
Using biometrics to verify a person’s identity has several
advantages over the present practice of personal identification
numbers (PINs) and passwords. To gain maximum security in
a verification system using biometrics, the computation of the
verification as well as the storing of the biometric pattern has
to take place in a smart card. However, there is an open issue
of integrating biometrics into a smart card because of its
limited resources (processing power and memory space). In
this paper, we propose a speaker verification algorithm using
a support vector machine (SVM) with a very few features,
and implemented it on a 32-bit smart card. The proposed
algorithm can reduce the required memory space by a factor
of more than 100 and can be executed in real-time. Also, we
propose a hardware design for the algorithm on a field-
programmable gate array (FPGA)-based platform. Based on
the experimental results, our SVM solution can provide
superior performance over typical speaker verification
solutions. Furthermore, our FPGA-based solution can achieve
a speed-up of 50 times over a software-based solution.

Keywords: Speaker verification, match-on-card.

Manuscript received Jan. 31, 2005; revised Feb. 22, 2006.
This study was supported in part by research funds from Chosun University, 2005.
Woo-Yong Choi (phone: + 82 42 860 1680, email: wychoi4@etri.re.kr), Dosung Ahn

(email: dosung@etri.re.kr), and Kyo Il Chung (email: kyoil@etri.re.kr) are with Information
Security Research Division, ETRI, Daejeon, Korea.

Sung Bum Pan (phone: + 82 62 230 6897, email: sbpan@chosun.ac.kr) is with the
Department of Information, Control and Instrumentation Engineering, Chosun University,
Gwangju, Korea.

Yongwha Chung (email: ychungy@korea.ac.kr) is with the Department of Computer
Information, Korea University, Seochang, Chungnam, Korea.

Sang-Hwa Chung (email: shchung@pusan.ac.kr) is with the Department of Computer
Engineering, Pusan National University, Busan, Korea.

I. Introduction

Traditionally, verified users have gained access to secure
information systems, buildings, or equipment via multiple
personal identification numbers (PINs), passwords, smart cards,
and so on. However, these security methods have important
weakness in that such items can be lost, stolen, or forgotten. In
recent years, there has been an increasing trend of using
biometrics, which refers to the personal biological or
behavioral characteristics used for verification or identification
[1], [2]. Biometrics relies on ‘something that you are’ and can
inherently differentiate between a verified person and a
fraudulent imposter. The problem of resolving the identity of a
person can be categorized into two distinct types. Verification
matches a person’s claimed identity to his or her previously
enrolled pattern (a ‘one-to-one’ comparison). However,
identification identifies a person from the entire enrolled
population by searching within a database for a match (a ‘one-
to-many’ comparison).

In typical biometric verification systems, the biometric
patterns are often stored in a central database. In a case where a
high security level is needed, however, the database can be
decentralized into millions of smart cards [3]-[5]. However,
most of the current implementations of this solution have a
common characteristic that the biometric verification process is
solely accomplished out of the smart card. This system is called
a Store-on-Card because the smart card is used only as a
storage device to store a biometric pattern. That is, the
biometric pattern stored in the smart card needs to be non-
securely released into an external card reader to be compared
with an input pattern.

To heighten the security level, the verification operation

SVM-Based Speaker Verification System for
Match-on-Card and Its Hardware Implementation

 Woo-Yong Choi, Dosung Ahn, Sung Bum Pan, Kyo Il Chung,
Yongwha Chung, and Sang-Hwa Chung

320 Woo-Yong Choi et al. ETRI Journal, Volume 28, Number 3, June 2006

needs to be performed by an in-card processor, not an external
card reader [6]-[8]. This system is called a Match-on-Card
because the verification operation is executed on the smart card.
Note that standard PCs on which typical biometric verification
systems have been executed have a 1 GHz CPU and 128
Mbytes of memory. On the contrary, a state-of-the-art smart
card can at most employ a 50 MHz CPU, 64 Kbytes of ROM,
32 Kbytes of EEPROM, and 8 Kbytes of RAM. Therefore,
typical biometric verification algorithms may not be executed
on a smart card successfully.

Some examples of the biological characteristics are a subject’s
fingerprints, voice, face shape, iris, and vein distribution. Among
these, the voice is one of the most promising biometrics because
of its convenient use. There are many speaker verification
algorithms such as dynamic time warping (DTW) [9], hidden
Markov model (HMM) [10], Gaussian mixture model [11], and
vector quantization [12]. These algorithms mainly focus on
accuracy rather than execution time or memory requirement
because they are used for resource-free environments such as a
PC. Therefore, these algorithms may not be applied to a
resource-constrained system such as a smart card.

