 
insensitiveness to noises [1]. In this letter, a special interface 
based on these EMG signals that runs in a stand-alone mode is 
proposed, and its usefulness as a communication channel is 
investigated through a practical test on an electrically powered 
wheelchair, called a power-wheelchair throughout this letter. 

II. Methods and Materials 

1. Signal Acquisition 

The optimal electrode positions for the signal under 
consideration are sought out on the face, because the target 
users of the proposed interface are people paralyzed below the 
neck. Once several electrodes are attached to the appropriate 
positions around the forehead, cheeks, and eyes, a subject was 
instructed to make particular movements or actions predefined 
for signal acquisition, in which clenching of the teeth, blinking 
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Fig. 1. The electrode positions, signals, and LPC patterns caused by predefined actions such as (a) no physical movement, (b) 
clenching left molar teeth, or (c) blinking both eyes. All signals are measured from the electrode attached to the left 
temporalis muscle (A). X axis: 256 samples, 0.5 s long, Y axis: arbitrary voltage units. 
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of the eyes, wrinkling the forehead, and frowning are included. 
During such experiment, the positions of the electrodes chosen 
initially are fine-tuned gradually to be more appropriate by 
checking if some striking signal pattern specific to each action 
can be observed through a measuring instrument. Through many 
trials and errors, it was found that the contraction of temporalis 
muscles around the edge of each eye, while the subject clenched 
his or her teeth or blinked his or her eyes, produced a few 
distinguishable signals. Figure 1 shows the positions of the four 
electrodes and signal patterns caused by the actions mentioned.  

The subjects participating in the experiment consist of five 
disabled individuals (two females and three males) ranging 
from 25 to 52 years in age. All the subjects have a severe loss 
of motor function caused by traffic or hiking accidents. 

2. Analysis of Signals  

Linear prediction coefficients (LPCs) and LPC entropy were 
adopted as features representing characteristic information 
contained in the measured signal. An LPC, which can be 
expressed as the coefficient aj in (1), is employed often to 
approximate a sample value at a certain time with several 
sample values preceding it in time aspect, reducing the error en 
between the original signal sn and the estimated signal ns  to a 
minimum. The LPC order p = 9 was chosen based on the 
conclusions drawn from a brute force algorithm.  
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For estimating time-varying LPC parameters, a signal of 0.5 s, 
sampled at a rate of 512 Hz, is first divided into short segments, 
generally called frames, and LPCs are then extracted from each 
frame. The feature vector set obtained in this way represents a 
time course of the LPCs that describes the time-varying 
characteristics of the signal. A time of 30 to 50 ms was used as 
the frame length, and the overlap rate of frames was 50%. Figure 
1 shows how the LPC parameters extracted from each frame 
change as time passes. As in the figure, there are distinct 
differences among the three patterns of the LPC parameters. 

3. Pattern Classification  

A hidden Markov model (HMM) comprising three states 
and two Gaussian mixtures per state was employed as the 
classifier because it has been found suitable to model the 
dynamic changes of a certain complex signal, overcoming the 
problem of nonstationarity. Classification is done by 
comparing the likelihood values for an arbitrary feature 
sequence evaluated from four HMMs, HMML, HMMR, 
HMMF, and HMMB for left, right, forward, and backward, 
respectively, and selecting the model with the maximum 
value. In this case, the likelihood value for the sequence  

],...,,[ 21 TOOO=O given the HMMs can be expressed as 
).HMM( L/R/F/BOP The overall correct classification rate 

occurring in the five subjects mentioned in section II.1 was 
around 97.2%. However, to use the classification results as 
commands to control a power-wheelchair for the physically 
disabled, an improvement in success rate is strongly required. 
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Fig. 2. Signal patterns and their LPC entropy profiles of (a) an 
eye-blink and (b) noise. 
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Table 1. Confusion matrix showing the classification rates (%). 

HMMs (HMML/R/F/B) Actions 
(clench or blink) 

Class 
L R F B 

Left teeth L 98.2   1.8 

Right teeth R 2.2 97.8   

Both eyes F 2.6 1.4 93.5 2.5 

Both teeth B 0.5 0.3  99.2

- N 10.7 8.5 78.6 2.2 

 

After many experiments, we found most error cases happened 
when unconscious head movement added noises on an 
incoming signal. These noises were a little similar to eye-blink 
signals in shape and thus were frequently mistaken for them in 
the classification phase. Figures 2(a) and 2(b) show an eye-blink 
(in this case, the eyes blinked twice) and a typical noise signal 
that frequently occurs. Table 1 describes the brief classification 
results from the disabled individuals. 

In Table 1, L/R/B, F, and N signify the signals recorded while 
clenching the left/right/both sides of the subject’s teeth, blinking 
both eyes, and the noise caused by a slight head movement, 
respectively. As shown in the table, most misclassifications were 
caused by the confusion of head movement with the eye-blinks. 

