
212 Myungeun Lim et al. © 2015 ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.2314.0144

As the amount of re-sequencing genome data grows,
minimizing the execution time of an analysis is required.
For this purpose, recent computing systems have been
adopting both high-performance coprocessors and host
processors. However, there are few applications that
efficiently utilize these heterogeneous computing resources.
This problem equally refers to the work of single
nucleotide polymorphism (SNP) detection, which is one of
the bottlenecks in genome data processing. In this paper,
we propose a method for speeding up an SNP detection by
enhancing the utilization of heterogeneous computing
resources often used in recent high-performance
computing systems. Through the measurement of
workload in the detection procedure, we divide the SNP
detection into several task groups suitable for each
computing resource. These task groups are scheduled
using a window overlapping method. As a result, we
improved upon the speedup achieved by previous open
source applications by a magnitude of 10.

Keywords: SNP detection, overlapped window,
heterogeneous computing resources, CPU-GPU
overlapping, multithreading.

Manuscript received Aug. 25, 2014; revised Jan. 26, 2015; accepted Feb. 3, 2015.
This work was supported by the IT R&D program of MKE/KEIT, Rep. of Korea [10038768,

the Development of Supercomputing System for the Genome Analysis].
Myungeun Lim (melim@etri.re.kr), Minho Kim (kimmh@etri.re.kr), Ho-Youl Jung

(hoyoul.jung@etri.re.kr), Dae-Hee Kim (dhkim98@etri.re.kr), Jae-Hun Choi (jhchoi@
etri.re.kr), and Wan Choi (wchoi@etri.re.kr) are with the IT Convergence Technology Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

Kyu-Chul Lee (corresponding author, kclee@cnu.ac.kr) is with the Department of Computer
Engineering, Chungnam National University, Daejeon, Rep. of Korea.

I. Introduction

With the development of next-generation sequencing (NGS)
technology [1], it has become possible to obtain human
genome data at a relatively low cost. As the volume of genomic
data is increasing, genomic researches using NGS data, such
as variation discovery, de novo assembly, and genome-wide
profiling, are being actively explored. The 1000 Genomes
Project [2], which focuses on searching for rare variants that
have less than 1% minor allele frequency of a normal genome,
and the Cancer Genome Atlas [3], which is dedicated to the
search for single-nucleotide variants and structural variants
related to major cancers, are representative NGS applications.

Data obtained from NGS technology are sets of genome data
fragments. Variation discovery, often called variation detection,
is a procedure used to identify variant sites such as single-
nucleotide or structural variants from the re-sequenced data.
Single nucleotide polymorphism (SNP) refers specifically to an
amino acid that appears differently from a reference genome
within a locus of a given genome sequence. As demonstrated
by the above representative researches, SNP has become
primitive information in genome-wide association or disease-
related studies.

In the early stages of SNP detection research, a cut-off was
applied to the allele count and quality score when determining
the SNP [4]–[5], but there are problems with a low accuracy of
SNP detection when the sequencing depth is low. To minimize
this imprecision, a system using statistical methods such as the
Bayesian probability was developed to enhance the accuracy.
Samtools’ mpileup [6], SOAPsnp [7], and Genome Analysis
ToolKit’s (GATK) UnifiedGenotyper [8]–[9] are the most
prominent systems for SNP detection based on a Bayesian
probability model.

Toward High Utilization of Heterogeneous
Computing Resources in SNP Detection

 Myungeun Lim, Minho Kim, Ho-Youl Jung, Dae-Hee Kim, Jae-Hun Choi, Wan Choi, and Kyu-Chul Lee�

ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al. 213
http://dx.doi.org/10.4218/etrij.15.2314.0144

The amount of NGS data is huge, especially in the case of a
whole genome. Moreover, as the cost of generating NGS data
decreases, the amount of genome sequencing data is increasing
even faster. The amount of raw data of a whole genome for
about 30-fold coverage is over 200 GB, and the mapping
results to the reference genome total about 90 GB. Thus, a
significant amount of time is required in SNP detection.
Various efforts have been made to expedite the analysis
pipeline, including parallel computing using coprocessors such
as a graphics processing unit (GPU) and distributed processing
techniques such as Hadoop’s map-reduce method [10]. The
many-core architecture of a GPU makes it possible to execute
an operation in parallel and manipulate massive data rapidly. In
the past, GPUs were mainly used in graphics applications [11],
but more recently, their usage has been extended to the area of
accelerated computing [12]. In particular, lately, GPUs have
been used in many applications for genome analysis requiring
high-performance computing capability. CUDA-SW++ [13]
and SOAP3 [14] are GPU-based sequence aligners, and
Amber-GPU [15] is a well-known simulation tool used in
molecular dynamics. It is also used for genomic data
compression [16]. However, these are still insufficient when
we consider that many other software (SW) are required in a
genome analysis. Moreover, since many techniques using a
GPU [13]–[16] have used GPU-centric approaches, the aspect
of efficiently utilizing whole computing resources has been
overlooked.