A support vector machine (SVM), pioneered by Vapnik [13],
is an example of a universal feed-forward network, and it has
been widely used for pattern classification and non-linear
regression in recent years. Wan [14] combined an SVM with a
speaker verification task. However, this combination requires too
much memory space to be executed in the smart card system.

Consider another situation where a customer claims his or
her identity to a call center where a smart card cannot be used
for verification. The call center should verify the customer’s
identity over the telephone, in which case speaker verification
is the most convenient way. As there may be many verification
requests simultaneously, a speaker verification system should
be designed in-hardware to meet customer demands.

For this paper, we constructed an SVM-based speaker
verification system with a very small amount of features, and
implemented it in real-time on a 32-bit smart card. In general,
speech features are extracted from each frame of utterance.
Because typical speaker verification systems such as DTW and
HMM use these features as they are, they cannot be executed in
the smart card system. To meet the processing power and
memory space specification of the smart card, we used the time
average of all speech frames as a feature vector, which resulted in
remarkable reductions in required memory space and execution
time. In addition, we proposed a hardware design for an SVM-
based speaker verification system on an FPGA-based platform
for large-scale applications such as a call center. By carefully
designing the required functions, we have implemented them on
a Xilinx Virtex XCV600E. Using a clock rate of 50 MHz, the
training and testing processes can be performed in 49.46 ms. The

corresponding software solution could perform the same
processes in 2,457 ms on a Pentium IV PC.

The organization of this paper is as follows. Section II explains
the overview of our speaker verification system, and we briefly
introduce an SVM for speaker verification in section III. Section
IV explains the experimental results for a classifier decision,
while we describe the implementation details of the smart card
and the proposed memory-efficient SVM-based speaker
verification algorithm in section V. Section VI discusses our
hardware design of the SVM-based speaker verification. Finally,
we make concluding remarks in section VII.

II. Overview of Speaker Verification

The speaker verification system shown in Fig. 1 has two
phases: enrollment and verification. In the off-line enrollment
phase, utterances from the reference speaker are preprocessed
and the features are extracted, from which the speaker model is
trained and stored. In the on-line verification phase, the
similarity between the enrolled speaker model and the input
pattern is examined.

There are two approaches in speaker verification: template-
based and model-based approaches. DTW and HMM are the
representatives of the former and the latter, respectively.

DTW performs a global time alignment procedure to
compare speech patterns, which compensates for the different
rates of speaking of two patterns. The dynamic path is chosen
to minimize the accumulated distance along the piece-wise
linear mapping path. The decision is made depending on this
dissimilarity score and the predetermined threshold.

HMM is one of the well-known and widely used statistical
methods of characterizing the spectral properties of the frame of
a speech pattern. The underlying assumption of HMM is that the
speech signal can be characterized as a parametric random
process, and that the parameters of the stochastic process can be
determined in a precise, well-defined manner. There is no known
way to analytically solve for the model parameters that
maximize the probability of the observation sequence in a closed
form. We can, however, choose its likelihood function and
locally maximize it using an iterative procedure such as the

Fig. 1. Speaker verification system.

Acoustic
processing

Feature
extraction

Model
training Store

Utterances from
reference
speaker

Reference
speaker

prototype Enrollment

MatchAcoustic
processing

Feature
extraction

Utterances from
unknown
speaker Input feature

Verification

ETRI Journal, Volume 28, Number 3, June 2006 Woo-Yong Choi et al. 321

expectation-maximization (EM) algorithm [15].
In this paper, we used an SVM for a speaker verification

algorithm. The basic idea of the SVM is to map the training
data into a higher-dimensional feature space via a kernel, and to
construct a separating hyperplane with maximum margin there,
which yields a nonlinear decision boundary in the input space.
A key idea that is central to the construction of the support
vector learning algorithm is the inner-product kernel between
the vectors drawn from the input space. Using the kernel
function, we can compute the separating hyperplane without
explicitly carrying out the mapping into the feature space.
Depending on how this inner-product kernel is generated, we
may construct different learning machines characterized by
nonlinear decision surfaces of their own.