The data set used for the subject-dependent classification 
consists of 4800 data for training (240 data for each class per 
subject) and 7000 data for testing (350 data for each class per 
subject). To tackle the previously mentioned confusion problem 
effectively, we prepared the additional criterion necessary for a 
final decision on whether or not the pattern identified is a true 
eye-blink. That criterion was set based on information about the 
boundaries detected using the LPC entropy feature.   

4. Boundary Detection by LPC Entropy Profile  

A signal picked up while a subject blinks his/her eyes looks 
like a kind of burst with short duration. Judging from the fact that 
eye-blinks are characterized mainly by such bursts, and thus 

apparently discriminated from the ones obtained by clenching of 
the teeth, whether or not there exists a burst in the incoming 
signal gives a decisive clue to the correct identification. In a real-
world case, however, such a distinct classification can rarely be 
expected because various noises generated by unconscious head 
movement also have a few burst components in them, and these 
are mistaken for eye-blinks too often. Fortunately, we found after 
analyzing the signals, that noises arising spontaneously generally 
have bursts with longer durations as compared to those of eye-
blinks. And in many cases, the number of bursts is more than 
two. Therefore, an exact detection of the starting and ending 
points of a burst signal, namely the boundaries, must be needed 
for higher recognition rates. Figure 2 depicts two signals that are 
quite different from each other in terms of features characterizing 
a burst, such as the duration and number of bursts. 

To find these features, we used LPC entropy information as 
the key factor for boundary detection [2], [3]. This algorithm is 
carried out on the LPCs extracted to train HMMs in an earlier 
stage. First, the probability distribution for each LPC 
coefficient is determined within each frame. The LPC entropy 
for each frame is then computed as  
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where a(n, j) means the j-th LPC coefficient of the n-th frame and 
K is the LPC order. Assuming the number of total frames in the 
signal is N, the following LPC entropy profile ρ can be obtained: 

],...,[ 21 NHHH=ρ .                (3) 

Second, based on this LPC entropy profile, an appropriate 
threshold Γ is chosen for determining the existence of a burst 
within the acquired signal. The formula for finding the 
threshold is expressed in (4), and the value α is determined by 
trial-and-error. In our case, 0.95 is adopted as an optimal value. 
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Once a threshold is determined, the part over the threshold is 
considered to be a burst, and all the other parts correspond to 
either silence or noise. The boundaries of a burst found by this 
end-point detection algorithm are represented as dotted lines in Fig. 
2. Without such additional processing, the noise signal in Fig. 2(b) 
might be classified as an eye-blink, as shown in Fig. 2(a), in terms 
of the likelihood value evaluated in each HMM in the 
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Fig. 3. The appearance of the developed interface system and a flow chart showing the entire operation of a power-wheelchair. 
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classification phase. The criteria on two factors, namely the 
duration and number of bursts, are as follows: 
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where Si, Se, Sn represent an incoming signal, an eye-blink, and the 
noise signal, respectively, and γ, dj, δ1, δ2 indicate the number of 
bursts, the duration of each burst, and the lower and upper limits 
of the duration, respectively. Here, δ1 and δ2 were determined by 
averaging the durations of all the bursts found in the training data. 
Through the aforementioned entropy information, we could attain 
a much better classification rate, which amounts to about 99.1%.  

III. The Control of a Power-Wheelchair  

For practical application, a stand-alone interface system 
employing a general-purpose digital signal processor (DSP) 
(TMS320-C6711B) was implemented and its validity was tested 
on a power-wheelchair. The size of this system is 12 × 11 × 5.5 cm, 
and the control commands decoded in the DSP, which are 
associated with particular directions such as left, right, forward, or 
backward, are transferred to the 5-switch module (manufactured 
by Dynamic Controls, New Zealand) of the power-wheelchair 
via the RS232C port. The control of a power-wheelchair by the 
proposed interface is done for two modes, STOP and DRIVE 
modes. As might be understood easily, if a wheelchair in STOP 
mode begins to move, its status changes into DRIVE mode and 
stays in that mode until the wheelchair stops. Figure 3 shows the 
appearance of the developed interface and a flow chart illustrating 
the entire operation of the power-wheelchair in more detail. In the 
figure, Ⓛ, Ⓡ, Ⓑ, and Ⓕ indicate the classified results for actions 

a subject made to generate control commands during each 
operation mode. According to the rules defined, the subject can 
make the wheelchair turn left slowly while going straight by 
clenching the left molar teeth, and stop it by clenching both left 
and right molar teeth for a short time.  

IV. Conclusion 

An alternative interface introduced in this letter enables many 
severely disabled people to control an assistive system for 
themselves, relying on the biosignals captured while contracting 
muscles on their face. From the performance test of the interface 
for the disabled in the National Rehabilitation Center in Korea, it 
was discovered that all the participants could drive a power-
wheelchair in every direction they wanted within about 40 
minutes. Although an approach to adopt LPC parameters and an 
LPC entropy profile as features was found effective, if the 
combination of available actions is also allowed to make another 
command, more elaborate operation of a power-wheelchair may 
be possible, reducing error rates more significantly.  
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