This paper proposes a novel method for reducing SNP
detection time by enhancing the usability of heterogeneous
processors in high-performance computing systems. Through a
workload analysis of the tasks in SNP detection, we classify the
tasks into CPU- and GPU-oriented tasks. We then propose a
new task scheduling method to run these heterogeneous tasks
in parallel and implement an SNP detection system using these
methods. The proposed system supports the standard I/O
format BAM and variant list (VCF) to provide the flexibility of
combining other open-source analysis SW in building a
genome analysis pipeline

The contents of this paper are as follows. Section II discusses
previous researches related to an SNP analysis, and Section III
describes the structures of the proposed system. Section IV
details the algorithm used by the suggested method, and
Section V discusses the experimental results of the system.
Finally, we provide some concluding remarks in Section VI.

II. Related Works

Researches on SNP detection can be subdivided into cutoff-
based and statistical model–based methods. In earlier SNP
detection methods, the cutoff of each site’s allele count and

quality score was applied to determine the SNP or genotype.
For example, if the allele count and quality score satisfy a
certain ratio and the reference at a particular locus appears
differently from the allele in a sample data, then this allele is
classified as a heterozygous genotype. This type of method
works well with a sufficiently large sequencing depth.
However, if this requirement is not met, owing to low depth
data, then a heterozygous allele can be under-called. Hedges
and others attempted to relieve this problem through the use of
an empirical threshold [17].

To improve the accuracy of the cutoff-based method,
statistical methods have been developed. Using a Bayesian
probability formula, the calculation for the genotype likelihood
at a given site is conducted based on the prior probability and
likelihood from a given read sequence set. As mentioned
before, SAMtools’ mpileup, SOAPsnp, and GATK’s
UnifiedGenotyper are well-known SNP detection tools that use
the Bayesian probability model. In SOAPsnp [7], the genotype
likelihood is calculated with several attributes to improve the
detection accuracy. In addition to the allele type, three attributes
— the quality score, the allele coordinates in the read, and the
genotype occurrence — are utilized when calculating the
genotype likelihood to reduce errors in the sequencing or
mapping stage and achieve a higher accuracy. The genotype is
then determined through the calculation of likelihood with the
highest posterior. SOAPsnp also used the unique prior value
reflecting the features acquired from interpreting the dbSNP
[18] variant dataset.

Another line of research aims at improving the runtime
performance of genome data analysis tools, including SNP
detection tools. GSNP [19], a GPU version of SOAPsnp,
proposes a method of utilizing a GPU to improve its runtime
performance. The flow of SOAPsnp consists of mapped data
reading, probability matrix build, genotype count, likelihood
calculation, posterior calculation, and output consensus. While
a single-thread CPU can only sequentially process according
to each site’s reference one at a time, GSNP utilizes the
parallelization to process multiple sites simultaneously by
assigning each GPU thread to a site. To minimize the
bottleneck of GPU memory copying and reduce unnecessary
calculations of empty data, the representation of the mapping
information is revised to a sparse structure that consumes less
GPU memory.

Crossbow [20] is a genome analysis pipeline in a Hadoop-
based cloud computing environment that uses Bowtie [21] and
SOAPsnp. When the user uploads the sequence data to the file
system, the read alignment is processed using Bowtie at the
map stage concurrently. The aligned reads from the map stage
are rearranged by a genome partition in the sort step, and the
SNP of each partition gets called at the reduce stage, which

214 Myungeun Lim et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.2314.0144

then becomes merged and saved as the output. Because of
its operation in a cluster environment, Crossbow has the
advantage of having the ability to expand the system for faster
data processing.

While Crossbow attempts to fully utilize the available
resources in a distributed environment, our method in this
paper does so in a single computing environment. Our
approach is different from GSNPs in that we fully exploit both
the CPU and the GPU in computing SNP, but GSNP has a
biased usage of the GPU.

III. Overview of Genome Analysis System

1. SNP Analysis Pipeline

Generally, a variation discovery goes through a series of
analysis steps: read mapping, SAM/BAM format conversion,
sorting of the mapped results, merging of the sorted results, and
SNP detection, as shown in Fig. 1. Using NGS technology, a
whole genome with a length of about three-billion bases is
broken into small fragments with a length of 35 to 250 base
pairs. The fragments are called read fragments or read
sequences. The read fragments in the files are mapped to the
reference genome sequence. This process is called read
mapping or read alignment. For read mapping, various tools

can be used; for example, BWA [22], SOAP3 [14], Bowtie
[21], and so on. The mapping results are written in SAM
format [6], which is a generic format for storing large
nucleotide sequence alignments and is widely used in genome
analysis tools. Because the mapping results are unsorted and
are often in multiple files, sorting and merging is required

Fig. 1. SNP analysis pipeline.

Whole genome sequence

SNP detection

SAM files

BAM files

VCF file

Fastq files

Read mapping

Converting/sorting

Merging

Merged BAM file

Variant list

Base quality
recalibration

Marking duplicates

Local realignment

Fig. 2. Processor utilization patterns in variation analysis.