III. Speaker Verification Using an SVM

SVM is a binary classification method that finds the optimal
linear decision surface based on the concept of structural risk
minimization. The decision surface is a weighted combination
of elements of a training set. These elements are called support
vectors (SVs), which characterize the boundary between the
two classes. For the purpose of explanation, we will briefly
describe an SVM in the following. Details can be found in [16].

Consider a given set of examples,

}1{),(,),,(11 ±×∈ d
NN yy Rxx , (1)

where xi is the input pattern for the i-th example and yi is the
corresponding desired response. For typical speaker
verification systems, N is a very large number, and such
systems are not feasible to be implemented on a smart card. In
this paper, to implement speaker verification on a smart card,
we used the time average of all speech frames as a feature
vector, and the resultant size of N is equal to the number of
training utterances. We first assume that the two classes are
linearly separable for simplicity. Then, we can classify two
classes by a hyperplane defined by

0=+ bT xw . (2)

To train an SVM, we should find the hyperplane that has the
maximum distance from the nearest data. That is, we should
find a weight-vector w in (3) with property (4).

wwT

2
1min (3)

Niby i
T

i ,,1,1)(=≥+xw (4)

By using a Lagrange formula we can express (3) and (4) as

∑∑∑
= ==

−=
N

i

N

j
j

T
ijiji

N

i
i yyQ

1 11 2
1)(max xxαααα (5)

Niy i

N

i
ii ,,1for0and0

1
=≥=∑

=

αα (6)

If αo makes Q(α) maximum, then the optimal solution of the
weight vector wo is

∑
=

=
N

i
iiioo y

1
, xw α , (7)

and we get the optimal bias bo using following equation

1for1)()(=−= ssT
oo yb xw , (8)

where x(s) is the input pattern whose Lagrange multiplier is
non-zero.

In the preceding explanation, we have focused on linearly
separable patterns. Now, we consider the case of linearly non-
separable patterns. The basic idea of a non-linear SVM is to
perform non-linear mapping of an input vector into high
dimensional dot product space F, which is called a feature
space.

Let ϕ(x) be a non-linear mapping from input space to feature
space, then the optimal hyperplane is defined by

0)()(
1

=∑
=

N

i
i

T
ii y xx ϕϕα . (9)

In general, however, the dimension of the feature space is
very large. Thus, we have the technical problem of computing
matrix multiplications in the high dimensional space. A Kernel
method can solve this problem. The inner-product kernel is
defined by

)()(),(i
T

ik xxxx ϕϕ= . (10)

Substituting (10) in (9) and using a Lagrange multiplier, the
objective function shown in (5) and (6) is now defined by

∑∑∑
= ==

−=
N

i

N

j
jijiji

N

i
i kyyQ

1 11
),(

2
1)(max xxαααα , (11)

Niy i

N

i
ii ,,1for0and0

1
=≥=∑

=

αα . (12)

Differentiating Q(α) with respect to the Lagrange multipliers
yields the following set of simultaneous equations:

322 Woo-Yong Choi et al. ETRI Journal, Volume 28, Number 3, June 2006

''' yK =α , (13)

and we can get αi’s using a Gauss-Jordan algorithm:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

NNNNNN

N

N

y

y

kkk

kkk
yyy

11

21

11211

21 0

',',

1

1
0

' yK

α

α
λ

α , (14)

where kij=k(xi,xj) and λ is a Lagrange multiplier of the
constraint (12).

For speaker verification, we use the following radial-basis
function (RBF) kernel (selection of this kernel will be
discussed in section IV):

⎟
⎠
⎞

⎜
⎝
⎛ −−= 2

2 ||||
2

1exp),(iik xxxx
σ

. (15)

IV. Experimental Results for Classifier Decision

To choose the implementation details of the SVM solution,
we first conducted experiments with various kernels on a
Pentium IV PC [17]. Also, to evaluate the effectiveness of the
SVM solution, we compared the recognition accuracy, model
size, and execution time of the SVM solution with those of
typical speaker verification solutions such as DTW and HMM.

We used a Korean database from Pusan National University
[18] for the experiments. The database consists of four-digit
strings, isolated words, and short sentences recorded in an
office environment. After the end-point detection was finished,
the average time durations of the four-digit strings, isolated
words, and short sentences were 1.5, 1.48, and 2.06 seconds,
respectively. The speech was coded into 20 ms frames, with a
frame advance of 10 ms. Each frame was represented by
twelve Mel-frequency Cepstral coefficients and their deltas.
The sampling rate of the speech was 16 KHz, and the
quantizing rate was 16 bits.

