
Weighted Interesting Sequential Pattern Mining with 

Sequential pattern mining has become an essential task with 
broad applications such as analyzing Web access patterns, 
customer purchase data, DNA sequences and so on. Most 
sequential pattern mining algorithms use a minimum support 
threshold to prune the combinatorial search space. This strategy 
provides the basic pruning. However, the support based pruning 
cannot mine correlated sequential patterns with similar support 
and/or weight levels. In previous sequential pattern mining 
approaches, if a minimum support is low, many spurious patterns 
having items with different support levels are found. Meanwhile, if the 
minimum support is high, meaningful sequential patterns with low 
support levels may be missed. In this paper, we present a new 
algorithm, Weighted Interesting Sequential pattern mining (WIS) 
based on the pattern growth method [13, 15] in which new 
measures, sequential s-confidence and w-confidence are 
suggested. By using these measures, weighted interesting 
sequential patterns with a similar level of support and/or weight 
are mined. WIS not only gives a balance between the two 
measures of support and weight, but also considers correlation 
between items within sequential patterns. To our knowledge, WIS 
is the first sequential pattern mining algorithm specifically to 
distinguish a level of support and/or weight between items of 
sequential patterns by checking ratio of the minimum support 
(weight) of items within this pattern to the maximum support (weight) 
of items within the pattern. These sequential affinity patterns can be 
useful for focusing on the profitable items, identifying interesting 
itemsets or sequences with similar support / weight levels, and 
analyzing the sequential time data. A comprehensive performance 
study shows that WIS is efficient and scalable in weighted 
sequential pattern mining.  

Keywords: Data mining, weighted sequential pattern mining, 
affinity pattern. 

I. Introduction 
Sequential pattern mining finds frequent subsequences as 

patterns in a sequence database and sequential pattern mining 
algorithms have been extensively developed such as 
constraint-based sequential pattern mining [7, 11, 12, 14, 17], 

closed sequential pattern mining [19, 20, 23], approximate 
sequence mining [10], multi-dimensional sequence pattern 
mining [16], sequence mining in a noisy environment [24], 
biological sequence mining [6, 21], incremental sequence 
mining [4] and sequence indexing [5]. Sequential pattern 
mining has become an essential task with broad applications 
such as analyzing Web access patterns, customer purchase 
data, DNA sequences and so on. To tackle problems of 
Apriori based sequential pattern mining algorithms [1, 18], 
such as generation and test of all candidates and repeatedly 
scanning a large amount of the sequence database, sequential 
pattern growth approaches [9, 13, 15] have been developed. 
Sequential pattern growth methods mine the complete set of 
frequent sequential patterns using a prefix projection growth 
method to reduce the search space without generating all the 
candidates. Sequential patterns and items within sequential 
patterns have been treated uniformly, but real sequences have 
different importance. For this reason, weighted sequential 
pattern mining [27] has been suggested. Most algorithms use 
a support threshold to prune the search space. This strategy 
provides the basic pruning but the support based pruning is 
not enough to mine correlated sequential patterns. Previous 
sequential pattern mining algorithms could not detect 
sequential patterns with support and/or weight affinity. It is 
better to prune these weak affinity patterns first when the user 
wants to reduce the number of sequential patterns at the 
minimum support. However, no sequential pattern mining 
algorithm considers levels of support and/or weight.  

a similar level of support and/or weight 

Unil Yun 

1. Motivating examples 

Let us give a motivating example for this work in market 
basket data. In sequential pattern mining, a sequential pattern 
{(bread, milk) (diaper, beer)} can be easily discovered with 
support threshold because the support (frequency) of the 
sequential pattern is relatively high. However, if the minimum 
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support is low, many spurious patterns having items with 
different support levels are found. The spurious patterns are 
called as weak support affinity sequential patterns. For 
instance, {(gold ring, bronze ring) (vodka, beer)} is a possible 
weak support affinity sequential patterns because the support 
of the expensive item such as “gold ring” is much lower than 
the support of inexpensive item “bronze ring”. In a similar 
way, the support of the item “vodka” is lower than that of the 
item “beer”. Such sequential patterns including these itemsets 
are weak support affinity patterns. In a reverse case, if the 
minimum support is high, the interesting patterns which have 
low support levels may be missed [8]. The expensive items 
within the itemsets have low frequencies so the sequential 
patterns including such itemsets are not detected with the high 
minimum support. Examples of such itemsets are (gold ring, 
gold necklace), and (TV, DVD player). By considering 
support levels of items within sequential patterns, correlated 
sequential patterns can be discovered. As more extension, 
given weights of items according to the priority or importance, 
the sequential weight affinity patterns with similar weight 
levels can be found.  