1
6,

82
0

13
,6

39
20

,4
58

27
,2

77
34

,0
96

40
,9

15
47

,7
34

54
,5

53

61
,3

72
68

,1
91

75
,0

10

81
,8

29
88

,6
48

95
,4

67
10

2,
28

6

10
9,

10
5

11
5,

92
4

12
2,

74
3

12
9,

56
2

13
6,

38
1

14
3,

20
0

15
0,

01
9

15
6,

83
8

16
3,

65
7

17
0,

47
6

17
7,

29
5

18
4,

11
4

19
0,

93
3

19
7,

75
2

20
4,

57
1

21
1,

39
0

21
8,

20
9

22
5,

02
8

23
1,

84
7

23
8,

66
6

24
5,

48
5

25
2,

30
4

100

90

80

70

60

50

40

30

20

10

0

C
PU

 u
til

iz
at

io
n

(%
)

READ
mapping

SAM
converting

BAM
converting

sorting

BAM
merging

SNP calling
Time (s)

user
iowait

ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al. 215
http://dx.doi.org/10.4218/etrij.15.2314.0144

Fig. 3. Workflow of SNP detection.

Mapped
reads

(BAM)

VCF
Pileuped

allele
Likelihood matrix

CIGAR
converting

Per window

Calculate
matrix

Compute
likelihood

Compute
posterior

CPU

GPU

DATA

Call SNP

Single-thread Multi-thread

Genotype pileup

Resolved
reads

Reference genome

Data flow Process flow

after alignment. Sorting is based on the mapped position of
each read fragment in the reference genome. Moreover, for
efficiency, the SAM format is converted into the BAM format
before sorting. SAMtools or Picard [23] can be used for the
conversion, sorting, and merging processes. Finally, variants
(that is, SNPs) are called in the SNP detection step (SNP
detection is also called SNP calling). Additional steps such as
realignment or quality recalibration can be positioned before
the detection step to improve the accuracy of SNP calling.

Figure 2 shows the processor utilization pattern of the variant
analysis pipeline. Here, the x-axis is the timeline and the y-axis
is the percentage of CPU utilization. From Fig. 2, we can find
several issues of the analysis pipeline. First, tasks in the
pipeline have their own characteristics regarding the job
intensities. For example, read mapping is computing-intensive
because it spends a lot of time in finding the mapping position
to the reference. However, format conversion is I/O intensive,
as it spends a significant amount of time in the file I/O; that is,
processes other than read mapping suffer from low processor
utilization. Second, there is an I/O bottleneck between each
step or within certain steps. Since the result of the previous step,
or intermediate result, is delivered to the next process as a file, a
massive file I/O is unavoidable. Thus, both issues need to be
considered to improve the performance of the pipeline. In
terms of intensity, SNP detection is computing-intensive rather
than I/O intensive. However, previous systems mentioned in
Section II show low processor utilization.

The issues regarding an I/O bottleneck in the conversion,
sorting, and merging steps can be dealt with by removing
temporal-sorted result files generated after or within the sorting

step. Details of the modified sorting are beyond the scope of
this paper. In this paper, we tackle the issue of low processor
utilization in SNP detection using a window overlapping
strategy. Details are given in the following section.

2. SNP Detection

Figure 3 illustrates the procedure of SNP detection. First,
when the mapped data in the BAM files are loaded, the read is
resolved by referencing the Compact Idiosyncratic Gapped
Alignment Report (CIGAR) information. As shown in Fig. 4(a),
all mapped data contains a read sequence (SEQ), aligned
position (POS), mapping quality (MAPQ), CIGAR string
(CIGAR), and base quality (QUAL). CIGAR describes the
detail mapping state of bases in a read sequence. In Fig. 4(b),
for example, if the sequence TTAGATAAAGGATACTG
has CIGAR string 8M2I4M1D3M, then it denotes that
“A” and “G” are newly inserted bases and “T” is a deleted
base from the reference sequence, and the other bases are
matched/mismatched bases. Based on the CIGAR string, the

Fig. 4. CIGAR resolving example: (a) example of mapping
information in SAM/BAM and (b) example of CIGAR
resolving.

(a)

(b)

TTAGATAAAGGATA
TTAGATAA I I GATAD

TTAGATAA GATAT Reference:

Resolved read:
Original read:

QNAME FLAG RNAME POS MAPQ CIGAR RNEXT PNEXT TLEN SEQ QUAL
r001 163 ref 7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *

CTG
CTG
CTG

216 Myungeun Lim et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.2314.0144

Table 1. CIGAR resolving rules.

CIGAR symbol Action

I Delete the base from the read

D Substitute the base with ‘D’ (skipped in pileup stage)

S Adjust position if it is the start of the read, otherwise skip

M (=, X) Keep the base

Others Skip (no action)

resolved read sequence is built during the CIGAR conversion
step. The resolving rule of each CIGAR symbol is defined in
Table 1.

Second, resolved reads are used to calculate the base
likelihood matrix. We adopted the posterior probability model
of SOAPsnp [7], which makes use of the base likelihood
matrix. Each cell of the matrix contains a probability that
represents the possibility of a base occurrence at a certain
position in the read. The matrix has to be calculated on all read
sequences before calculating the posterior probabilities of each
genome site.