For our experiment, we used a continuous density HMM.
Each utterance was modeled by a single left-to-right HMM,
and the number of states varied with the length of utterance.
The observation distribution for each state was modeled by a
multivariate Gaussian mixture distribution with six mixtures,
and each of the mixture components had a common diagonal
covariance matrix.

The data used for training models consist of six repetitions
for each utterance from 27 speakers (seventeen males and ten
females). The test portion of the database consists of six
repetitions of the same words used for training models from
each speaker. All the experiments were conducted in a text-

dependent mode.
The speaker verification performance of the SVM with

various kernels is shown in Table 1. The RBF kernel shows the
lowest total-error rate (TER), which is defined in equation (16),
whereas the polynomial kernel with a degree of 3 shows the
highest TER.

FRRFARTER += (16)

In the case of a polynomial kernel, the higher the degree of
polynomial, the lower the performance we could achieve.
The reason for this performance degradation was that the
system could not make models for many speakers since the
training data were insufficient for training high-degree
polynomial models. The performance using the RBF kernel
also varied with the parameter values. We achieved the
lowest TER when we used the RBF kernel with the standard
deviation of 8. In the following, we used this configuration
for further evaluation.

We compared the SVM with typical speaker verification
algorithms. Table 2 shows the TERs of the SVM, DTW, and
HMM. These results indicate that the SVM can outperform
DTW and HMM. In particular, compared to HMM, the most
widely-used algorithm in speaker verification, the SVM
solution can reduce the error rate by a factor of two.

We also compared them in terms of execution times and

Table 1. Total error rates of SVMs with various kernels.

Kernel TER (%)

Linear 2.91

Polynomial (degree = 1) 2.97

Polynomial (degree = 2) 20.8

Polynomial (degree = 3) 78.0

RBF (standard deviation = 2) 3.59

RBF (standard deviation = 4) 2.31

RBF (standard deviation = 6) 1.79

RBF (standard deviation = 8) 1.76

RBF (standard deviation = 10) 1.79

RBF (standard deviation = 20) 2.50

RBF (standard deviation = 30) 3.42

Table 2. Total error rates of SVM, DTW and HMM.

Algorithm TER (%)

SVM (RBF kernel) 1.76

DTW 5.14

HMM 4.70

ETRI Journal, Volume 28, Number 3, June 2006 Woo-Yong Choi et al. 323

model sizes. We measured the execution times on a Pentium
IV (1.3 GHz) PC running Windows 2000. Table 3 shows that
the average training time of the SVM is longer than that of
DTW, and is shorter than that of HMM. The average testing
time of the SVM, however, is much shorter than that of both
DTW and HMM.

The model sizes of the SVM, DTW, and HMM depend on
the number of support vectors, total frames, and HMM states,
respectively. Table 4 shows the average model sizes of the
three algorithms. While the model sizes of DTW and HMM
were 16.8 Kbytes and 4.6 Kbytes, respectively, the SVM used
only 1.6 Kbytes to store the model. Therefore, the SVM has a
great advantage in either large applications where millions of
people are enrolled or smart card applications where only a few
Kbytes of RAM is available. By using this memory-efficient
SVM algorithm, we have successfully realized a Match-on-
Card system for speaker verification.

Table 3. Execution times of SVM, DTW, and HMM.

Execution time (ms)
Algorithm

Training Test

SVM (RBF kernel) 2,455 2

DTW 278 28

HMM 12,515 17

Table 4. Model sizes of SVM, DTW, and HMM.

Algorithm Model size (kB)

SBM (RBF kernel) 1.6

DTW 16.8

HMM 4.6

V. Implementation on a Smart Card

Figure 2 shows the smart card system we are developing,
and its characteristics are summarized as follows.

Fig. 2. Targeted smart card system.

ARM7 MMU
Crypto-

coprocessor

I/F

RNG EEPROM RAM ROM

Hardware

1. Smart Card

The in-card processor to manipulate and interpret data is a
32-bit ARM7TDMI. The memory in the smart card consists of
three different types. ROM is used for the card operating
system (COS) and is usually embedded during manufacturing.