In real business, marketing managers would like to know 
the item lists which have similar profit or frequency levels 
with an acceptable error range α% of an interesting item’s 
profit or frequency. Trend analyzers are interested in 
analyzing itemsets with similar levels of profits or selling 
prices and customers want to find the items with similar price 
levels to buy interesting items within their budgets. According 
to the requirement of real applications, the needed data 
analysis should be determined and from the data analysis, the 
marketing policies about items’ price decision are different. 
Therefore, the comparison and analysis of correlated 
sequential patterns is essential to make plan for future 
marketing. Correlated sequential patterns with the support / 
weight affinity (s-affinity / w-affinity) can be useful for 
dividing customers into detailed segments, focusing on the 
profitable items and identifying interesting itemsets or 
sequences with similar support / weight levels, and planning 
marketing policies more accurately with the association 
structure of different products by analyzing the sequential 
time data.  

In this paper, we propose an efficient sequential pattern 
mining algorithm called WIS (Weighted Interesting 
Sequential pattern mining) based on the pattern growth 
approach [13, 15]. We suggest sequential s-confidence and w-
confidence. Based on the measures, sequential s-affinity /w-
affinity pattern are defined. Here, weight / support affinity 
means how much items within a sequential pattern have 
similar characteristic in terms of weight / support values of the 
items. The sequential s-confidence measure is used to detect 
s-affinity patterns and sequential w-confidence measure is 
utilized to identify w-affinity patterns. We show that the two 
measures satisfy the anti-monotone property, define cross 
support / weight property and prove that the s-confidence / w-

confidence satisfy the cross support / weight property. With 
the two properties, weak affinity patterns are eliminated 
effectively. On the framework, WIS algorithm is developed to 
detect correlated sequential patterns with the s-affinity / w-
affinity by pushing the sequential s-confidence / w-confidence 
into the prefix projected sequential pattern growth approach. 
W-affinity and/or s-affinity pattern mining can give answers 
about the comparative analysis queries and discover 
interesting patterns which cannot be detected by conventional 
sequential pattern mining approaches. An extensive 
performance analysis shows that WIS is efficient and 
scalable in weighted sequential pattern mining. 

2. Our contribution 

The main contributions of this paper are as follows. 
● Introduction of the sequential affinity pattern in terms of 

support and weight  
● Definition of new measures, a sequential s-confidence, and 

a sequential w-confidence  
● Description of weighted interesting sequential pattern mining 

by using sequential s-confidence / w-confidence 
● Implementation of our algorithm, WIS and execution of an 

extensive experimental study to compare the performance 
of our algorithm, WIS with SPAM [2], PrefixSpan [15] and 
WSpan [27]  

The remainder of the paper is organized as follows. In section 
2, we describe the problem definition and related work. In 
Section 3, we develop WIS (Weighted Interesting Sequential 
pattern mining). Section 4 shows extensive experimental 
results. Finally, future research and conclusion is presented in 
sections 5 and 6 respectively.  

Table 1. A Sequence Database (SDB) 
Sequence ID Sequence 

10 〈a (abc) (ac) d (cf)〉 
20 〈(ad) abc (bcd) (ae) bcde〉 
30 〈a(ef) b (ab) c (df) ac〉 
40 〈ac (bc) eg (af) acb (ch) (ef)〉
50 〈ba (ab) (cd) eg (hf)〉 
60 〈a (abd) bc (he)〉 

