
212   Myungeun Lim et al. © 2015             ETRI Journal, Volume 37, Number 2, April 2015 
http://dx.doi.org/10.4218/etrij.15.2314.0144 

As the amount of re-sequencing genome data grows, 
minimizing the execution time of an analysis is required. 
For this purpose, recent computing systems have been 
adopting both high-performance coprocessors and host 
processors. However, there are few applications that 
efficiently utilize these heterogeneous computing resources. 
This problem equally refers to the work of single 
nucleotide polymorphism (SNP) detection, which is one of 
the bottlenecks in genome data processing. In this paper, 
we propose a method for speeding up an SNP detection by 
enhancing the utilization of heterogeneous computing 
resources often used in recent high-performance 
computing systems. Through the measurement of 
workload in the detection procedure, we divide the SNP 
detection into several task groups suitable for each 
computing resource. These task groups are scheduled 
using a window overlapping method. As a result, we 
improved upon the speedup achieved by previous open 
source applications by a magnitude of 10. 
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I. Introduction 

With the development of next-generation sequencing (NGS) 
technology [1], it has become possible to obtain human 
genome data at a relatively low cost. As the volume of genomic 
data is increasing, genomic researches using NGS data, such  
as variation discovery, de novo assembly, and genome-wide 
profiling, are being actively explored. The 1000 Genomes 
Project [2], which focuses on searching for rare variants that 
have less than 1% minor allele frequency of a normal genome, 
and the Cancer Genome Atlas [3], which is dedicated to the 
search for single-nucleotide variants and structural variants 
related to major cancers, are representative NGS applications. 

Data obtained from NGS technology are sets of genome data 
fragments. Variation discovery, often called variation detection, 
is a procedure used to identify variant sites such as single-
nucleotide or structural variants from the re-sequenced data. 
Single nucleotide polymorphism (SNP) refers specifically to an 
amino acid that appears differently from a reference genome 
within a locus of a given genome sequence. As demonstrated 
by the above representative researches, SNP has become 
primitive information in genome-wide association or disease-
related studies. 

In the early stages of SNP detection research, a cut-off was 
applied to the allele count and quality score when determining 
the SNP [4]–[5], but there are problems with a low accuracy of 
SNP detection when the sequencing depth is low. To minimize 
this imprecision, a system using statistical methods such as the 
Bayesian probability was developed to enhance the accuracy. 
Samtools’ mpileup [6], SOAPsnp [7], and Genome Analysis 
ToolKit’s (GATK) UnifiedGenotyper [8]–[9] are the most 
prominent systems for SNP detection based on a Bayesian 
probability model. 
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The amount of NGS data is huge, especially in the case of a 
whole genome. Moreover, as the cost of generating NGS data 
decreases, the amount of genome sequencing data is increasing 
even faster. The amount of raw data of a whole genome for 
about 30-fold coverage is over 200 GB, and the mapping 
results to the reference genome total about 90 GB. Thus, a 
significant amount of time is required in SNP detection. 
Various efforts have been made to expedite the analysis 
pipeline, including parallel computing using coprocessors such 
as a graphics processing unit (GPU) and distributed processing 
techniques such as Hadoop’s map-reduce method [10]. The 
many-core architecture of a GPU makes it possible to execute 
an operation in parallel and manipulate massive data rapidly. In 
the past, GPUs were mainly used in graphics applications [11], 
but more recently, their usage has been extended to the area of 
accelerated computing [12]. In particular, lately, GPUs have 
been used in many applications for genome analysis requiring 
high-performance computing capability. CUDA-SW++ [13] 
and SOAP3 [14] are GPU-based sequence aligners, and 
Amber-GPU [15] is a well-known simulation tool used in 
molecular dynamics. It is also used for genomic data 
compression [16]. However, these are still insufficient when 
we consider that many other software (SW) are required in a 
genome analysis. Moreover, since many techniques using a 
GPU [13]–[16] have used GPU-centric approaches, the aspect 
of efficiently utilizing whole computing resources has been 
overlooked. 