RAM is used by the COS as a temporary storage area. The
user available data segments are allocated in EEPROM. Table
5 shows the system specification of the smart card that we are
developing for a match-on-card [4]. The size of each memory
type is 64 Kbytes, 8 Kbytes, and 32 Kbytes for ROM, RAM,
and EEPROM, respectively. The first two types of memory are
not available for user access. Several levels of access security
are supported in the EEPROM. The methods of assigning
access security can be controlled through use of a PIN,
biometric information, or by using cryptography. The smart
card also includes a crypto-coprocessor and random number
generator (RNG) to perform cryptographic algorithms in real-
time. Finally, for the contact interface, the external interface
module is included.

Note that, because of the constrained size of the smart card
chip, we select an ATM7TDMI. However, the maximum
performance of the in-card processor is 60 million instructions
per second, and its maximum clock rate is 66 MHz. This
processing power is very limited compared with the typical
PCs having 1 GHz. Thus, a careful performance analysis is
required to integrate the biometrics into the resource-
constrained smart card system. Figure 3 shows a photograph of
the evaluation system.

Table 5. System specification of the smart card.

CPU 32-bit RISC processor (ARM7TDMI)

ROM 64 kB

RAM 8 kB

EEPROM 32 kB

Fig. 3. Photograph of the evaluation system.

Microphone

Host PC

Card
reader

Multi-ICE

Smart card
emulator

board

324 Woo-Yong Choi et al. ETRI Journal, Volume 28, Number 3, June 2006

VI. A Hardware Implementation for Speaker Verification 2. Speaker Verification on Smart Card

Figure 4 shows a Match-on-Card for speaker verification.
Note that the matching step to compute the similarity between
the speaker model and the input feature is executed on the
Match-on-Card, whereas the acoustic processing and feature
extraction steps are executed on the card reader. In the off-line
enrollment phase, acoustic processing, feature extraction, and
model training steps are executed in the card reader, and the
resulting model is stored in the smart card. In the on-line
verification phase, the features extracted from an utterance
from an unknown user are transferred to the smart card, where
the similarity between the enrolled speaker model and input
feature is then examined.

As shown in Fig. 5, the architecture of a speaker verification
system using an SVM consists of the following five logical
modules:

- Train vector matrix multiplication (VMM) controller
- Kernel function controller
- Gauss Jordan controller
- Support vector table controller
- Test VMM controller

A flowchart of a speaker verification algorithm using an

SVM is shown in Fig. 6. A speaker verification system using
an SVM should handle two processes: training and testing.
The training process is the process that generates SVs. On the
contrary, the testing process is the process that verifies the test
vector using the SVs. The training process computes a K ́
matrix first, then computes the Lagrange multiplier, and finally
generates an SV-table. The train VMM and kernel function
controllers take charge of computing the K ́matrix. That is, the
train VMM controller transfers addresses of the stored training
vectors in SRAM to the kernel function controller. After
reading the training vectors using the addresses given from the
VMM controller, the kernel function controller executes the
RBF kernel function. The train VMM controller computes the
K ́matrix with the results returned from the kernel function
controller.

In the feature extraction step, the speech signal is blocked into
frames, and each individual frame is windowed so as to
minimize the signal discontinuities at the beginning and end of
each frame. Speech features are then extracted from each frame
of the windowed signal. In general, there are hundreds of frames
in an utterance, so thousands of features are needed to represent
every single utterance. This does not meet the memory space
specification of the smart card. In this paper, we used the time
average of all speech frames as a feature vector, so we can
represent each utterance by a single 24-dimensional vector. This
is small enough to be processed in the smart card. Furthermore,
there are remarkable reductions in execution times and memory
requirements for both enrollment and verification.

Fig. 4. Match-on-Card for speaker verification.

Acoustic
processing

Feature
extraction

Model
training Store

Acoustic
processing

Feature
extraction Match

Utterances
from reference

speaker Reference
speaker
prototype Enrollment

Verification

Utterances
from reference

speaker
Card reader Smart card

Input feature

The Gauss Jordan controller takes charge of computing the
Lagrange multiplier using the K ́ matrix. The Gauss Jordan
controller is composed of a Big Finder, Swap, Big Row, and
Matrix Calculator, and computes the Lagrange multiplier by
using the Gauss Jordan algorithm. The support vector table
controller generates the SV-table from the Lagrange multiplier.
Finally, the test VMM controller computes the similarity
between the enrolled SVs and test vector.

Fig. 5. The architecture of speaker verification system.

