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ABSTRACT⎯This letter presents a new approach to 
synthesize the resonator filters of an arbitrary topology. This 
method employs an optimization method based on the relation 
between the polynomial coefficients of the transfer function and 
those of the S21 from the coupling matrix. Therefore, this new 
method can also be applied to self-equalized filters that were not 
considered in the conventional optimization methods. Two 
microwave filters, a symmetric 4-pole filter with four transmission 
zeros (TZs) and an asymmetric 8-pole filter with seven TZs, are 
synthesized using the present method for validation. Excellent 
agreement between the response of the transfer function and that 
of the synthesized S21 from the coupling matrix is shown. 

Keywords⎯ Microwave filter, coupling matrix, synthesis. 

I. Introduction 

In wireless communication systems, stringent specifications 
of filters such as high frequency selectivity and group delay 
equalization are required to meet efficient spectrum utilization 
and to reduce the distortion in a digital data transmission. A 
modern high-performance filter demands a new topology of 
the coupling network containing the finite transmission zeros 
(TZs) because the number of TZs is directly related to 
frequency selectivity and group delay equalization.  

In [1], a synthesis method of a 4-pole filter with two TZs was 
proposed by solving the nonlinear equations based on the 
relation between the coefficients of the transfer function and 
coupling matrix. This method is very useful for a 4-pole filter, 
but no other equations were provided for an arbitrary  
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topology. The efficient synthesis methods using a coupling matrix 
rotation for more than a 4th-degree filter were proposed in [2]-[5]. 
However, an appropriate approach should be obtained 
individually for a new topology because there is no general rule 
for determining the sequence of matrix rotations. Unfortunately, it 
is difficult to derive the equations to solve for rotation angle 
analytically. In [6], a synthesis method was proposed using a 
gradient-based optimization technique with simple cost function. 
Since the amplitude of S21 and S11 was evaluated only at the 
critical frequencies such as ±j1, zeros, and poles, this approach is 
effective to synthesize the resonator filters containing pure 
imaginary TZs for high-frequency selectivity. However, the goal 
function including information about the phase of S21 is not 
provided, and there is no consideration for group delay 
equalization. Therefore, a general coupling matrix synthesis 
approach is required with respect to the given transfer function 
containing both pure imaginary and complex zeros for high-
frequency selectivity and group delay equalization.  

In this letter, we propose a new approach to synthesize the 
resonator filters of an arbitrary topology. First, the simple formulas to 
compute the polynomial coefficients of the S21 from the coupling 
matrix are derived. Comparison between the polynomial coefficients 
of the target transfer function and those of the S21 from the coupling 
matrix gives us the exact goal function with an arbitrary frequency 
characteristic containing both pure imaginary TZs and complex TZs. 
To validate this method using this goal function, a symmetric 4-pole 
filter and an asymmetric 8-pole filter are synthesized. Excellent 
agreement between the response of the transfer function and that of 
the S21 from the coupling matrix is shown. 

II. Synthesis Method 

Generally, the transfer function of the filter is written as   
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where ε is a ripple factor, s is a complex frequency variable, 
E(s) is an N-th-degree Hurwitz polynomial, N is the degree of 
the filtering function, and P(s) is the characteristic polynomial 
containing the TZs.  

Figure 1 shows the coupling scheme of the general N-
coupled filter network with source/load multi-resonator 
coupling. The transmission coefficient S21 is given as in [6] as 
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Here, A is a (N+2) × (N+2) matrix containing complex 
frequency variable and frequency-independent coupling 
coefficients, Mp,q. 
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Fig. 1. Coupling and routing diagram of N-coupled filter network. 
R: resonator, M: mutual coupling, solid lines: direct
coupling, dashed lines: cross coupling. 
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The transmission coefficient defined in (2) can be expressed 
in terms of the denominator and numerator polynomials as  
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where Di and Ni are the coefficients of denominator and 
numerator polynomials, respectively. By comparing (2) and (3), 
it is known that the determinant of A is identical to the 
denominator polynomial D(s).  

The coefficients of D(s) can be obtained using the i-th 
derivative of the determinant of A as  
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Here, the derivative of the determinant of A with respect to s is 
the sum of N+2 determinants obtained by replacing the elements 
of each row (column) by their derivatives with respect to s. The 

coefficients of a polynomial for the matrix whose element s exists 
in only the diagonal elements can be expressed as the sum of the 
principal minors [7]. Therefore, the coefficients of the denominator 
polynomial can be formulated simply as summarized in (5).  