II. Problem definition and related work 

1. Problem definition 

Let I = {i1, i2... in} be a unique set of items. A sequence S is 
an ordered list of itemsets, denoted as 〈s1, s2, .., sm〉, where sj is 
an itemset which is also called an element of the sequence, 
and sj ⊆ I. That is, S = 〈s1, s2, …, sm〉, and si is (xi1xi2…xik), 
where xit is an item in the itemset si. The brackets are omitted 
if an itemset has only one item. As shown in Table 1, a 
sequence database, SDB = {S1, S2, .., Sn}, is a set of tuples 〈sid, 
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S〉, where sid is a sequence identifier and Sk is an input 
sequence. An item can occur at most one time in an itemset of 
a sequence but it can occur multiple times in different itemsets 
of a sequence. Given a sequence database, SDB in Table 1 
and a minimum support of 2, the SDB has 8 unique items, 
and six input sequences. A sequence 〈a (abc) (ac) d (cf)〉 in 
SDB has five itemsets: a, (abc), (ac), d, (cf) where items “a” 
and “c” appear three times in different itemsets of the 
sequence. The size |S| of a sequence is the number of itemsets 
in the sequence. For instance, the size of 〈a (abc) (ac) d (cf)〉 is 
5. The length, l(S), is the total number of items in the 
sequence and a sequence with length l is called an l-sequence. 
For instance, the length of the sequence 〈a (abc) (ac) d (cf)〉 is 
9. and the sequence is 9-sequence. A sequence α = 〈X1, X2, .., 
Xn〉 is called a subsequence (α ⊑ β) of another sequence β = 
〈Y1, Y2, .., Ym〉 (n ≤ m), and β is called a super sequence of 
the sequence α if there exist an integer 1 ≤ i1 < … < in ≤ m 
such that X1 ⊆ Yi1, X2 ⊆ Yi2, …, ⊆ Xn ⊆ Yin. For example, 
sequence 〈a (bc) d〉 is a sub sequence of 〈a (abc) (ac) d (cf)〉 
since a ⊆ a, (bc) ⊆ (abc) and d ⊆ d. A tuple (sid, S) is said to 
contain a sequence α if the sequence S is a super sequence of 
α (α ⊑ s). The support of a sequence α in a sequence 
database (SDB) is the number of sequences in SDB that 
contain the sequence α (support (α) = |{<sid, S>| (<sid, S> ∈ 
SDB) ⋀ (α ⊑ S)}| ). Given a support threshold, min_sup, a 
sequence α is called a frequent sequential pattern in the 
sequence database if the support of the sequence α is no less 
than the minimum support threshold (support (α) ≥ min_sup). 
For instance, a sequence <a (bc) d> is a frequent sequential 
pattern because sequences 10 and 20 contain sub sequence S 
= 〈a (bc) d〉 and the support of the sequence is 2 which is equal 
to the minimum support (2). Meanwhile, a sequential pattern 
<(ab) g> is not a frequent sequential pattern since the support 
(1) of the pattern is less than the minimum support (2). The 
problem of sequential pattern mining is to find the complete 
set of all frequent super sequences or the complete set of 
maximal frequent sequences. The anti-monotone property [1] 
has been mainly used to prune infrequent sequential patterns. 
That is, if a sequential pattern is infrequent, all super patterns 
of the sequential pattern must be infrequent. Based on the 
anti-monotone property, we can know that all super patterns 
of the sequential pattern <ag> such as sequential patterns <a 
(ab) g>, <a (ab) cg>, and <a (ab) (cd) g> are infrequent 
sequential patterns. 

2. Related work 

A. Sequential pattern mining 
In sequential pattern mining, GSP [1] mines sequential 

patterns based on an Apriori-like approach by generating and 
testing all candidate subsequences with multiple scans of the 
original sequence database. To overcome this problem, an 
initial projection growth based approach, called FreeSpan [9] 
was developed. The main idea is to use frequent items to 

recursively project sequence databases into a set of fewer 
projected databases and grow subsequence fragments in each 
projected database. FreeSpan outperforms the Apriori based 
GSP algorithm. However, FreeSpan may generate any 
substring combination in a sequence and the projection in 
FreeSpan keeps all the sequences in the original sequence 
database without length reduction. PrefixSpan [13, 15], a 
more efficient pattern growth algorithm, improves the mining 
process. The main idea of PrefixSpan is to examine only the 
prefix subsequences and project only their corresponding 
suffix subsequences into projected databases. In each 
projected database, sequential patterns are grown by exploring 
only local frequent patterns. In SPADE [30], a vertical id-list 
data format was presented and the frequent sequence 
enumeration was performed by a simple join on id lists. 
SPADE can be considered as an extension of vertical format 
based frequent pattern mining. SPAM [2] utilizes depth first 
traversal of the search space combined with a vertical bitmap 
representation to store each sequence. Efficient sequential 
pattern mining algorithms [3, 30] have been developed such 
as constraint-based sequential pattern mining [7, 12, 14, 17], 
approximate sequential pattern mining with a weighted 
sequence structure [10], temporal sequence pattern mining 
with relational representation [11], sequential pattern mining 
without using support thresholds [19] and closed sequential 
pattern mining [20, 23]. These approaches may mine patterns 
efficiently and reduce the number of patterns. As given in the 
motivating example in section 1.1, the weight/support affinity 
sequential pattern can be useful but affinity sequential patterns 
cannot be detected in previous mining algorithms. 

