
Using biometrics to verify a person’s identity has several 
advantages over the present practice of personal identification 
numbers (PINs) and passwords. To gain maximum security in 
a verification system using biometrics, the computation of the 
verification as well as the storing of the biometric pattern has 
to take place in a smart card. However, there is an open issue 
of integrating biometrics into a smart card because of its 
limited resources (processing power and memory space). In 
this paper, we propose a speaker verification algorithm using 
a support vector machine (SVM) with a very few features, 
and implemented it on a 32-bit smart card. The proposed 
algorithm can reduce the required memory space by a factor 
of more than 100 and can be executed in real-time. Also, we 
propose a hardware design for the algorithm on a field-
programmable gate array (FPGA)-based platform. Based on 
the experimental results, our SVM solution can provide 
superior performance over typical speaker verification 
solutions. Furthermore, our FPGA-based solution can achieve 
a speed-up of 50 times over a software-based solution. 
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I. Introduction 

Traditionally, verified users have gained access to secure 
information systems, buildings, or equipment via multiple 
personal identification numbers (PINs), passwords, smart cards, 
and so on. However, these security methods have important 
weakness in that such items can be lost, stolen, or forgotten. In 
recent years, there has been an increasing trend of using 
biometrics, which refers to the personal biological or 
behavioral characteristics used for verification or identification 
[1], [2]. Biometrics relies on ‘something that you are’ and can 
inherently differentiate between a verified person and a 
fraudulent imposter. The problem of resolving the identity of a 
person can be categorized into two distinct types. Verification 
matches a person’s claimed identity to his or her previously 
enrolled pattern (a ‘one-to-one’ comparison). However, 
identification identifies a person from the entire enrolled 
population by searching within a database for a match (a ‘one-
to-many’ comparison). 

In typical biometric verification systems, the biometric 
patterns are often stored in a central database. In a case where a 
high security level is needed, however, the database can be 
decentralized into millions of smart cards [3]-[5]. However, 
most of the current implementations of this solution have a 
common characteristic that the biometric verification process is 
solely accomplished out of the smart card. This system is called 
a Store-on-Card because the smart card is used only as a 
storage device to store a biometric pattern. That is, the 
biometric pattern stored in the smart card needs to be non-
securely released into an external card reader to be compared 
with an input pattern. 

To heighten the security level, the verification operation 
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needs to be performed by an in-card processor, not an external 
card reader [6]-[8]. This system is called a Match-on-Card 
because the verification operation is executed on the smart card. 
Note that standard PCs on which typical biometric verification 
systems have been executed have a 1 GHz CPU and 128 
Mbytes of memory. On the contrary, a state-of-the-art smart 
card can at most employ a 50 MHz CPU, 64 Kbytes of ROM, 
32 Kbytes of EEPROM, and 8 Kbytes of RAM. Therefore, 
typical biometric verification algorithms may not be executed 
on a smart card successfully. 

Some examples of the biological characteristics are a subject’s 
fingerprints, voice, face shape, iris, and vein distribution. Among 
these, the voice is one of the most promising biometrics because 
of its convenient use. There are many speaker verification 
algorithms such as dynamic time warping (DTW) [9], hidden 
Markov model (HMM) [10], Gaussian mixture model [11], and 
vector quantization [12]. These algorithms mainly focus on 
accuracy rather than execution time or memory requirement 
because they are used for resource-free environments such as a 
PC. Therefore, these algorithms may not be applied to a 
resource-constrained system such as a smart card. 

A support vector machine (SVM), pioneered by Vapnik [13], 
is an example of a universal feed-forward network, and it has 
been widely used for pattern classification and non-linear 
regression in recent years. Wan [14] combined an SVM with a 
speaker verification task. However, this combination requires too 
much memory space to be executed in the smart card system. 

Consider another situation where a customer claims his or 
her identity to a call center where a smart card cannot be used 
for verification. The call center should verify the customer’s 
identity over the telephone, in which case speaker verification 
is the most convenient way. As there may be many verification 
requests simultaneously, a speaker verification system should 
be designed in-hardware to meet customer demands. 