The numerator of the transmission coefficient, shown in (2), 
can be obtained from the determinant of the matrix of which 
the elements of the (N+2)th row and the first column are 
removed. First of all, s should be put in the diagonal elements 
to apply the similar method for the denominator. After moving 
s to the diagonal element by interchanging its row (column), 
we can obtain the coefficients of the numerator polynomial as 
(6) using the similar approach for the denominator polynomials.  
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The coefficients of the denominator polynomials and the 
numerator polynomials given by (5) and (6) should be equal to 
the coefficients of the polynomials given by (1), respectively. 
Thus, the goal function for an arbitrary topology of the 
coupling network can be obtained by comparing the 
polynomial coefficients from the coupling matrix and those of 
the transfer function. The goal function can be expressed as  
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III. Examples  

To verify this present synthesis method, it is applied to a 
symmetric 4-pole filter and an asymmetric 8-pole filter with 
high frequency selectivity and group delay equalization. 

The 4-pole filter has two TZs (±j3.6) for high frequency 
selectivity and two TZs (±0.9805) for group delay equalization 
in the pass-band. The transfer function of this filter is given as  
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From (6), we know that the coupling value (MS,L) between 
source and load should be non-zero in order to have four TZs 
in a 4-pole filter. The coupling scheme of the filter is shown in 
Fig. 2. 

A useful optimization method (solving a set of non-linear 
equations in Mathcad®) is applied to the filter. Because the initial 
couplings in the optimization method depend on its convergence, 
the appropriate values have to be chosen. First of all, the initial 
couplings are chosen from the known coupling matrix of a similar 
configuration filter. Before operating the optimization, the values 
are adjusted by comparing between the sign of the coefficients of 
the transfer function and the coefficients obtained from (5) and (6). 
The coupling values obtained by optimization are shown in (9). 
Figure 3 shows the frequency response of the transfer function in 
(8) and the coupling matrix (M) given by (9). 

 
 

Fig. 2. Coupling scheme of a 4-pole filter with four TZs. 
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Fig. 3. 4-pole filter with four TZs. The results agree within the 
plotting accuracy and cannot be distinguished. 
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The next example is an asymmetric 8-pole filter containing 
three pure imaginary TZs and four complex TZs. The transfer 
function of this filter is given as (10). The coefficients of the 
denominator polynomial have a complex number due to the 
asymmetric frequency response. 
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where  

.10.242,0129.9,9415.7,5478.3
,4737.4,8355.3,9970.3,0008.0

,0270.00006.0,2047.00225.0
,7259.01569.0,6588.15732.0
,5159.22956.1,9606.20592.2
,0673.23538.2,2848.17508.1

234

5678

01

23

45

67

jPjPP
jPPjPP

jEjE
jEjE
jEjE
jEjE

−==−=−=
=−===

+=+=
+=+=
+=+=
+=+=

ε

 

The same optimization method is applied to this filter having 
the coupling scheme as shown in Fig. 4. Because the coefficients  
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(11)

of the denominator polynomial have both real and imaginary 
numbers, 24 non-linear equations can be obtained for the goal 
function. Figure 5 shows the frequency response of transfer 
function (10) and the coupling matrix (M) given by (11). 

Note that the response of the transfer function and that of the 
coupling matrix cannot be distinguished in the two examples. 
This agreement verifies the presented synthesis method for the 
presented topology of the resonator filter. 

 
 

Fig. 4. Coupling scheme of an 8-pole filter with seven TZs. 
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Fig. 5. 8-pole filter with seven TZs. The results agree within the 
plotting accuracy and cannot be distinguished. 
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IV. Conclusion 

This letter has presented the generalized synthesis method 
for microwave resonator filters. The relation between the 
coefficients of the transfer function and the coupling matrix has 
been also given for the straightforward application of this new 
method. This synthesis method has been applied to the 
symmetric 4-pole filter with four TZs and the asymmetric 8-
pole filter with seven TZs. The frequency responses of the 
coupling matrices have been shown to agree well with those of 
the transfer functions. 
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