 
B. Weighted sequential pattern mining 

In most of the previous sequential pattern mining 
algorithms, sequential patterns and items within sequential 
patterns have been treated uniformly, but real sequences have 
different importance. For this reason, WSpan (Weighted 
Sequential pattern mining) [27] and weighted frequent pattern 
mining [25, 26, 27, 29] have been suggested. In weight based 
sequential pattern mining, the items within a sequence are 
given different weights in the sequence database. The main 
concern in weight based sequential pattern mining is that the 
anti-monotone property [1] is broken when simply applying 
weights. In other words, although a sequential pattern is 
weighted infrequent, super patterns of the sequential pattern 
may be weighted frequent because super patterns of the 
sequential pattern with a low weight can get a high weight 
after adding other items or itemsets with higher weights. With 
the prefix projected sequential pattern growth method [13, 15], 
WSpan uses approximate weighted support within 
normalized weights to prune weighted infrequent sequential 
patterns but maintain the aniti-monotone property.  
Even if WSpan algorithm is effective to identify weighted 

frequent sequential patterns, it cannot detect sequential 
correlated patterns with support / weight affinity. On the 
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framework of weighted sequential pattern mining, we study 
the problem of sequential affinity pattern mining with similar 
weight and/or support levels. Our strategy is to push w-
confidence/s-confidence into the sequential pattern mining 
algorithm and prune uninteresting patterns with the weak 
affinity.  

III. WIS (Weighted Interesting Sequential pattern 
mining) 
In this section, WIS algorithm is developed to detect 

correlated patterns with the support affinity (s-affinity) / 
weight affinity (w-affinity) by pushing the sequential s-
confidence / w-confidence into the prefix projected sequential 
pattern growth approach [13, 15]. We present actual examples 
to illustrate the effect of sequential support / weight 
confidence and show our algorithm. 

1. Preliminaries 

In our approach, a sequence database is recursively 
projected into a set of fewer projected databases and 
sequential patterns are grown in each weighted projected 
database by processing weighted local frequent items. The 
number of projected databases can be reduced by only 
considering ordered prefix projection.  
Definition 3.1 Prefix and suffix of a sequence  

Suppose that all the items within itemsets in each sequence 
are listed by the alphabetical order. Given a sequence α = <e1 
e2 … en> (in which each ei means a frequent element in α), a 
sequence β = <e`1 e`2 … e`m> (m ≤ n) is called a prefix of the 
sequence α if (1) ei = e ì for (i ≤ m - 1), (2) e`m ⊆ em and (3) 
all the weighted frequent items in (em – e`m) are alphabetically 
listed after those in e`m. Additionally, a sequence γ <e``m em+1 
… e`n> is called the suffix of the sequence α with regard to 
the prefix β, denoted as γ = α/β, where e``m = (em – e`m) which 
is also shown as α = β ⋅ γ . 
Example 1: <a>, <aa>, <a(ab)> and <a (abc)> are prefixes of 
the sequence S = <a (abc) (ac) d (cf)>. However, <ab> and <a 
(bc)> are not prefixes if all items of the prefix <a (abc)> of the 
sequence S are frequent in S. In addition, <(abc) (ac) d (cf)> is 
the suffix about the prefix <a>, <(_bc) (ac) d (cf)> is the suffix 
with regard to the prefix <aa> and <(_c) (ac) d (cf)> is the 
suffix corresponding the prefix <a (ab)>. 
Definition 3.2 Projected database  

Given a sequential pattern α in a sequence database, α-
projected database (S|α) is the collection of suffixes of 
sequences in S about the prefix α. The support (support (β)) 
of a sequential pattern β in the α-projected database (S|α) is 
the number of sequences γ in S|α such that β ⊑ α⋅γ.  
Example 2: Given a sequence database SDB in Table 1, <a>-
projected database has six suffix sequences: <(abc) (ac) d 
(cf)>, <(_d) c (bc) (ae) bc>, <(_b) (df) cb>, <(_f) cbc> <(ab) 

(cd) e> and <(abd) bc>, and the <(ab)> projected database 
consists of four suffix subsequences prefixed with <(ab)>: 
<(_c) (ac) dc>, <dcb>, <(cd)> and <(_d) bc>.  

To set up weights of items, attribute values of items of a 
sequence database can be used. Table 2 shows that prices 
(profits) of items can be used as a weight factor in market 
basket data.  

Table 2. An example of a retail database 
Item Price Support 

(Frequency) 
Weight 

Laptop Computer 1200$ 5000 1.2 
Desktop Computer 700$ 3000 0.7 

Memory stick 200$ 20000 0.2 
Memory card 150$ 10000 0.15 

Hard disk 100$ 5000 0.1 
Mouse 40$ 80000 0.04 

Mouse pad 10$ 100000 0.01 

Definition 3.3 Weight of a sequential pattern and 
weighted frequent pattern  

The weight of the sequential pattern is the average value of 
the weights in items of a sequence. Given a sequence S = {s1, 
s2, …, sm}, and sj is (xj1xj2…xjk), weight of a sequential pattern 
S is formally defined as follows. 