Third, the resolved read sequences are piled up. Here, a
pileup means aligning the mapped read sequences in a memory
space according to their mapped position in the reference
sequence, as shown in Fig. 5. This makes it possible for the
read bases in each position to be dealt with independently. In
other words, the purpose of the pileup is to build a data
structure that enables the parallel processing of the independent
positions.

Fourth, for each genome site, we compute the likelihoods
and then the posterior probabilities of the possible genotypes.
Genotypes are generated from the base characters (that is, A, C,
G, and T) by pairing two of them. As shown in the Bayesian
probability model of SOAPsnp, the genotype likelihood of Ti
in observed data D is represented as

� � � � � �
� � � �1

|
| ,

|
i i

i S
x xx

P T P D T
P T D

P T P D T

¦

 (1)

where S is the total number of genotypes. For example, S = 4 in
the case of the human haploid genotype {A, C, G, T}. In (1), if
the observed allele count at a certain locus is n, then P(D|T) can
be obtained from

� � � �
1

| | .
n

k
k

P D T P d T

 � (2)

As the real DNA is diploid, the genotype probability
P(dk|T) is calculated practically by the haploid probability;
that is,

Fig. 5. Pileup example.

C A T T C

A T T C T

T T C T G

T T T G A

C T G A C

Position i

C A T T C
A T T C T

T T C T G

T T T G A

C T G A C

Read 1

Read 2

Read 3

Read 4

Read 5

Pileup

Window

� � � � � �| |
| .

2
k m k n

k

P d H P d H
P d T

�
 (3)

Using the base likelihood matrix, � �|kP d H is calculated as

� � � �� �| , , | .k k k kP d H P o q c H (4)

Finally, we decide whether a site is an SNP by comparing the
genotype having the highest posterior probability with the
corresponding base in the reference sequence. The detected
SNP is written to a variant list file in VCF format.

 As all positions in the reference genome cannot be
processed at a time due to memory limitation, tasks in the
dotted box of Fig. 3 are processed per window, which means
the subsequence in the reference. The size of the window is
influenced by the size of GPU memory, which is smaller than
CPU. In the experiment, we set the size of the window as
32,768.

IV. Proposed Methods

As mentioned earlier, our purpose is to minimize the runtime
of SNP detection by highly utilizing the computing resources.
This pertains to parallel processing. Several tasks exist in an
SNP detection that can be processed in parallel. That is, a
bunch of genome sites, called a window, as shown in Fig. 5,
can be dealt with in a batch. The tasks in gray rectangles in
Fig. 3 are the candidates of a parallel execution. Naive
parallelization does not always indicate a high utilization of the
computing resources. To achieve our purpose, we analyzed the

ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al. 217
http://dx.doi.org/10.4218/etrij.15.2314.0144

workloads and thereby presented new methods of utilizing
heterogeneous computing resources.

1. Building Pileup and Calculating Posterior Probability

A. Workload Analysis

The CPU architecture provides relatively smaller numbers of
cores than a GPU; thus it provides a low degree of parallelism.
However, the dependency between threads is weak; therefore,
threads with various types of jobs can be run separately. On the
other hand, a GPU provides hundreds of cores and can run
many threads in one clock cycle. Since a GPU can execute the
same operation for all the threads, the performance is limited
when the task has many divergences. To assign a proper job
to the processors, the characteristic of the task has to be
interpreted in detail.

As mentioned in Section II, the current GPU-based SNP
detection utilizes only a GPU in a pileup and probability
computation; thus, more CPU utilization is required to enhance
the detection performance. To determine the appropriate jobs
on a CPU and GPU, we analyzed the workload of the
computation-related subtasks during the SNP detection
procedure, as shown in the dotted box in Fig. 3. First, we
measured the runtime of the GPU_Pileup method, whose
subtasks, except for fetching the read data, are executed on a
GPU. We then changed the pileup task into a CPU-runnable
task and measured the runtime to investigate the possibility of a
parallel execution with other tasks. In the CPU_Pileup method,
pileup and fetch tasks are executed on the CPU, while the other
tasks are executed on the GPU. Table 2 shows the measured
runtimes of the detection subtasks on human chromosome 1.
We ignored the runtime of the “call SNP” task in Fig. 3 since
its runtime is trivial. The MemCpy column in Table 2 is the
time used in copying data between the CPU and GPU memory.
Except for the I/O related tasks, a Pileup task takes a
remarkably large amount of time compared to Likelihood or
Posterior tasks in GPU_Pileup. It is noticeable that the
difference in runtime between the Pileup and Likelihood is
reduced in the CPU_Pileup. From the analysis, it can be
conjectured that if we partition the tasks into two groups (that is,
Fetch and Pileup as one group and the remaining tasks in
Table 2 as the other group), then the workloads of the two
groups can then be balanced.

Figure 6 illustrates the occupancy percentage of runtime of
three subgroups; that is, Fetch + Pileup, MemCpy + Likelihood,
and Posterior. As shown in the figure, the runtime of
Fetch + Pileup is similar to the sum of those of
MemCpy + Likelihood and Posterior. In other words, the
occupancy ratios are near 50% over the whole of the window
cycles.

Table 2. Measured runtimes of subtasks in SNP detection on human
chromosome 1.