0000h
0001h
0002h
0200h
0201h
0500h
0501h
0520h
0521h
0540h
0541h
0560h

Local bus

Device control

19

32

Train VMM
controller

Kernel function
controller

Float
calculator

Test VMM
controller

Gauss Jordan controller

Big finder controller

Swap controller
Big row controller

Matrix calculator

Support vector
table controller

Environment variables

Train vector

Matrix space

Desired data

SV table

Test vector

19

32

SRAM
control SRAM

4byte

ETRI Journal, Volume 28, Number 3, June 2006 Woo-Yong Choi et al. 325

Fig. 6. Flowchart of speaker verification algorithm using SVM.

Start

Speech data

Preprocessing &
feature extraction

Training
or test?

Training Test

Training
vector Calculate K’ matrix

using kernel function

Calculate K’ matrix
using kernel

function
SVM Perform VMM

Save support
vectors

End

Verification
result

1. Training Process

The training process executed by the train VMM controller is
a process that obtains the matrix of K ́using the training vector
described by (14) in section III. Since the dimension of the
training vector is variable, it is impossible for the system to
operate with a fixed configuration. Therefore, after storing some
environment variables in the SRAM, our system should set up
the configurations. That is, the total number of vectors and their
dimensions are described by those environment variables
without considering the dimension of the training vector.

RBF Kernel Function. As described in section III, the
kernel function used in this hardware design is an RBF kernel
function that includes an exponential equation. However, it is
time-consuming to compute the exponential equation directly
in-hardware. Thus, the system includes a table that turns the

Fig. 7. Block diagram of the training process.

Train VMM
controller

Kernel function
controller

Test VMM
controller

Gauss Jordan
controller

Support vector
table controller

result of the RBF kernel function to a specially fixed value
corresponding to the result of the exponential equation. Then,
the kernel function is used to compute a new K ́matrix in the
training process and verify the test vector in the testing process.
The main operation of the kernel function is an inner product of
the vector. The inner product of the d-dimension vector is
composed of four arithmetical operations with real numbers,
which is executed in a float calculator.

Lagrange Multiplier. As described in section III, the
Lagrange multiplier αi shown in (12) to (15) has to be
computed to obtain the SVs. The Gauss Jordan controller
computes the Lagrange multiplier after generating the K ́
matrix. The K ́matrix was derived from the result of the RBF
kernel function using training vectors. The operational steps
performed by the Gauss Jordan controller are as follows:

First, it can find the maximum value in the K ́matrix using
Big Finder. It then exchanges the maximum row to the row
corresponding to the maximum column using Swap. Note that
the maximum row means the row including the maximum
value, and the maximum column means the column including
the maximum value. Then, Big Row computes the maximum
row, and the matrix calculator computes the other rows. Finally,
it can obtain the Lagrange multipliers after repeating N times.

SV-table. The Gauss Jordan module writes αi as well as the
K ́matrix in the SRAM. Note that αi is a Lagrange multiplier
of each training vector. Then, the support vector table controller
reads the Lagrange multipliers from the SRAM. If the 32nd-bit
value of the Lagrange multiplier is 0, then the corresponding
training vector is named an SV. The SV-table is generated with
the address and Lagrange multiplier of the SVs. The support
vector table controller stores the start address of the SV-table
and the number of SVs in the SRAM.

2. Testing Process

The testing process runs in the test VMM controller. After
reading the SV-table, the test VMM controller can obtain the
number of SVs and the addresses of the SVs corresponding to
the claimed speaker’s ID. Also, the test VMM controller

Fig. 8. Block diagram of the testing process.

Train VMM
controller

Kernel function
controller

Test VMM
controller

Gauss Jordan
controller

Support vector
table controller

326 Woo-Yong Choi et al. ETRI Journal, Volume 28, Number 3, June 2006

computes the similarity between the enrolled SVs and the test
vector using the kernel function for verification.

Based on the evaluation results with a software-based SVM
solution, we have implemented a hardware-based SVM system
with RBF kernel. As shown in Fig. 9, our system is composed
of ARM9, Xilinx FPGA, SRAM, and the PCI I/F to
communicate with a host.

We chose the dimension of vector data and the number of
training vectors as 24 and 31, respectively. Through further
evaluation, we confirmed that our hardware system formed an
SV-table, found the SVs, and verified the test vector correctly.