∑
j=1

j= m

∑
i= 1

i= s j

w e ig h t　x ji　

∑
j= 1

j= m

len g th 　s j　
 

A weighted support of a sequential pattern is defined as the 
resultant value of multiplying the pattern’s support with the 
weight of the pattern. A sequential pattern is called a weighted 
frequent sequential pattern if the weighted support of a 
sequential pattern is no less than a minimum threshold.  
Definition 3.4 Weight Range (WR) and Maximum Weight 
(MaxW) A weight of an item is a non-negative real number 
that shows the importance of each item. The weight of each 
item is assigned to reflect the importance of each item in the 
sequence database. Weights of items are given within a 
specific range (weight range). The weight range is exploited 
to restrict weights of items. A Maximum Weight (MaxW) is 
defined as a value of the maximum weight of items in a 
sequence database or a projected sequence database.  

As already mentioned, attribute values such as prices 
(profits) of items in a sequence database can be used as a 
weight factor. However, the real values of items are not 
suitable for weight values because of the big variation. From 
an example of a real retail database in Table 2, we can know 
that variation of items’ prices is so big that the prices cannot 
be directly used as weights. Therefore, within a specific 
weight range, the normalization process is needed which 
adjusts for differences among data in order to create a 
common basis for comparison. According to the 
normalization process, the final weights of items can be 
decided. That is, the prices or profits of items can be 
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normalized within a specific weight range and the prices 
based on the definition, items, itemsets and a sequence have 
their own weights. From this example, weights of items are 
given between 0.01 and 1.2 and the maximum weight of 
items is the weight (1.2) of the item “laptop computer”.  

Table 3. Sets of items with different weights 
Item (min_sup = 2)   〈a〉    〈b〉     〈c〉     〈d〉     〈e〉      〈f〉      〈g〉     〈h〉 

Support    6     6       6      5       5       4       2       3 

WR1 : (0.7 ≤  Weight ≤  1.3)   1.1    1.0      0.9     1.0     0.7      0.9     1.3     1.2 

WR2 : (0.7 ≤  Weight ≤  0.9)   0.9    0.75     0.8     0.85    0.75     0.7     0.85    0.8 

WR3 : (0.4 ≤  Weigh ≤  0.8)   0.6    0.8      0.5     0.6     0.4      0.8      0.5    0.6 

WR4 : (0.2 ≤  Weight ≤  0.6)   0.5    0.2      0.6     0.4     0.6      0.3      0.5    0.3 

Example 3: Table 3 shows example sets of items with 
different weights which are calculated by the normalization 
process. Given SDB in Table 1, and a minimum support, 2, 
the set of items in the database, i.e., length-1 subsequences in 
the form of “<item>:support” is {<a>: 6, <b>: 6, <c>: 6, <d>: 
5, <e>: 4, <f>: 3, <g>: 2, <h>: 1}. When WR1 as weights of 
items within a sequence is used, the weight of a sequence <a 
(bc) d (aef)> is 0.957 ((1.1 + (1.0 + 0.9) + 1.0 + (1.1 + 0.7 + 
0.9)) / 7). Meanwhile, WR2 and WR3 are applied, the weights 
of the sequence, <a (bc) d (aef)> is 0.807 ((0.9 + (0.75 + 0.8) 
+ 0.85 + (0.9 + 0.75 + 0.7)) / 7) and 0.614 ((0.6 + (0.8 + 0.5) + 
0.6 + (0.6 + 0.4 + 0.8)) / 7). Additionally, Maximum Weights 
(MaxW) within WR1, WR2, WR3 and WR4 are 1.3, 0.9, 0.8 
and 0.6 respectively. 

2. Affinity sequential pattern 

In this section, we define the sequential s-confidence and w-
confidence measures, explain the concept of affinity 
sequential patterns, and show important properties.   

A. Sequential s-affinity pattern 
Definition 3.5 Sequential support-confidence (s-confidence) 

Support confidence of a sequential pattern S = {s1, s2, …, 
sm}, and si is (xi1xi2…xik), where xit is an item in the itemset si, 
denoted by sequential s-confidence, is a measure that reflects 
the overall s-affinity among items within the sequence. It is 
the ratio of the minimum support of items within this pattern 
to the maximum support of items within the sequential pattern. 
That is, this measure is defined as  

m'

m' '

m' k' m'

m' '  k' ' m' '

1  m'  m, 1  k'  ( s )

1  m' '  m, 1  k' '  ( s )

Min {support ({x s })}
S-conf (S) = 

Max {support ({x s })}

legnth

legnth

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
 

To check if items within a sequential pattern have dissimilar 
support levels, the ratio of the minimum support of items 
within the pattern to the maximum support of items within the 
pattern is used. From the definition, sequential patterns with 
the s-affinity can be detected. From the s-confidence of a 
pattern, the affinity level can be calculated. For example, if the 
s-confidence is close to 1, it means that the affinity between 
items is high whereas if it is close to 0, the affinity is low. 