For this paper, we constructed an SVM-based speaker 
verification system with a very small amount of features, and 
implemented it in real-time on a 32-bit smart card. In general, 
speech features are extracted from each frame of utterance. 
Because typical speaker verification systems such as DTW and 
HMM use these features as they are, they cannot be executed in 
the smart card system. To meet the processing power and 
memory space specification of the smart card, we used the time 
average of all speech frames as a feature vector, which resulted in 
remarkable reductions in required memory space and execution 
time. In addition, we proposed a hardware design for an SVM-
based speaker verification system on an FPGA-based platform 
for large-scale applications such as a call center. By carefully 
designing the required functions, we have implemented them on 
a Xilinx Virtex XCV600E. Using a clock rate of 50 MHz, the 
training and testing processes can be performed in 49.46 ms. The 

corresponding software solution could perform the same 
processes in 2,457 ms on a Pentium IV PC. 

The organization of this paper is as follows. Section II explains 
the overview of our speaker verification system, and we briefly 
introduce an SVM for speaker verification in section III. Section 
IV explains the experimental results for a classifier decision, 
while we describe the implementation details of the smart card 
and the proposed memory-efficient SVM-based speaker 
verification algorithm in section V. Section VI discusses our 
hardware design of the SVM-based speaker verification. Finally, 
we make concluding remarks in section VII. 

II. Overview of Speaker Verification 

The speaker verification system shown in Fig. 1 has two 
phases: enrollment and verification. In the off-line enrollment 
phase, utterances from the reference speaker are preprocessed 
and the features are extracted, from which the speaker model is 
trained and stored. In the on-line verification phase, the 
similarity between the enrolled speaker model and the input 
pattern is examined. 

There are two approaches in speaker verification: template-
based and model-based approaches. DTW and HMM are the 
representatives of the former and the latter, respectively. 

DTW performs a global time alignment procedure to 
compare speech patterns, which compensates for the different 
rates of speaking of two patterns. The dynamic path is chosen 
to minimize the accumulated distance along the piece-wise 
linear mapping path. The decision is made depending on this 
dissimilarity score and the predetermined threshold. 

HMM is one of the well-known and widely used statistical 
methods of characterizing the spectral properties of the frame of 
a speech pattern. The underlying assumption of HMM is that the 
speech signal can be characterized as a parametric random 
process, and that the parameters of the stochastic process can be 
determined in a precise, well-defined manner. There is no known 
way to analytically solve for the model parameters that 
maximize the probability of the observation sequence in a closed 
form. We can, however, choose its likelihood function and 
locally maximize it using an iterative procedure such as the 
 

 

Fig. 1. Speaker verification system. 
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expectation-maximization (EM) algorithm [15]. 
In this paper, we used an SVM for a speaker verification 

algorithm. The basic idea of the SVM is to map the training 
data into a higher-dimensional feature space via a kernel, and to 
construct a separating hyperplane with maximum margin there, 
which yields a nonlinear decision boundary in the input space. 
A key idea that is central to the construction of the support 
vector learning algorithm is the inner-product kernel between 
the vectors drawn from the input space. Using the kernel 
function, we can compute the separating hyperplane without 
explicitly carrying out the mapping into the feature space. 
Depending on how this inner-product kernel is generated, we 
may construct different learning machines characterized by 
nonlinear decision surfaces of their own. 

III. Speaker Verification Using an SVM 

SVM is a binary classification method that finds the optimal 
linear decision surface based on the concept of structural risk 
minimization. The decision surface is a weighted combination 
of elements of a training set. These elements are called support 
vectors (SVs), which characterize the boundary between the 
two classes. For the purpose of explanation, we will briefly 
describe an SVM in the following. Details can be found in [16]. 

Consider a given set of examples, 

}1{),(,),,( 11 ±×∈ d
NN yy Rxx ,         (1) 

where xi is the input pattern for the i-th example and yi is the 
corresponding desired response. For typical speaker 
verification systems, N is a very large number, and such 
systems are not feasible to be implemented on a smart card. In 
this paper, to implement speaker verification on a smart card, 
we used the time average of all speech frames as a feature 
vector, and the resultant size of N is equal to the number of 
training utterances. We first assume that the two classes are 
linearly separable for simplicity. Then, we can classify two 
classes by a hyperplane defined by 

0=+ bT xw .                  (2) 

To train an SVM, we should find the hyperplane that has the 
maximum distance from the nearest data. That is, we should 
find a weight-vector w in (3) with property (4). 
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By using a Lagrange formula we can express (3) and (4) as 
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If αo makes Q(α) maximum, then the optimal solution of the 
weight vector wo is 
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and we get the optimal bias bo using following equation 
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where x(s) is the input pattern whose Lagrange multiplier is 
non-zero. 