 Fetch Pileup MemCpy Likelihood Posterior Total

GPU_Pileup 155.6 88.9 100.7 9.97 32.95 388.12

CPU_Pileup 163.2 52.1 97.1 63.3 30.75 406.45

1
19

4
38

7
58

0
77

3
96

6
1,

15
9

1,
35

2
1,

54
5

1,
73

8
1,

93
1

2,
12

4
2,

31
7

2,
51

0
2,

70
3

2,
89

6
3,

08
9

3,
28

2
3,

47
5

3,
66

8
3,

86
1

4,
05

4
4,

24
7

4,
44

0
4,

63
3

4,
82

6
5,

01
9

5,
21

2
5,

40
5

5,
59

8
5,

79
1

5,
98

4
6,

17
7

6,
37

0
6,

56
3

6,
75

6

100
90
80
70
60
50
40
30
20
10
0

Window cycle
O

cc
up

an
cy

 (%
)

Fig. 6. Occupancy graph of subgroups of SNP detection tasks.

MemCpy + Likelihood Posterior Fetch + plieup

Fig. 7. Execution flow of overlapped window.

Thread 1:

Thread 2:

Pileup buffer for wn Recycle
memory :

Synchronized recycle

(a)

(b)

…

…

w1

w2

w3

w4

: CPU job
: GPU job

 Pileup buffer for wn+1

B. Overlapped Window Scheduling

Based on the observation, it is inferred that if we run the task
of Fetch + Pileup and those of MemCpy + Likelihood and
Posterior on different devices simultaneously (that is, on the
CPU and GPU, respectively), we can obtain a high utilization
of computing resources and thereby improve the runtime
performance.

The orders of tasks in windows and execution orders of
windows have to be maintained during executions. Let the
CPU job be C and GPU job be G, and the workflow is then
executed with the order of C1, <G1, C2>, <G2, C3>, … , <Gn–1,
Cn>, Gn, which is also illustrated in Fig. 7(a). By following this

218 Myungeun Lim et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.2314.0144

Fig. 8. Thread lock control for overlapped window.

Algorithm. Window overlapped variation calling.

omp_set_num_thread(2); // manage 2 overlapped window thread
call genotype()
{
 …
 init_shared_buffer(); // initialize shared variable buffer
 #pragma omp parallel // invoke threads
 {
 omp_set_lock(lock_cpu); // lock CPU job

for all reads in resolved_read_set,
{

 fetch read from resolved_read_set;
if read.position > window,
{

 pileup(fetched_read_set);
 copy variables to shared buffer;
 omp_unset_lock(lock_cpu); // unlock CPU job
 omp_set_lock(lock_gpu); // lock GPU job

 copy variables from shared buffer;
 copy to device memory;
 likelihood();
 posterior();
 call_n_write();
 omp_unset_lock(lock_cpu); // unlock GPU job

omp_set_lock(lock_cpu); // lock CPU job
}

}
}

}

CPU job

GPU job

scheduling scheme, all tasks and windows are kept in order. To
make it possible to run threads concurrently, the data buffer of
each thread has to be managed by a double-sized CPU buffer.

As shown in Fig. 7(b), a pileup fragment exists in a window.
This is partial pileup data just after the end of window wi.
However, it actually belongs to window wi+1. We have to
deliver it from window wi to window wi+1. While it is delivered
at the end of each window cycle in a non-overlapped method,
the data are ready to be used by a thread for window wi+1
immediately after the pileup is ended by the other thread for
window wi.

The algorithm of the lock control to manage overlapped
windows is described in Fig. 8. When the CPU job is locked
for a thread, the other thread has to wait for the lock to be
released. We use the same lock control for the GPU jobs.
Before a thread changes the computing mode, all related data
and variables have to be copied into shared buffers. The other
thread loads the data before the execution of a new job.

2. CIGAR Conversion

A. Workload Analysis

A task with low processor utilization still exists in the SNP
detection routine; that is, the CIGAR conversion. As the
resolving is processed for all bases in each read sequence, a
CIGAR conversion requites a lot of time. In the analysis of a
CIGAR conversion for genome sequencing data (specifically,
human chromosome 1), we found that CIGAR resolving

Table 3. CIGAR conversion time.

Steps Load Resolve Write Others Total

Time (s) 157.3 82.3 43.1 3.9 286.6

Rate (%) 55 29 15 1 100

occupies 29% of the total CIGAR conversion time, as shown
in Table 3. As other tasks are regarding the file I/O, the
resolving task has to be improved to reduce the runtime of the
CIGAR conversion.

B. Multithreading in CIGAR Conversion

We implement a buffered multithreading in the CIGAR
conversion. BAM-read sequences are pooled to a buffer and
their CIGARs are then resolved simultaneously using
multithreads. Because they are related to the file I/O, it is better
to run them on the CPU rather than on the GPU.

V. Experiments and Results

1. Experimental Environments

Whole human genome data from the Personal Genome
Institute, Republic of Korea [24] were used to evaluate the
system performance. The sequence set is composed of 90
lengths of paired-end reads with a 32-fold depth coverage
generated using an Illumina Solexa sequencing system. The
total amount of data is 219 GB, which is divided into 14 files
with the fastq [25] format. UCSC hg19 (NCBI version
GRCHh37) is used as a reference sequence. The genetic
variant data used for verifying the system are dbSNP 132.