Also, we adopted Xilinx Virtex XCV600E as our FPGA, and
the usage rate of the slice was 90 percent. Thus, the number of
gates of our design was 508,845 as shown in Table 6. When the
system operated in 50 MHz, the training process time was 48.8
ms and the testing process time was 0.66 ms. Our FPGA-based
solution can achieve a speed-up of close to 50 times compared to
a software-based SVM solution. To the best of our knowledge,
our solution is the first hardware-based SVM solution for
speaker verification, and can be used for large-scale applications
such as customer verification in call centers.

Fig. 9. Speaker verification hardware system using SVM.

ROM FPGA

CPU

SRAM

PCI I/F

Table 6. Required resources in Xilinx Virtex XCV600E.

Number of slices 6,526 out of 6,912 (94%)

Number of slice flip flops 10,183 out of 13,824 (74%)

Total number 4 input LUTs 9,974 out of 13,824 (72%)

Total equivalent gate count for design 508,845

VII. Concluding Remarks

The smart card is a model of a very secure device, and
biometrics is a promising technology for verification. These
two can be combined for many applications to enhance both

security and convenience. However, typical biometric
verification algorithms that have been executed on standard
PCs may not be executed in real-time in a resource-constrained
environment.

In this paper, we have presented a memory-efficient SVM-
based speaker verification algorithm that can be executed in
real-time on a smart card. The conventional version of an SVM
requires about 183 Kbytes to store a speaker model, and the
execution times for training and testing are 353 seconds and
58.7 milliseconds, respectively. It is not feasible, however, to
implement the SVM in the smart card. To meet the processing
power and memory space specification of the smart card, we
used the time average of all speech frames as a feature vector,
which resulted in remarkable reductions in required memory
space and execution time. Consequently, we have successfully
ported our speaker verification algorithm to the ARM7. Also,
we have shown an FPGA-based design for speaker verification
using SVM. To choose the implementation details of the SVM
solution, we first conducted experiments with various kernels
on a Pentium IV PC. Also, we compared the accuracy, model
size, and execution time of the SVM solution with those from
typical speaker verification solutions. Based on the
experimental results, our FPGA-based solution using a fixed-
point operation can achieve a speed-up of 50 times over a
software-based solution using a floating-point operation, and
can be used in large-scale applications.

Since an SVM is a very general classification technique, our
hardware design can be applied to other biometrics such as a
face, fingerprint, and iris. Also, parallel processing techniques
can be employed for further improvement in throughput.

References

[1] A. Jain, R. Bole, and S. Panakanti, Biometrics: Personal
Identification in Networked Society, Kluwer Academic Publishers,
1999.

[2] Y. Seto, “Personal Authentication Technology Using Biometrics,”
SICE, vol. 37, no. 6, 1998, pp. 395-401.

[3] H. Dreifus and T. Monk, Smart Cards, John Wiley & Sons, 1997.
[4] G. Hachez, F. Koeune, and J. Quisquater, “Biometrics, Access

control, Smart cards: A Not So Simple Combination,” Proc. 4th
Working Conf. on Smart Card Research and Advanced
Applications, 2000, pp. 273-288.

[5] B. Struif, “Use of Biometrics for User Verification in Electronic
Signature Smartcards,” Proc. E-smart 2001, LNCS 2140, 2001,
pp. 220-227.

[6] R. Sanchez-Reillo, “Smart Card Information and Operations
Using Biometrics,” IEEE AEES Mag., 2001, pp. 3-6.

[7] R. Sanchez-Reillo, J. Liu-Jimenez, L. Entrena, “Architectures for
Biometric Match-on-Token Solutions,” Proc. BioAW 2004,

ETRI Journal, Volume 28, Number 3, June 2006 Woo-Yong Choi et al. 327

LNCS 3087, 2004, pp. 195-204.
[8] S.B. Pan, Y.H. Gil, D. Moon, Y. Chung, and C.H. Park, “A

Memory-Efficient Fingerprint Verification Algorithm Using a
Multi-Resolution Accumulator Array,” ETRI Journal, vol. 25, no.
3, June 2003, pp. 179-186.

[9] M. Pandit and J. Kittler, “Feature Selection for a DTW-Based
Speaker Verification System,” Proc. ICASSP, vol. 2, 1998, pp.
769-772.

[10] L. Raniber and B.-H. Juang, Fundamentals of Speech Recognition,
Prentice Hall, Englewood Cliffs, New Jersey, 1993.