This paper proposes a novel method for reducing SNP 
detection time by enhancing the usability of heterogeneous 
processors in high-performance computing systems. Through a 
workload analysis of the tasks in SNP detection, we classify the 
tasks into CPU- and GPU-oriented tasks. We then propose a 
new task scheduling method to run these heterogeneous tasks 
in parallel and implement an SNP detection system using these 
methods. The proposed system supports the standard I/O 
format BAM and variant list (VCF) to provide the flexibility of 
combining other open-source analysis SW in building a 
genome analysis pipeline 

The contents of this paper are as follows. Section II discusses 
previous researches related to an SNP analysis, and Section III 
describes the structures of the proposed system. Section IV 
details the algorithm used by the suggested method, and 
Section V discusses the experimental results of the system. 
Finally, we provide some concluding remarks in Section VI. 

II. Related Works 

Researches on SNP detection can be subdivided into cutoff-
based and statistical model–based methods. In earlier SNP 
detection methods, the cutoff of each site’s allele count and 

quality score was applied to determine the SNP or genotype. 
For example, if the allele count and quality score satisfy a 
certain ratio and the reference at a particular locus appears 
differently from the allele in a sample data, then this allele is 
classified as a heterozygous genotype. This type of method 
works well with a sufficiently large sequencing depth. 
However, if this requirement is not met, owing to low depth 
data, then a heterozygous allele can be under-called. Hedges 
and others attempted to relieve this problem through the use of 
an empirical threshold [17]. 

To improve the accuracy of the cutoff-based method, 
statistical methods have been developed. Using a Bayesian 
probability formula, the calculation for the genotype likelihood 
at a given site is conducted based on the prior probability and 
likelihood from a given read sequence set. As mentioned 
before, SAMtools’ mpileup, SOAPsnp, and GATK’s 
UnifiedGenotyper are well-known SNP detection tools that use 
the Bayesian probability model. In SOAPsnp [7], the genotype 
likelihood is calculated with several attributes to improve the 
detection accuracy. In addition to the allele type, three attributes 
— the quality score, the allele coordinates in the read, and the 
genotype occurrence — are utilized when calculating the 
genotype likelihood to reduce errors in the sequencing or 
mapping stage and achieve a higher accuracy. The genotype is 
then determined through the calculation of likelihood with the 
highest posterior. SOAPsnp also used the unique prior value 
reflecting the features acquired from interpreting the dbSNP 
[18] variant dataset. 

Another line of research aims at improving the runtime 
performance of genome data analysis tools, including SNP 
detection tools. GSNP [19], a GPU version of SOAPsnp, 
proposes a method of utilizing a GPU to improve its runtime 
performance. The flow of SOAPsnp consists of mapped data 
reading, probability matrix build, genotype count, likelihood 
calculation, posterior calculation, and output consensus. While 
a single-thread CPU can only sequentially process according  
to each site’s reference one at a time, GSNP utilizes the 
parallelization to process multiple sites simultaneously by 
assigning each GPU thread to a site. To minimize the 
bottleneck of GPU memory copying and reduce unnecessary 
calculations of empty data, the representation of the mapping 
information is revised to a sparse structure that consumes less 
GPU memory. 

Crossbow [20] is a genome analysis pipeline in a Hadoop-
based cloud computing environment that uses Bowtie [21] and 
SOAPsnp. When the user uploads the sequence data to the file 
system, the read alignment is processed using Bowtie at the 
map stage concurrently. The aligned reads from the map stage 
are rearranged by a genome partition in the sort step, and the 
SNP of each partition gets called at the reduce stage, which 
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then becomes merged and saved as the output. Because of   
its operation in a cluster environment, Crossbow has the 
advantage of having the ability to expand the system for faster 
data processing. 

While Crossbow attempts to fully utilize the available 
resources in a distributed environment, our method in this 
paper does so in a single computing environment. Our 
approach is different from GSNPs in that we fully exploit both 
the CPU and the GPU in computing SNP, but GSNP has a 
biased usage of the GPU. 