SOAP3 aligner is used to map the 14 sequence files, and
SAMtools is used to sort and merge the aligned results into one
BAM file. The amount of the sorted BAM is 87 GB.

The configured system for testing has two 3.33 GHz Intel
Xeon E5680 processors with a main memory of 24 GB. The
GPU used in the system is an NVidia Tesla C2075, which has
1.15 GHz 448 cores and 6 GB of memory. E5680 provides six
cores; thus, a maximum of 24 CPU threads can be utilized
in the system by hyperthreading. OpenMP 3.0 is used to
implement the CIGAR resolving and CPU_Pileup modules,
and CUDA 4.0 is used to implement the GPU modules.

2. Detection Verification

The quality of the variant detection system can be evaluated
using various metrics. In an evaluation by Isaac [26], several
metrics were used, such as the call rate, transition-
to-transversion ratio (Ts/Tv), heterozygous-to-homozygous

ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al. 219
http://dx.doi.org/10.4218/etrij.15.2314.0144

Table 4. Estimated verification metrics.

Filtering condition Calling rate Het/Hom Ts/Tv Novelty rate

q: 40, d: 10, D: 80 95.05 1.76 1.90 6.92

variant ratio (Het/Hom), and percent of called SNPs not found
in dbSNP (novelty rate). These are metrics acquired by
analyzing real biological data statistically. We measured these
metrics to evaluate the quality of our variant detection system.

Before evaluating the metrics, we added filtering options
regarding the quality and depth to filter the variant results to
the system. Here, q is the minimum quality score, d is the
minimum depth, and D is the maximum depth. The depth
indicates the number of pileup bases in a site. By allowing the
filtering option to be set, the user can control the output result
for the purpose of their experiment.

From the whole genome data and dbSNP under the
condition of “q:40, d:10, and D:80,” we obtained the results for
each metric, as shown in Table 4. The detection rate, Het/Hom,
and Ts/Tv of the system show consistent values compared to
those of Isaac’s experiment. However, the novelty rate of the
system is slightly higher than that of Isaac’s, which means that
the system called more variants as novel SNPs. This situation
can occur owing to the different data used in the experiment.
Except for the novelty rate, it can be interpreted that the
measured results are within an acceptable range.

3. Runtime Evaluation

To determine the optimal numbers of threads in the CIGAR
resolving, we measured the elapsed resolving time of
chromosome 1 data while changing the number of threads. The
resolving graph in Fig. 9 shows the elapsed resolving time of
chromosome 1 data. The BAM size of chromosome 1 is about
7 GB. Compared to the runtime by a single thread, a runtime
by 22 threads is decreased with a ratio of 9%. These 22 threads
are all the available threads since one core (corresponding to two
threads) needs to be assigned to the operating system. It can be
observed in the graph that the speedup is slowed down when the
number of threads exceeds 10.

Similarly, the runtime of CPU_Pileup shows the best result
when all available threads are used in the calculation, and the
performance efficiency is reasonable when the number of
threads is between 10 and 15. From the result, it is assumed
that by using these numbers of threads an efficient performance
in utilizing the CPU threads can be acquired. Thus, we selected
15 as the number of threads for the resolving and CPU_Pileup.

To evaluate the performance of the proposed overlapped
window method, we measured the runtimes of three different

Fig. 9. Estimated times with changes in thread size.

574.3

1 5 10 15 20 25
Number of threads

600

500

400

300

200

100

0

Ti
m

e
(s

)

269.7

122.9

50.7 65.8
29.8

65.6
31.0

54.7
26.4

52.2
24.6

CIGAR resolving

CPU_pileup

Table 5. Comparison of SNP detection time.

Time (sec) GPU_Pileup CPU_Pileup CPU + GPU
CIGAR

converting
(resolving)

256.13
(22.26)

261.29
(24.57)

257.3
(23.81)

Fetch 155.64 163.3 149.07*

Pileup 88.96 52.16 56.01*

MemCpy 128.51 116.06 119.55+

Likelihood 9.97 63.35 65.21+

Posterior 32.95 30.75 31.6+

Others 158.15 229.04 —

Total 830.31 915.95 801.47

Note: * is run on GPU and + is run on CPU

Table 6. Comparison with other SNP detection SW.

 GPU + CPU Samtools GATK

Time (min) 118 1,125 662

methods, GPU_Pileup, CPU_Pileup, and CPU + GPU, on
human chromosome 1 data. Table 5 shows the results of each
method. Compared to CPU_Pileup, the runtime of CPU +
GPU using an overlapped window is reduced to about 114.48 s,
and the improvement is 28.84 s when compared to
GPU_Pileup.

It can be seen that the CPU tasks take 215.45 s and the GPU
tasks take 222.02 s in the overlapped window method, which
means that the workload balance is reasonable during the
execution. As the CIGAR conversion requires about 32% of
the total time, the expected improvement by the overlapped
window method can have a limited effect.