In the preceding explanation, we have focused on linearly 
separable patterns. Now, we consider the case of linearly non-
separable patterns. The basic idea of a non-linear SVM is to 
perform non-linear mapping of an input vector into high 
dimensional dot product space F, which is called a feature 
space. 

Let ϕ(x) be a non-linear mapping from input space to feature 
space, then the optimal hyperplane is defined by 
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In general, however, the dimension of the feature space is 
very large. Thus, we have the technical problem of computing 
matrix multiplications in the high dimensional space. A Kernel 
method can solve this problem. The inner-product kernel is 
defined by 
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Substituting (10) in (9) and using a Lagrange multiplier, the 
objective function shown in (5) and (6) is now defined by 
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Differentiating Q(α) with respect to the Lagrange multipliers 
yields the following set of simultaneous equations: 
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''' yK =α ,                  (13) 
 

and we can get αi’s using a Gauss-Jordan algorithm: 
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where kij=k(xi,xj) and λ is a Lagrange multiplier of the 
constraint (12). 

For speaker verification, we use the following radial-basis 
function (RBF) kernel (selection of this kernel will be 
discussed in section IV): 
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IV. Experimental Results for Classifier Decision 

To choose the implementation details of the SVM solution, 
we first conducted experiments with various kernels on a 
Pentium IV PC [17]. Also, to evaluate the effectiveness of the 
SVM solution, we compared the recognition accuracy, model 
size, and execution time of the SVM solution with those of 
typical speaker verification solutions such as DTW and HMM. 

We used a Korean database from Pusan National University 
[18] for the experiments. The database consists of four-digit 
strings, isolated words, and short sentences recorded in an 
office environment. After the end-point detection was finished, 
the average time durations of the four-digit strings, isolated 
words, and short sentences were 1.5, 1.48, and 2.06 seconds, 
respectively. The speech was coded into 20 ms frames, with a 
frame advance of 10 ms. Each frame was represented by 
twelve Mel-frequency Cepstral coefficients and their deltas. 
The sampling rate of the speech was 16 KHz, and the 
quantizing rate was 16 bits. 

For our experiment, we used a continuous density HMM. 
Each utterance was modeled by a single left-to-right HMM, 
and the number of states varied with the length of utterance. 
The observation distribution for each state was modeled by a 
multivariate Gaussian mixture distribution with six mixtures, 
and each of the mixture components had a common diagonal 
covariance matrix. 

The data used for training models consist of six repetitions 
for each utterance from 27 speakers (seventeen males and ten 
females). The test portion of the database consists of six 
repetitions of the same words used for training models from 
each speaker. All the experiments were conducted in a text-

dependent mode. 
The speaker verification performance of the SVM with 

various kernels is shown in Table 1. The RBF kernel shows the 
lowest total-error rate (TER), which is defined in equation (16), 
whereas the polynomial kernel with a degree of 3 shows the 
highest TER. 

FRRFARTER +=             (16) 

In the case of a polynomial kernel, the higher the degree of 
polynomial, the lower the performance we could achieve. 
The reason for this performance degradation was that the 
system could not make models for many speakers since the 
training data were insufficient for training high-degree 
polynomial models. The performance using the RBF kernel 
also varied with the parameter values. We achieved the 
lowest TER when we used the RBF kernel with the standard 
deviation of 8. In the following, we used this configuration 
for further evaluation. 

We compared the SVM with typical speaker verification 
algorithms. Table 2 shows the TERs of the SVM, DTW, and 
HMM. These results indicate that the SVM can outperform 
DTW and HMM. In particular, compared to HMM, the most 
widely-used algorithm in speaker verification, the SVM 
solution can reduce the error rate by a factor of two. 

We also compared them in terms of execution times and  
 

Table 1. Total error rates of SVMs with various kernels. 