III. Overview of Genome Analysis System 

1. SNP Analysis Pipeline 

Generally, a variation discovery goes through a series of 
analysis steps: read mapping, SAM/BAM format conversion, 
sorting of the mapped results, merging of the sorted results, and 
SNP detection, as shown in Fig. 1. Using NGS technology, a 
whole genome with a length of about three-billion bases is 
broken into small fragments with a length of 35 to 250 base 
pairs. The fragments are called read fragments or read 
sequences. The read fragments in the files are mapped to the 
reference genome sequence. This process is called read 
mapping or read alignment. For read mapping, various tools  
 

can be used; for example, BWA [22], SOAP3 [14], Bowtie 
[21], and so on. The mapping results are written in SAM 
format [6], which is a generic format for storing large 
nucleotide sequence alignments and is widely used in genome 
analysis tools. Because the mapping results are unsorted and 
are often in multiple files, sorting and merging is required 

 

 

Fig. 1. SNP analysis pipeline. 
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Fig. 2. Processor utilization patterns in variation analysis. 
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Fig. 3. Workflow of SNP detection. 
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after alignment. Sorting is based on the mapped position of 
each read fragment in the reference genome. Moreover, for 
efficiency, the SAM format is converted into the BAM format 
before sorting. SAMtools or Picard [23] can be used for the 
conversion, sorting, and merging processes. Finally, variants 
(that is, SNPs) are called in the SNP detection step (SNP 
detection is also called SNP calling). Additional steps such as 
realignment or quality recalibration can be positioned before 
the detection step to improve the accuracy of SNP calling. 

Figure 2 shows the processor utilization pattern of the variant 
analysis pipeline. Here, the x-axis is the timeline and the y-axis 
is the percentage of CPU utilization. From Fig. 2, we can find 
several issues of the analysis pipeline. First, tasks in the 
pipeline have their own characteristics regarding the job 
intensities. For example, read mapping is computing-intensive 
because it spends a lot of time in finding the mapping position 
to the reference. However, format conversion is I/O intensive, 
as it spends a significant amount of time in the file I/O; that is, 
processes other than read mapping suffer from low processor 
utilization. Second, there is an I/O bottleneck between each 
step or within certain steps. Since the result of the previous step, 
or intermediate result, is delivered to the next process as a file, a 
massive file I/O is unavoidable. Thus, both issues need to be 
considered to improve the performance of the pipeline. In 
terms of intensity, SNP detection is computing-intensive rather 
than I/O intensive. However, previous systems mentioned in 
Section II show low processor utilization. 

The issues regarding an I/O bottleneck in the conversion, 
sorting, and merging steps can be dealt with by removing 
temporal-sorted result files generated after or within the sorting 

step. Details of the modified sorting are beyond the scope of 
this paper. In this paper, we tackle the issue of low processor 
utilization in SNP detection using a window overlapping 
strategy. Details are given in the following section.  

2. SNP Detection 

Figure 3 illustrates the procedure of SNP detection. First, 
when the mapped data in the BAM files are loaded, the read is 
resolved by referencing the Compact Idiosyncratic Gapped 
Alignment Report (CIGAR) information. As shown in Fig. 4(a), 
all mapped data contains a read sequence (SEQ), aligned 
position (POS), mapping quality (MAPQ), CIGAR string 
(CIGAR), and base quality (QUAL). CIGAR describes the 
detail mapping state of bases in a read sequence. In Fig. 4(b), 
for example, if the sequence TTAGATAAAGGATACTG  
has CIGAR string 8M2I4M1D3M, then it denotes that    
“A” and “G” are newly inserted bases and “T” is a deleted  
base from the reference sequence, and the other bases are 
matched/mismatched bases. Based on the CIGAR string, the  
 

 

Fig. 4. CIGAR resolving example: (a) example of mapping 
information in SAM/BAM and (b) example of CIGAR 
resolving. 
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Table 1. CIGAR resolving rules. 

CIGAR symbol Action 

I Delete the base from the read 

D Substitute the base with ‘D’ (skipped in pileup stage) 

S Adjust position if it is the start of the read, otherwise skip

M (=, X) Keep the base 

Others Skip (no action) 

 

 
resolved read sequence is built during the CIGAR conversion 
step. The resolving rule of each CIGAR symbol is defined in 
Table 1. 