It can be seen in Table 5 that the portion of CIGAR resolving
time in the CIGAR conversion is lowered to less than 10%,

220 Myungeun Lim et al. ETRI Journal, Volume 37, Number 2, April 2015
http://dx.doi.org/10.4218/etrij.15.2314.0144

which was 29% before applying the multithreading in Table 3.
The optimization of the CIGAR conversion is proved to be
effective.

We also measured other open source SNP detection
applications to compare the performance of our system. For a
comparison in a real field situation, we used whole human
genome sequencing data. Table 6 shows the runtime of the
three types of SW. The performance of our system is evaluated
to be 9.5-times faster than SAMtools mpileup and 5.6-times
faster than GATK’s UnifiedGenotyper.

VI. Conclusion

In this paper, methods for enhancing the utilization of
heterogeneous computing resources were presented to speed
up the SNP detection process. From the analysis of workloads
in the detection procedure, we divided the tasks into task
groups suitable for different computing resources. By
scheduling these task groups based on a window overlapping
method, it became possible to run the task groups concurrently.
In the experiment, we found that the presented methods
achieved up to 9.5-times the speedup as compared to previous
open source applications and a 12.5% speedup compared to a
non-overlapped method. It is expected that the proposed
system can be utilized to analyze huge amounts of sequencing
data, such as whole human genome sequencing data.

Through the parallelization of the analysis components, we
tried to relieve the bottleneck occurring in the analysis pipeline.
However, the I/O bottleneck caused by temporary files
between each analysis step still remains a problem. Further
approaches have to be tackled to reduce this problem. One
suggestion is to build a pipeline with multiple parallelizable
streams of analysis tools, each of which processes such a small
dataset that the result can be delivered in memory, without file
writing. This might sacrifice the flexibility of the pipeline
organization, but the performance will be improved.

References

[1] M. Metzker, “Sequencing Technologies — the Next Generation,”
Nature Rev. Genetics, vol. 11, Jan. 2010, pp. 31–46.

[2] R.M. Durbin et al., “A Map of Human Genome Variation from
Population-Scale Sequencing,” Nature 467, Oct. 2010, pp. 1061–
1073.

[3] F.S. Collins and A.D. Barker, “Mapping the Cancer Genome,” Sci.
American 296, Mar. 2007, pp. 50–57.

[4] O. Harismendy et al., “Evaluation of Next-Generation
Sequencing Platforms for Population Targeted Sequencing
Studies,” Genome Biol., vol. 10, Mar. 2009, pp. R32–R32.13.

[5] J. Wang et al., “The Diploid Genome Sequence of an Asian

Individual,” Nature 456, Nov. 6, 2009, pp. 60–65.
[6] H. Li et al., “The Sequence Alignment/Map (SAM) Format and

SAMtools,” Bioinformat., vol. 25, no. 16, 2009, pp. 2078–2079.
[7] R. Li et al., “SNP Detection for Massively Parallel Whole-

Genome Resequencing,” Genome Res., vol. 19, May 2009, pp.
1124–1132.

[8] A. McKenna et al., “The Genome Analysis Toolkit: A Mapreduce
Framework for Analyzing Next-Generation DNA Sequencing
Data,” Genome Res., vol. 20, July 2010, pp. 1297–1303.

[9] M.A. DePristo et al., “A Framework for Variation Discovery and
Genotyping Using Next-Generation DNA Sequencing Data,”
Nature Genetics, vol. 10, Apr. 2011, pp. 491–498.

[10] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, no. 51, no. 1, Jan.
2008, pp. 107–113.

[11] D.-H. Ko et al., “Construction and Rendering of Trimmed
Blending Surfaces with Sharp Features on a GPU,” ETRI J., vol.
33, no. 1, Feb. 2011, pp. 89–98.

[12] S. Kim, M.-H. Kyung, and J.-H. Lee, “Relighting 3D Scenes with
a Continuously Moving Camera,” ETRI J., vol. 31, no. 4, Aug.
2009, pp. 429–437.

[13] C. Angermüller, A. Biegert, and J. Soding, “Discriminative
Modelling of Context-Specific Amino Acid Substitution
Probabilities,” Bioinformat., vol. 28, Oct. 2012, pp. 3240–3247.

[14] C.-M. Liu et al., “SOAP3: Ultra-Fast GPU-Based Parallel
Alignment Tool for Short Reads,” Bioinformat., vol. 28, no. 6, Jan.
2012, pp. 878–879.

[15] A.W. Goetz et al., “Routine Microsecond Molecular Dynamics
Simulations with AMBER on GPUs - Part I: Generalized Born,”
J. Chem. Theory Comput., vol. 8, no. 5, Mar. 2012, pp. 1542–
1555.

[16] G. Guo et al., “GPU-Accelerated Adaptive Compression
Framework for Genomics Data,” IEEE Int. Conf. Big Data,
Silicon Valley, CA, USA, Oct. 6–9, 2013, pp. 181–186.

[17] D.J. Hedges et al., “Exome Sequencing of a Multigenerational
Human Pedigree,” PLoS ONE, vol. 4, no. 12, Dec. 2009, e8232.

[18] S.T. Sherry et al., “dbSNP: The NCBI Database of Genetic
Variation,” Nucleic Acid Res., vol. 29, no. 1, 2001, pp. 308–311.