Kernel TER (%) 

Linear 2.91 

Polynomial (degree = 1) 2.97 

Polynomial (degree = 2) 20.8 

Polynomial (degree = 3) 78.0 

RBF (standard deviation = 2) 3.59 

RBF (standard deviation = 4) 2.31 

RBF (standard deviation = 6) 1.79 

RBF (standard deviation = 8) 1.76 

RBF (standard deviation = 10) 1.79 

RBF (standard deviation = 20) 2.50 

RBF (standard deviation = 30) 3.42 

Table 2. Total error rates of SVM, DTW and HMM. 

Algorithm TER (%) 

SVM (RBF kernel) 1.76 

DTW 5.14 

HMM 4.70 
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model sizes. We measured the execution times on a Pentium 
IV (1.3 GHz) PC running Windows 2000. Table 3 shows that 
the average training time of the SVM is longer than that of 
DTW, and is shorter than that of HMM. The average testing 
time of the SVM, however, is much shorter than that of both 
DTW and HMM. 

The model sizes of the SVM, DTW, and HMM depend on 
the number of support vectors, total frames, and HMM states, 
respectively. Table 4 shows the average model sizes of the 
three algorithms. While the model sizes of DTW and HMM 
were 16.8 Kbytes and 4.6 Kbytes, respectively, the SVM used 
only 1.6 Kbytes to store the model. Therefore, the SVM has a 
great advantage in either large applications where millions of 
people are enrolled or smart card applications where only a few 
Kbytes of RAM is available. By using this memory-efficient 
SVM algorithm, we have successfully realized a Match-on-
Card system for speaker verification. 
 

Table 3. Execution times of SVM, DTW, and HMM. 

Execution time (ms) 
Algorithm 

Training Test 

SVM (RBF kernel) 2,455 2 

DTW 278 28 

HMM 12,515 17 

Table 4. Model sizes of SVM, DTW, and HMM. 

Algorithm Model size (kB) 

SBM (RBF kernel) 1.6 

DTW 16.8 

HMM 4.6 

 

 

V. Implementation on a Smart Card 

Figure 2 shows the smart card system we are developing, 
and its characteristics are summarized as follows. 
 

 

Fig. 2. Targeted smart card system. 
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1. Smart Card 

The in-card processor to manipulate and interpret data is a 
32-bit ARM7TDMI. The memory in the smart card consists of 
three different types. ROM is used for the card operating 
system (COS) and is usually embedded during manufacturing.  

RAM is used by the COS as a temporary storage area. The 
user available data segments are allocated in EEPROM. Table 
5 shows the system specification of the smart card that we are 
developing for a match-on-card [4]. The size of each memory 
type is 64 Kbytes, 8 Kbytes, and 32 Kbytes for ROM, RAM, 
and EEPROM, respectively. The first two types of memory are 
not available for user access. Several levels of access security 
are supported in the EEPROM. The methods of assigning 
access security can be controlled through use of a PIN, 
biometric information, or by using cryptography. The smart 
card also includes a crypto-coprocessor and random number 
generator (RNG) to perform cryptographic algorithms in real-
time. Finally, for the contact interface, the external interface 
module is included. 

Note that, because of the constrained size of the smart card 
chip, we select an ATM7TDMI. However, the maximum 
performance of the in-card processor is 60 million instructions 
per second, and its maximum clock rate is 66 MHz. This 
processing power is very limited compared with the typical 
PCs having 1 GHz. Thus, a careful performance analysis is 
required to integrate the biometrics into the resource-
constrained smart card system. Figure 3 shows a photograph of 
the evaluation system. 
 

Table 5. System specification of the smart card. 

CPU 32-bit RISC processor (ARM7TDMI) 

ROM 64 kB 

RAM 8 kB 

EEPROM 32 kB 

 

 

Fig. 3. Photograph of the evaluation system. 
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VI. A Hardware Implementation for Speaker Verification 2. Speaker Verification on Smart Card 

Figure 4 shows a Match-on-Card for speaker verification. 
Note that the matching step to compute the similarity between 
the speaker model and the input feature is executed on the 
Match-on-Card, whereas the acoustic processing and feature 
extraction steps are executed on the card reader. In the off-line 
enrollment phase, acoustic processing, feature extraction, and 
model training steps are executed in the card reader, and the 
resulting model is stored in the smart card. In the on-line 
verification phase, the features extracted from an utterance 
from an unknown user are transferred to the smart card, where 
the similarity between the enrolled speaker model and input 
feature is then examined. 