It may be other ways to examine the s-affinity of sequential 
patterns. More complex definitions may detect more exact 
support levels. However, based on the definition of the 
sequential s-confidence, we will use two properties which are 
effective for identifying sequential s-affinity patterns.  
Definition 3.6 Sequential s-affinity pattern 

A sequential pattern is a sequential s-affinity pattern if the s-
confidence of the sequential pattern is no less than a minimum 
s-confidence (min_sconf). If not, the sequential pattern is 
called as a weak sequential s-affinity pattern.   
Lemma 1 Sequential s-confidence has the anti-monotone 
property.  

Given a sequential pattern from definition 3.5, Max (1 ≤  m″ ≤    

m, 1 ≤  k″ ≤  length (sm″)) {support ({xm″ k″ ⊆ sm″})} of a sequential 
pattern S is always greater than or equal to that of a sub-
sequence of the sequential pattern S and Min (1 ≤  m′ ≤  m, 1 ≤  k′ ≤  

length (sm′)) {support ({xm′ k′ ⊆ sm′})} of the pattern S is always 
less than or equal to that of a subset of the sequential pattern S. 
Therefore, we know that  

m'

m' '

m' k' m'

m' '  k' ' m' '

1  m'  m, 1  k'  ( s )

1  m' '  m, 1  k' '  (s )

{support ({x s })}
S-conf (S) = 

{support ({x s })}

Min

Max

legnth

legnth

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
 

m'

m' '

m'  k'

m' '  k' '

1  m'  m - 1, 1  k'  (s )m'

1  m' '  m - 1, 1  k' '  (s )m' '

Min {support ({x s })}

Max {support ({x s })}

legnth

legnth

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤

m' '

m'  k' m'

m' '  k' ' m' '

1  m' - 2  m, 1  k'  ( s )m'

1  m' ' - 2  m, 1  k' '  (s )

Min {support ({x s })}

Max {support ({x s })}

legnth

legnth

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⊆

⊆
≤  

That is, if the s-confidence of a sequential pattern is no less 
than a min_sconf, so is every subset of size m - 1. Therefore, 
the sequential s-confidence can be used to prune the 
exponential search space.  
Example 4: Consider a pattern S = {〈AB〉 〈AC〉 〈ABC〉 
〈AE〉} and S  ̀ = {〈BC〉 〈BD〉 〈BCD〉 〈BF〉}. Assume that a 
min_sconf is 0.5, support ({A}) = 2, support ({B}) = 5, 
support ({C}) = 8, support ({D}) = 4, support ({E}) = 5, and 
support ({F}) = 6, where support (X) is the support value of a 
sequential pattern X. Then, the sequential s-confidence (S) is 
0.25 (2/8) and s-confidence (S`) is 0.5 (4/8). Therefore, 
sequential pattern S is not a sequential s-affinity pattern but 
pattern S  ̀ is a sequential s-affinity pattern. From the anti-
monotone property of the s-confidence, any super pattern of 
the pattern S is weak s-affinity pattern and is pruned. 
Property 1 Cross support sequential pattern property 

Given a threshold t, a sequential pattern S is a cross support 
sequential pattern with respect to t if the pattern S contains 
two items x and y such that (support ({X}) / support ({Y})) < 
t, where 0 < t < 1. This means the sequential pattern contains 
at least two items which have different support levels.  
Lemma 2 Sequential s-confidence has cross support 
sequential pattern property 

For any cross support pattern S with a threshold t, it is 
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guaranteed that s-conf (S) < t. That is, given min_sconf as a 
threshold, if sequential s-confidence has the cross support 
sequential pattern property, for any cross support sequential 
pattern S with regard to min_sconf, the value of the sequential 
s-confidence is less than min_sconf. Given definition 3.5, 
assume that there is a cross support sequential pattern S = {s1, 
s2, ..., sm} that contains at least two items X and Y such that 
support ({X}) / support ({Y}) < t where 0 < t < 1.  

m'

m' '

m' k' m'

m' '  k' ' m' '

1  m'  m, 1  k'  ( s )

1  m' '  m, 1  k' '  ( s )
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Therefore, we know that the value of the sequential s-
confidence is less than the min_sconf for any cross support 
sequential pattern S with regard to a sequential s-confidence 
threshold, t. 