Second, resolved reads are used to calculate the base 
likelihood matrix. We adopted the posterior probability model 
of SOAPsnp [7], which makes use of the base likelihood 
matrix. Each cell of the matrix contains a probability that 
represents the possibility of a base occurrence at a certain 
position in the read. The matrix has to be calculated on all read 
sequences before calculating the posterior probabilities of each 
genome site. 

Third, the resolved read sequences are piled up. Here, a 
pileup means aligning the mapped read sequences in a memory 
space according to their mapped position in the reference 
sequence, as shown in Fig. 5. This makes it possible for the 
read bases in each position to be dealt with independently. In 
other words, the purpose of the pileup is to build a data 
structure that enables the parallel processing of the independent 
positions. 

Fourth, for each genome site, we compute the likelihoods 
and then the posterior probabilities of the possible genotypes. 
Genotypes are generated from the base characters (that is, A, C, 
G, and T) by pairing two of them. As shown in the Bayesian 
probability model of SOAPsnp, the genotype likelihood of Ti 
in observed data D is represented as 
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where S is the total number of genotypes. For example, S = 4 in 
the case of the human haploid genotype {A, C, G, T}. In (1), if 
the observed allele count at a certain locus is n, then P(D|T) can 
be obtained from 

� � � �
1

| | .
n

k
k

P D T P d T
 

 �               (2) 

As the real DNA is diploid, the genotype probability 
P(dk|T) is calculated practically by the haploid probability; 
that is, 

 

Fig. 5. Pileup example. 
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Using the base likelihood matrix, � �|kP d H  is calculated as 

� � � �� �| , , | .k k k kP d H P o q c H          (4) 

Finally, we decide whether a site is an SNP by comparing the 
genotype having the highest posterior probability with the 
corresponding base in the reference sequence. The detected 
SNP is written to a variant list file in VCF format. 

 As all positions in the reference genome cannot be 
processed at a time due to memory limitation, tasks in the 
dotted box of Fig. 3 are processed per window, which means 
the subsequence in the reference. The size of the window is 
influenced by the size of GPU memory, which is smaller than 
CPU. In the experiment, we set the size of the window as 
32,768. 

IV. Proposed Methods 

As mentioned earlier, our purpose is to minimize the runtime 
of SNP detection by highly utilizing the computing resources. 
This pertains to parallel processing. Several tasks exist in an 
SNP detection that can be processed in parallel. That is, a 
bunch of genome sites, called a window, as shown in Fig. 5, 
can be dealt with in a batch. The tasks in gray rectangles in  
Fig. 3 are the candidates of a parallel execution. Naive 
parallelization does not always indicate a high utilization of the 
computing resources. To achieve our purpose, we analyzed the 



ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al.   217 
http://dx.doi.org/10.4218/etrij.15.2314.0144 

workloads and thereby presented new methods of utilizing 
heterogeneous computing resources. 

1. Building Pileup and Calculating Posterior Probability 

A. Workload Analysis 

The CPU architecture provides relatively smaller numbers of 
cores than a GPU; thus it provides a low degree of parallelism. 
However, the dependency between threads is weak; therefore, 
threads with various types of jobs can be run separately. On the 
other hand, a GPU provides hundreds of cores and can run 
many threads in one clock cycle. Since a GPU can execute the 
same operation for all the threads, the performance is limited 
when the task has many divergences. To assign a proper job  
to the processors, the characteristic of the task has to be 
interpreted in detail. 

As mentioned in Section II, the current GPU-based SNP 
detection utilizes only a GPU in a pileup and probability 
computation; thus, more CPU utilization is required to enhance 
the detection performance. To determine the appropriate jobs 
on a CPU and GPU, we analyzed the workload of the 
computation-related subtasks during the SNP detection 
procedure, as shown in the dotted box in Fig. 3. First, we 
measured the runtime of the GPU_Pileup method, whose 
subtasks, except for fetching the read data, are executed on a 
GPU. We then changed the pileup task into a CPU-runnable 
task and measured the runtime to investigate the possibility of a 
parallel execution with other tasks. In the CPU_Pileup method, 
pileup and fetch tasks are executed on the CPU, while the other 
tasks are executed on the GPU. Table 2 shows the measured 
runtimes of the detection subtasks on human chromosome 1. 
We ignored the runtime of the “call SNP” task in Fig. 3 since 
its runtime is trivial. The MemCpy column in Table 2 is the 
time used in copying data between the CPU and GPU memory. 
Except for the I/O related tasks, a Pileup task takes a 
remarkably large amount of time compared to Likelihood or 
Posterior tasks in GPU_Pileup. It is noticeable that the 
difference in runtime between the Pileup and Likelihood is 
reduced in the CPU_Pileup. From the analysis, it can be 
conjectured that if we partition the tasks into two groups (that is, 
Fetch and Pileup as one group and the remaining tasks in  
Table 2 as the other group), then the workloads of the two 
groups can then be balanced. 