[19] M. Lu et al., “GSNP: A DNA Single-Nucleotide Polymorphism
Detection System with GPU Acceleration,” Int. Conf. Parallel
Process., Taipei, Taiwan, Sept. 13–16, 2011, pp. 592–601.

[20] B. Langmead et al., “Searching for SNPs with Cloud
Computing,” Genome Biol., vol. 10, Nov. 2009, R134.

[21] B. Langmead et al., “Ultrafast and Memory-Efficient Alignment
of Short DNA Sequences to the Human Genome,” Genome Biol.,
vol. 10, Mar. 2009, R25.

[22] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment
with Burrows-Wheeler Transform,” Bioinformat., vol. 25, no. 14,
May 2009, pp. 1754–1760.

[23] Picard Project. Accessed June 16, 2014.

ETRI Journal, Volume 37, Number 2, April 2015 Myungeun Lim et al. 221
http://dx.doi.org/10.4218/etrij.15.2314.0144

http://hpicard.sourceforge. net
[24] Personal Genome Institute. Accessed July 4, 2014. http://pgi.re.kr
[25] P.J.A. Cock et al., “The Sanger FASTQ File Format for

Sequences with Quality Scores, and the Solexa/Illumina FASTQ
Variants,” Nucletic Acids Res., vol. 38, no. 6, 2010, pp. 1767–
1771.

[26] Fast, Accurate and Easy Alignment and Variant Calling with
Isaac Genome Alignment Software and Isaac Variant Caller,
Illumina Inc. Accessed July 4, 2014. http://res.illumina.com/
documents/products/hitepapers/whitepaper_iassc_workflow.pdf

Myungeun Lim received his BE and MS
degrees in computer engineering from Dongguk
University, Seoul, Rep. of Korea, in 1999 and
2001, respectively. He is currently a senior
researcher at the Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea. His research interests

include bioinformatics, data mining, and high-performance computing.

Minho Kim received his BS degree in
electronics engineering from Korea University,
Seoul, Rep. of Korea, in 1997. He received his
MS and PhD degrees in information and
communications engineering from Gwangju
Institute of Science and Technology, Rep. of
Korea, in 1999 and 2006, respectively. He

is currently a senior researcher at the Electronics and
Telecommunications Research Institute, Daejeon, Rep. of Korea. His
research interests include bioinformatics, algorithms, and high-
performance computing.

Ho-Youl Jung received his BS, MS, and PhD
degrees in computer science from Pusan
National University, Rep. of Korea, in 1997,
1999, and 2002, respectively. From 2002 to
2004, he worked as a principal researcher for
the National Genome Research Institute of
Korea Centers for Disease Control and

Prevention, Seoul, Rep. of Korea. He is currently a principal researcher
at the Electronics and Telecommunications Research Institute, Daejeon,
Rep. of Korea. His research interests include bioinformatics, graph
theory, and computational geometry.

Dae-Hee Kim received his BS and MS degrees
in electrical engineering from Inha University,
Incheon, Rep. of Korea, in 1996 and 1998,
respectively. Since he joined the Electronics
and Telecommunications Research Institute,
Daejeon, Rep. of Korea, in 2001, he has been a
senior member of the engineering staff. His

research interests include image processing, health care, human–
computer interaction, and bioinformatics.

Jae-Hun Choi received his BS, MS, and
PhD degrees in computer science from
Chonbuk National University, Jeonju, Rep. of
Korea, in 1994, 1996, and 2000, respectively.
He is currently a principal researcher and
a section manager at the Electronics and
Telecommunications Research Institute,

Daejeon, Rep. of Korea. His research interests include big data, data
mining, ontology, and bio-medical informatics.

Wan Choi received his BS degree in electronic
engineering from Kyungpook National
University, Daegu, Rep. of Korea, in 1991. He
received his MS degree in computer science
from the Korea Advanced Institute of Science
and Technology, Daejeon, Rep. of Korea, in
1985. He joined the Electronics and

Telecommunications Research Institute, Daejeon, Rep. of Korea, in
1985 and is currently both a principal researcher and a department
manager. His research interests include cloud computing, video-service
platforms, and high-performance computing.

Kyu-Chul Lee received his BE, ME, and PhD
degrees in computer engineering from Seoul
National University, Rep. of Korea, in 1984,
1986, and 1996, respectively. In 1994, he
worked as a visiting researcher at the IBM
Almaden Research Center, San Jose, CA, USA.
From 1995 to 1996, he worked as a visiting

professor at the CASE Center at Syracuse University, NY, USA. He is
currently a professor with the Department of Computer Engineering,
Chungnam National University, Daejeon, Rep. of Korea. His current
areas of research interest include multimedia database systems,
hypermedia systems, object-oriented systems, and digital libraries. He
has authored over 100 technical articles published in various journals
and conferences. He is a member of ACM, the IEEE Computer
Society, and the Korea Information Science Society.

	I. Introduction
	II. Related Works
	III. Overview of Genome Analysis System
	IV. Proposed Methods
	V. Experiments and Results
	VI. Conclusion
	References