B. Sequential w-affinity pattern 
Definition 3.7 Sequential weight-confidence (w-confidence) 

Weight confidence of a sequential pattern S = {s1, s2, …, 
sm}, and si is (xi1xi2…xik), where xit is an item, denoted by 
sequential w-confidence, is a measure that reflects the overall 
w-affinity among items within the sequential pattern. It is the 
ratio of the minimum weight of items within this pattern to the 
maximum weight of items within the pattern. In other words, 
this measure is defined as  
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Min {weight ({x s })}
W-conf (S) = 

Max {weight ({x s })}
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≤ ≤ ≤ ≤

⊆

⊆
 

Definition 3.8 Sequential w-affinity pattern 
A sequential pattern is a sequential w-affinity pattern if the 

w-confidence of the sequential pattern is no less than a 
minimum weight confidence (min_wconf). If not, the 
sequential pattern is called as a weak w-affinity pattern.   
Lemma 3 Sequential w-confidence has the anti-monotone 
property.  

From definition 3.7, we can see that Max (1 ≤  m″ ≤  m, 1 ≤  k″ ≤  
length (sm″)) {weight ({xm″ k″ ⊆ sm″})} of a sequential pattern S is 
always greater than or equal to that of a sub-sequence of the 
sequential pattern S and Min (1 ≤ m′ ≤ m, 1 ≤ k′ ≤ length (sm′)) {support 
({xm′ k′ ⊆ sm′})} of the pattern S is always less than or equal to 
that of a subset of the sequential pattern S. Therefore, we 
know that  
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In other words, if w-confidence of a sequential pattern S is 
no less than a min_wconf, so is every subset of size m - 1. 
Therefore, the sequential w-confidence satisfies the anti-
monotone property and prunes weak w-affinity patterns.  
Example 5: consider a pattern S = {〈AB〉 〈AC〉 〈ABC〉 〈AE〉} 
and S  ̀ = {〈BC〉 〈BD〉 〈BCD〉 〈BF〉}. Assume that a 
min_wconf is 0.5, weight ({A}) = 0.2, weight ({B}) = 0.4, 
weight ({C}) = 0.7, weight ({D}) = 0.6, weight ({E}) = 0.4, 
and weight ({F}) = 0.5, where weight (Y) is the weight value 
of a sequential pattern Y. Then, the average weight of a 
sequential pattern S and a sequential pattern S  ̀are 0.425 and 
0.55 respectively. The sequential w-confidences (S) is 0.29 
(2/7) and sequential w-confidence (S`) is 0.56 (4/7). Therefore, 
the sequential pattern S is not a sequential w-affinity pattern 
but pattern S  ̀is a sequential w-affinity pattern.  
Property 2 Cross weight sequential pattern property 

Given a threshold t, a sequential pattern S is a cross weight 
sequential pattern with respect to t if the pattern S contains 
two items Z and W such that (weight ({Z}) / support ({W})) 
< t, where 0 < t < 1. This means the sequential pattern 
contains at least two items which have different weight levels.  
Lemma 4 Sequential w-confidence has cross weight 
property.  

For any cross weight pattern S with a threshold t, it is 
guaranteed that w-conf (S) < t. In other words, given 
min_wconf as a threshold, if sequential w-confidence has the 
cross weight sequential pattern property, for any cross weight 
sequential pattern S with regard to min_wconf, the value of 
the sequential w-confidence is less than min_wconf. Given 
definition 3.7, assume that there is a cross weight sequential 
pattern S = {s1, s2, ..., sm} that contains at least two items Z 
and W such that weight ({Z}) / weight ({W}) < t where 0 < t 
< 1.  
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weight ({Z}) 

weight ({W})
t≤ <  

Therefore, we know that the value of the w-confidence is 
less than the min_wconf for any cross weight sequential 
pattern with regard to a sequential w-confidence threshold, t. 
Example 6: The pruning examples of the anti-monotone 
and cross weight properties on the w-confidence 