Figure 6 illustrates the occupancy percentage of runtime of 
three subgroups; that is, Fetch + Pileup, MemCpy + Likelihood, 
and Posterior. As shown in the figure, the runtime of      
Fetch + Pileup is similar to the sum of those of      
MemCpy + Likelihood and Posterior. In other words, the 
occupancy ratios are near 50% over the whole of the window 
cycles. 

Table 2. Measured runtimes of subtasks in SNP detection on human 
chromosome 1. 

 Fetch Pileup MemCpy Likelihood Posterior Total 

GPU_Pileup 155.6 88.9 100.7 9.97 32.95 388.12

CPU_Pileup 163.2 52.1 97.1 63.3 30.75 406.45
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Fig. 6. Occupancy graph of subgroups of SNP detection tasks.
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Fig. 7. Execution flow of overlapped window. 
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B. Overlapped Window Scheduling 

Based on the observation, it is inferred that if we run the task 
of Fetch + Pileup and those of MemCpy + Likelihood and 
Posterior on different devices simultaneously (that is, on the 
CPU and GPU, respectively), we can obtain a high utilization 
of computing resources and thereby improve the runtime 
performance.  

The orders of tasks in windows and execution orders of 
windows have to be maintained during executions. Let the 
CPU job be C and GPU job be G, and the workflow is then 
executed with the order of C1, <G1, C2>, <G2, C3>, … , <Gn–1, 
Cn>, Gn, which is also illustrated in Fig. 7(a). By following this  



218   Myungeun Lim et al. ETRI Journal, Volume 37, Number 2, April 2015 
http://dx.doi.org/10.4218/etrij.15.2314.0144 

 

Fig. 8. Thread lock control for overlapped window. 

Algorithm. Window overlapped variation calling. 
 
omp_set_num_thread(2); // manage 2 overlapped window thread 
call genotype() 
{ 
    … 
    init_shared_buffer(); // initialize shared variable buffer 
    #pragma omp parallel  // invoke threads 
    { 
      omp_set_lock(lock_cpu);  // lock CPU job

for all reads in resolved_read_set, 
{ 

          fetch read from resolved_read_set; 
if read.position > window, 
{ 

              pileup(fetched_read_set); 
              copy variables to shared buffer; 
              omp_unset_lock(lock_cpu);  // unlock CPU job 
              omp_set_lock(lock_gpu);    // lock GPU job 
 
              copy variables from shared buffer; 
              copy to device memory; 
              likelihood(); 
              posterior(); 
              call_n_write(); 
              omp_unset_lock(lock_cpu);  // unlock GPU job 

omp_set_lock(lock_cpu);    // lock CPU job 
} 

} 
} 

} 

CPU job

GPU job

 
scheduling scheme, all tasks and windows are kept in order. To 
make it possible to run threads concurrently, the data buffer of 
each thread has to be managed by a double-sized CPU buffer. 

As shown in Fig. 7(b), a pileup fragment exists in a window. 
This is partial pileup data just after the end of window wi. 
However, it actually belongs to window wi+1. We have to 
deliver it from window wi to window wi+1. While it is delivered 
at the end of each window cycle in a non-overlapped method, 
the data are ready to be used by a thread for window wi+1 
immediately after the pileup is ended by the other thread for 
window wi.  

The algorithm of the lock control to manage overlapped 
windows is described in Fig. 8. When the CPU job is locked 
for a thread, the other thread has to wait for the lock to be 
released. We use the same lock control for the GPU jobs. 
Before a thread changes the computing mode, all related data 
and variables have to be copied into shared buffers. The other 
thread loads the data before the execution of a new job. 