As shown in Fig. 5, the architecture of a speaker verification 
system using an SVM consists of the following five logical 
modules: 

 
- Train vector matrix multiplication (VMM) controller 
- Kernel function controller 
- Gauss Jordan controller 
- Support vector table controller 
- Test VMM controller 
 
A flowchart of a speaker verification algorithm using an 

SVM is shown in Fig. 6. A speaker verification system using 
an SVM should handle two processes: training and testing. 
The training process is the process that generates SVs. On the 
contrary, the testing process is the process that verifies the test 
vector using the SVs. The training process computes a K  ́
matrix first, then computes the Lagrange multiplier, and finally 
generates an SV-table. The train VMM and kernel function 
controllers take charge of computing the K  ́matrix. That is, the 
train VMM controller transfers addresses of the stored training 
vectors in SRAM to the kernel function controller. After 
reading the training vectors using the addresses given from the 
VMM controller, the kernel function controller executes the 
RBF kernel function. The train VMM controller computes the 
K  ́matrix with the results returned from the kernel function 
controller. 

In the feature extraction step, the speech signal is blocked into 
frames, and each individual frame is windowed so as to 
minimize the signal discontinuities at the beginning and end of 
each frame. Speech features are then extracted from each frame 
of the windowed signal. In general, there are hundreds of frames 
in an utterance, so thousands of features are needed to represent 
every single utterance. This does not meet the memory space 
specification of the smart card. In this paper, we used the time 
average of all speech frames as a feature vector, so we can 
represent each utterance by a single 24-dimensional vector. This 
is small enough to be processed in the smart card. Furthermore, 
there are remarkable reductions in execution times and memory 
requirements for both enrollment and verification. 
 

 

Fig. 4. Match-on-Card for speaker verification. 
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The Gauss Jordan controller takes charge of computing the 
Lagrange multiplier using the K  ́ matrix. The Gauss Jordan 
controller is composed of a Big Finder, Swap, Big Row, and 
Matrix Calculator, and computes the Lagrange multiplier by 
using the Gauss Jordan algorithm. The support vector table 
controller generates the SV-table from the Lagrange multiplier. 
Finally, the test VMM controller computes the similarity 
between the enrolled SVs and test vector. 

  
 

Fig. 5. The architecture of speaker verification system. 
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Fig. 6. Flowchart of speaker verification algorithm using SVM.
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1. Training Process 

The training process executed by the train VMM controller is 
a process that obtains the matrix of K  ́using the training vector 
described by (14) in section III. Since the dimension of the 
training vector is variable, it is impossible for the system to 
operate with a fixed configuration. Therefore, after storing some 
environment variables in the SRAM, our system should set up 
the configurations. That is, the total number of vectors and their 
dimensions are described by those environment variables 
without considering the dimension of the training vector.  

RBF Kernel Function. As described in section III, the 
kernel function used in this hardware design is an RBF kernel 
function that includes an exponential equation. However, it is 
time-consuming to compute the exponential equation directly 
in-hardware. Thus, the system includes a table that turns the 
 

 

Fig. 7. Block diagram of the training process. 
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result of the RBF kernel function to a specially fixed value 
corresponding to the result of the exponential equation. Then, 
the kernel function is used to compute a new K  ́matrix in the 
training process and verify the test vector in the testing process. 
The main operation of the kernel function is an inner product of 
the vector. The inner product of the d-dimension vector is 
composed of four arithmetical operations with real numbers, 
which is executed in a float calculator. 

Lagrange Multiplier. As described in section III, the 
Lagrange multiplier αi shown in (12) to (15) has to be 
computed to obtain the SVs. The Gauss Jordan controller 
computes the Lagrange multiplier after generating the K  ́
matrix. The K  ́matrix was derived from the result of the RBF 
kernel function using training vectors. The operational steps 
performed by the Gauss Jordan controller are as follows: 

First, it can find the maximum value in the K  ́matrix using 
Big Finder. It then exchanges the maximum row to the row 
corresponding to the maximum column using Swap. Note that 
the maximum row means the row including the maximum 
value, and the maximum column means the column including 
the maximum value. Then, Big Row computes the maximum 
row, and the matrix calculator computes the other rows. Finally, 
it can obtain the Lagrange multipliers after repeating N times. 