[11] C.M. del Alamo, F.J. Caminero Gil, C. dela Torre Munilla, and L.
Hernandez Gomez, “Discriminative Training of GMM for
Speaker Identification,” Proc. ICASSP, vol. 1, 1996, pp. 89-92.

[12] J. He, L. Liu, and G. Palm, “A New Codebook Training
Algorithm for VQ-Based Speaker Recognition,” Proc. ICASSP,
vol. 2, 1997, pp. 1091-1094.

[13] B. Scholkopf, K.-K. Sung, C.J.C. Burges, F. Girosi, P. Niyogi, T.
Poggio, and V. Vapnik, “Comparing Support Vector Machines
with Gaussian Kernels to Radial Basis Function Classifiers,”
IEEE Trans. on Signal Processing, vol. 45, no. 11, 1997, pp.
2758-2765.

[14] V. Wan and W.M. Campbell, “Support Vector Machines for
Speaker Verification and Identification,” Proc. IEEE Workshop
on Neural Networks for Signal Processing, vol. 2, Dec. 2000, pp.
775-784.

[15] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum
Likelihood from Incomplete Data via the EM Algorithm,”
Journal of the Royal Statistical Society, vol. 39, no. 1, 1977, pp. 1-
38.

[16] B. Scholkopf, C. Burges, and A. Smola, Advances in Kernel
Methods, The MIT Press, 1999.

[17] W. Choi, K. Lee, and Y. Chung, “Support Vector Machines for
Robust Speaker Verification,” Proc. AICSST, 2002, pp. 262-267.

[18] http://voice.ee.pusan.ac.kr

Woo-Yong Choi received the BS degree in
statistics and the MS degree in electronics
engineering from Pusan National University,
Korea in 1998 and 2000. From 2000 to 2001, he
worked for L&H Korea. Since joining ETRI in
2001, he has been working as a senior member
of engineering staff at the Biometrics

Technology Research Team. His research interests are in biometrics,
speech recognition, and pattern recognition.

Dosung Ahn received the BS degree in
automation engineering in 1992, the MS degree in
mechanical engineering in 1994, and PhD degree
in automation engineering in 2001, all from Inha
University, Korea. He joined ETRI in 2001, and
he is currently a senior member of engineering
staff at Biometric Technology Research Team. His

research interests are in biometrics, pattern recognition, and security.

Sung Bum Pan received the BS, MS, and PhD
degrees in electronics engineering from Sogang
University, Korea, in 1991, 1995, and 1999. He
was a Team Leader at Biometric Technology
Research Team of ETRI from 1999 to 2005. He is
now a Full-time Instructor at Chosun University.
His current research interests are in biometrics,

security, and VLSI architectures for real-time image processing.

Kyo Il Chung received the BS, MS, and PhD
degrees in electronic engineering from Hanyang
University in 1981, 1983, and 1997. He joined
ETRI in 1982 and has been involved with
COMSEC systems. Currently, he is a principal
member of engineering staff and his role is
Director of Information Security infrastructure

Research Group. His research interests are in IC cards, RFID,
biometrics, and information warfare.

Yongwha Chung received the BS and MS
degrees from Hanyang University, Korea, in
1984 and 1986. He received the PhD degree
from the University of Southern California,
USA in 1997. He worked for ETRI from 1986
to 2003 as a Team Leader. Currently, he is an
Associate Professor in the Department of

Computer Information, Korea University. His research interests include
biometrics, security, and performance optimization.

Sang-Hwa Chung received the BS degree in
electrical engineering from Seoul National
University in 1985, the MS degree in computer
engineering from Iowa State University in 1988,
and the PhD degree in computer engineering
from the University of Southern California in
1993. He was an Assistant Professor in the

Electrical and Computer Engineering Department at the University of
Central Florida from 1993 to 1994. He is currently a Professor in the
Computer Engineering Department at Pusan National University,
Korea. His research interests are in the areas of computer architecture
and high-performance computer networking.

328 Woo-Yong Choi et al. ETRI Journal, Volume 28, Number 3, June 2006

	I. Introduction
	II. Overview of Speaker Verification
	III. Speaker Verification Using an SVM
	IV. Experimental Results for Classifier Decision
	V. Implementation on a Smart Card
	VI. A Hardware Implementation for Speaker Verification
	VII. Concluding Remarks