2. CIGAR Conversion 

A. Workload Analysis 

A task with low processor utilization still exists in the SNP 
detection routine; that is, the CIGAR conversion. As the 
resolving is processed for all bases in each read sequence, a 
CIGAR conversion requites a lot of time. In the analysis of a 
CIGAR conversion for genome sequencing data (specifically, 
human chromosome 1), we found that CIGAR resolving  

Table 3. CIGAR conversion time. 

Steps Load Resolve Write Others Total 

Time (s) 157.3 82.3 43.1 3.9 286.6 

Rate (%) 55 29 15 1 100 
 

 
occupies 29% of the total CIGAR conversion time, as shown 
in Table 3. As other tasks are regarding the file I/O, the 
resolving task has to be improved to reduce the runtime of the 
CIGAR conversion. 

B. Multithreading in CIGAR Conversion  

We implement a buffered multithreading in the CIGAR 
conversion. BAM-read sequences are pooled to a buffer and 
their CIGARs are then resolved simultaneously using 
multithreads. Because they are related to the file I/O, it is better 
to run them on the CPU rather than on the GPU. 

V. Experiments and Results 

1. Experimental Environments 

Whole human genome data from the Personal Genome 
Institute, Republic of Korea [24] were used to evaluate the 
system performance. The sequence set is composed of 90 
lengths of paired-end reads with a 32-fold depth coverage 
generated using an Illumina Solexa sequencing system. The 
total amount of data is 219 GB, which is divided into 14 files 
with the fastq [25] format. UCSC hg19 (NCBI version 
GRCHh37) is used as a reference sequence. The genetic 
variant data used for verifying the system are dbSNP 132. 

SOAP3 aligner is used to map the 14 sequence files, and 
SAMtools is used to sort and merge the aligned results into one 
BAM file. The amount of the sorted BAM is 87 GB. 

The configured system for testing has two 3.33 GHz Intel 
Xeon E5680 processors with a main memory of 24 GB. The 
GPU used in the system is an NVidia Tesla C2075, which has 
1.15 GHz 448 cores and 6 GB of memory. E5680 provides six 
cores; thus, a maximum of 24 CPU threads can be utilized   
in the system by hyperthreading. OpenMP 3.0 is used to 
implement the CIGAR resolving and CPU_Pileup modules, 
and CUDA 4.0 is used to implement the GPU modules. 

2. Detection Verification 

The quality of the variant detection system can be evaluated 
using various metrics. In an evaluation by Isaac [26], several 
metrics were used, such as the call rate, transition-         
to-transversion ratio (Ts/Tv), heterozygous-to-homozygous  
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Table 4. Estimated verification metrics. 

Filtering condition Calling rate Het/Hom Ts/Tv Novelty rate

q: 40, d: 10, D: 80 95.05 1.76 1.90 6.92 
 

 
variant ratio (Het/Hom), and percent of called SNPs not found 
in dbSNP (novelty rate). These are metrics acquired by 
analyzing real biological data statistically. We measured these 
metrics to evaluate the quality of our variant detection system.  

Before evaluating the metrics, we added filtering options 
regarding the quality and depth to filter the variant results to  
the system. Here, q is the minimum quality score, d is the 
minimum depth, and D is the maximum depth. The depth 
indicates the number of pileup bases in a site. By allowing the 
filtering option to be set, the user can control the output result 
for the purpose of their experiment. 

From the whole genome data and dbSNP under the 
condition of “q:40, d:10, and D:80,” we obtained the results for 
each metric, as shown in Table 4. The detection rate, Het/Hom, 
and Ts/Tv of the system show consistent values compared to 
those of Isaac’s experiment. However, the novelty rate of the 
system is slightly higher than that of Isaac’s, which means that 
the system called more variants as novel SNPs. This situation 
can occur owing to the different data used in the experiment. 
Except for the novelty rate, it can be interpreted that the 
measured results are within an acceptable range. 