SV-table. The Gauss Jordan module writes αi as well as the 
K  ́matrix in the SRAM. Note that αi is a Lagrange multiplier 
of each training vector. Then, the support vector table controller 
reads the Lagrange multipliers from the SRAM. If the 32nd-bit 
value of the Lagrange multiplier is 0, then the corresponding 
training vector is named an SV. The SV-table is generated with 
the address and Lagrange multiplier of the SVs. The support 
vector table controller stores the start address of the SV-table 
and the number of SVs in the SRAM. 

2. Testing Process 

The testing process runs in the test VMM controller. After 
reading the SV-table, the test VMM controller can obtain the 
number of SVs and the addresses of the SVs corresponding to 
the claimed speaker’s ID. Also, the test VMM controller  
 

 

Fig. 8. Block diagram of the testing process. 
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computes the similarity between the enrolled SVs and the test 
vector using the kernel function for verification. 

Based on the evaluation results with a software-based SVM 
solution, we have implemented a hardware-based SVM system 
with RBF kernel. As shown in Fig. 9, our system is composed 
of ARM9, Xilinx FPGA, SRAM, and the PCI I/F to 
communicate with a host. 

We chose the dimension of vector data and the number of 
training vectors as 24 and 31, respectively. Through further 
evaluation, we confirmed that our hardware system formed an 
SV-table, found the SVs, and verified the test vector correctly. 

Also, we adopted Xilinx Virtex XCV600E as our FPGA, and 
the usage rate of the slice was 90 percent. Thus, the number of 
gates of our design was 508,845 as shown in Table 6. When the 
system operated in 50 MHz, the training process time was 48.8 
ms and the testing process time was 0.66 ms. Our FPGA-based 
solution can achieve a speed-up of close to 50 times compared to 
a software-based SVM solution. To the best of our knowledge, 
our solution is the first hardware-based SVM solution for 
speaker verification, and can be used for large-scale applications 
such as customer verification in call centers.  
 

 

Fig. 9. Speaker verification hardware system using SVM. 

ROM FPGA 

CPU

SRAM

PCI I/F 

 
 

Table 6. Required resources in Xilinx Virtex XCV600E. 

Number of slices 6,526 out of 6,912 (94%) 

Number of slice flip flops 10,183 out of 13,824 (74%)

Total number 4 input LUTs 9,974 out of 13,824 (72%)

Total equivalent gate count for design 508,845 

 

 
VII. Concluding Remarks 

The smart card is a model of a very secure device, and 
biometrics is a promising technology for verification. These 
two can be combined for many applications to enhance both 

security and convenience. However, typical biometric 
verification algorithms that have been executed on standard 
PCs may not be executed in real-time in a resource-constrained 
environment. 

In this paper, we have presented a memory-efficient SVM-
based speaker verification algorithm that can be executed in 
real-time on a smart card. The conventional version of an SVM 
requires about 183 Kbytes to store a speaker model, and the 
execution times for training and testing are 353 seconds and 
58.7 milliseconds, respectively. It is not feasible, however, to 
implement the SVM in the smart card. To meet the processing 
power and memory space specification of the smart card, we 
used the time average of all speech frames as a feature vector, 
which resulted in remarkable reductions in required memory 
space and execution time. Consequently, we have successfully 
ported our speaker verification algorithm to the ARM7. Also, 
we have shown an FPGA-based design for speaker verification 
using SVM. To choose the implementation details of the SVM 
solution, we first conducted experiments with various kernels 
on a Pentium IV PC. Also, we compared the accuracy, model 
size, and execution time of the SVM solution with those from 
typical speaker verification solutions. Based on the 
experimental results, our FPGA-based solution using a fixed-
point operation can achieve a speed-up of 50 times over a 
software-based solution using a floating-point operation, and 
can be used in large-scale applications. 

Since an SVM is a very general classification technique, our 
hardware design can be applied to other biometrics such as a 
face, fingerprint, and iris. Also, parallel processing techniques 
can be employed for further improvement in throughput. 
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