3. Runtime Evaluation 

To determine the optimal numbers of threads in the CIGAR 
resolving, we measured the elapsed resolving time of 
chromosome 1 data while changing the number of threads. The 
resolving graph in Fig. 9 shows the elapsed resolving time of 
chromosome 1 data. The BAM size of chromosome 1 is about 
7 GB. Compared to the runtime by a single thread, a runtime 
by 22 threads is decreased with a ratio of 9%. These 22 threads 
are all the available threads since one core (corresponding to two 
threads) needs to be assigned to the operating system. It can be 
observed in the graph that the speedup is slowed down when the 
number of threads exceeds 10. 

Similarly, the runtime of CPU_Pileup shows the best result 
when all available threads are used in the calculation, and the 
performance efficiency is reasonable when the number of 
threads is between 10 and 15. From the result, it is assumed 
that by using these numbers of threads an efficient performance 
in utilizing the CPU threads can be acquired. Thus, we selected 
15 as the number of threads for the resolving and CPU_Pileup. 

To evaluate the performance of the proposed overlapped 
window method, we measured the runtimes of three different  

 

Fig. 9. Estimated times with changes in thread size. 
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Table 5. Comparison of SNP detection time. 

Time (sec) GPU_Pileup CPU_Pileup CPU + GPU 
CIGAR 

converting 
(resolving) 

256.13 
(22.26) 

261.29 
(24.57) 

257.3 
(23.81) 

Fetch 155.64 163.3 149.07* 

Pileup 88.96 52.16 56.01* 

MemCpy 128.51 116.06 119.55+ 

Likelihood 9.97 63.35 65.21+ 

Posterior 32.95 30.75 31.6+ 

Others 158.15 229.04 — 

Total 830.31 915.95 801.47 

Note: * is run on GPU and + is run on CPU 

Table 6. Comparison with other SNP detection SW. 

  GPU + CPU Samtools GATK 

Time (min) 118 1,125 662 

 

 
methods, GPU_Pileup, CPU_Pileup, and CPU + GPU, on 
human chromosome 1 data. Table 5 shows the results of each 
method. Compared to CPU_Pileup, the runtime of CPU + 
GPU using an overlapped window is reduced to about 114.48 s, 
and the improvement is 28.84 s when compared to 
GPU_Pileup. 

It can be seen that the CPU tasks take 215.45 s and the GPU 
tasks take 222.02 s in the overlapped window method, which 
means that the workload balance is reasonable during the 
execution. As the CIGAR conversion requires about 32% of 
the total time, the expected improvement by the overlapped 
window method can have a limited effect. 

It can be seen in Table 5 that the portion of CIGAR resolving 
time in the CIGAR conversion is lowered to less than 10%, 
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which was 29% before applying the multithreading in Table 3. 
The optimization of the CIGAR conversion is proved to be 
effective. 

We also measured other open source SNP detection 
applications to compare the performance of our system. For a 
comparison in a real field situation, we used whole human 
genome sequencing data. Table 6 shows the runtime of the 
three types of SW. The performance of our system is evaluated 
to be 9.5-times faster than SAMtools mpileup and 5.6-times 
faster than GATK’s UnifiedGenotyper. 

VI. Conclusion 

In this paper, methods for enhancing the utilization of 
heterogeneous computing resources were presented to speed 
up the SNP detection process. From the analysis of workloads 
in the detection procedure, we divided the tasks into task 
groups suitable for different computing resources. By 
scheduling these task groups based on a window overlapping 
method, it became possible to run the task groups concurrently. 
In the experiment, we found that the presented methods 
achieved up to 9.5-times the speedup as compared to previous 
open source applications and a 12.5% speedup compared to a 
non-overlapped method. It is expected that the proposed 
system can be utilized to analyze huge amounts of sequencing 
data, such as whole human genome sequencing data. 

Through the parallelization of the analysis components, we 
tried to relieve the bottleneck occurring in the analysis pipeline. 
However, the I/O bottleneck caused by temporary files 
between each analysis step still remains a problem. Further 
approaches have to be tackled to reduce this problem. One 
suggestion is to build a pipeline with multiple parallelizable 
streams of analysis tools, each of which processes such a small 
dataset that the result can be delivered in memory, without file 
writing. This might sacrifice the flexibility of the pipeline 
organization, but the performance will be improved. 
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