From the anti-monotone property of the sequential w-
confidence, if the w-confidence of a sequential pattern is less 
than the min_wconf, any super pattern of the sequential 
pattern is removed. Meanwhile, given an item x, all patterns 
that contain the item x and at least an item with a weight less 
than t ⋅ weight (x) (for 0 < t < 1) are cross weight patterns and 
the w-confidences of the sequential patterns are less than t 
(min_wconf). The cross weight sequential patterns can be 
directly pruned without calculating the w-confidences. For 
instance, given a sequence database SDB in Table 1, a weight 
list for eight items <a:, 0.65, b:0.8, c:0.5, d:0.7, e:0.4, f:0.8, 
g:0.5, h:0.75>, and the minimum w-confidence of 0.8, the w-
confidence (0.67) of a sequential pattern “<ce>” is less than 
the minimum w-confidence (0.8) so the pattern is pruned. 
From the anti-monotone property, we can prune the super 
patterns such as “<(cd)e>” and “<c(ef)>” since these patterns 
have one subset “<ce>” which is not a w-affinity pattern. 
Meanwhile, we can prune cross weight patterns by the cross 
weight property. With a weight ascending order which is: 
{<e>: 0.4, <c>: 0.5, <g>: 0.5, <a>: 0.65, <d>: 0.7, <h>: 0.75, 
<b>: 0.8, <f>: 0.8}, we can find an item “e” with weight (“g”) 
= 0.5 < weight (“a”) * min_wconf (0.8) = 0.52. If we split the 
item list into two group {items “e”,  “c”, and “g”} and 
{items “a”,  “d”, “h”, “b” and “f”}, any pattern including 
items from both groups is the cross weight sequential pattern 
with the min_wconf because the sequential w-confidence is 
always less than the minimum w-confidence for cross weight 
patterns. In this example, without applying the cross weight 
property, the cross weight patterns such as “<ea>”, “<ed>”, 
“<ch>”, “<cb>” and “<gb>” have to be generated as 
candidate patterns and prune them later by computing the w-
confidence values of the sequential patterns. Note that those 
patterns such as the sequential patterns “<ea>”, “<ed>”, 
“<ch>”, “<cb>” and “<gb>” are not pruned by the anti-
monotone property because every subset of the patterns is the 
w-affinity sequential pattern (w-confidence = 1). In a similar 
way, the anti-monotone property and the cross support 
sequential pattern property can be used to prune weak s-
affinity patterns. 

3. Weighted interesting sequential patterns 

In this section, we define weighted interesting sequential 
pattern mining and show pruning methods.  
Definition 3.9 Weighted Interesting Sequential pattern  

A sequence is a weighted interesting sequential pattern if 
the following conditions are satisfied. Note that these 

conditions can be applied selectively and sequential s-
confidence and w-confidence can also be used independently.  
Pruning condition 1: (Weighted support constraint) A 
pattern S is a weighted sequential frequent pattern if and only 
if |S| > 0 and (support (S) * MaxW) ≥ min_sup.  

Observation 1: In weighted sequential pattern mining, the 
anti-monotone property cannot be directly used. Although a 
sequential pattern is weighted infrequent, super patterns of the 
sequential pattern may be weighted sequential frequent 
because a sequential pattern which has a low weight can get a 
high weight after adding another item with a higher weight. 
By using the maximum weighted support, anti-monotone 
property can be maintained. In other words, if a maximum 
weighted support (support (S) * MaxW) of a sequential 
pattern S is less than the minimum support, any super pattern 
cannot be a weighted sequential frequent pattern so the pattern 
can be pruned now. During mining process, weighted 
infrequent items are pruned and weights of the weighted 
infrequent items are not considered as MaxW although 
weights of the items are high. By doing so, the MaxW is 
reduced and the maximum weighted support becomes more 
accurate.  
Pruning condition 2: (s-confidence ≥ min_sconf) A 
sequential pattern S is a sequential s-affinity pattern if and 
only if |S| > 0 and sconf (S) ≥ min_sconf. In the pruning 
condition 2, the anti-monotone property and the cross 
support property are applied to prune weak -affinity patterns.  s

Pruning condition 3: (w-confidence ≥ min_wconf) A 
sequential pattern S is a sequential w-affinity pattern if and 
only if |S| > 0 and wconf (S) ≥ min_wconf. In the pruning 
condition 3, the anti-monotone property and the cross weight 
property are applied to prune weak w-affinity patterns. 

Lemma 5 Sequential w-confidence can be applied 
irrespective of different weight ranges. 

WIS uses the weight range which can be utilized to 
calculate a maximum weight and maintain the anti-monotone 
property efficiently. For example, the weight range WRk of a 
sequential pattern K = {<A>, <A, B>, <A, B, C>} is from 1 
to 3 and the weight range WRk  ̀of a sequential pattern K  ̀= 
{<D>, <D, E>, <D, E, F>} is from 0.1 to 0.3. Assume that 
weight ({A}) = 1, weight ({B}) = 2, weight ({C}) = 3, weight 
({D}) = 0.1, weight ({E}) = 0.2, and weight ({F}) = 0.3, 
where weight is the weight value of a sequential pattern. Then, 
sequential w-confidence (K) = 0.33 and sequential w-
confidence (K`) = 0.33. Using WRk  ̀ rather than WRk 
generates fewer sequential patterns from the pruning 
condition 1. However, the w-confidences (0.33) of sequential 
patterns K and K  ̀are the same in spite of different weight 
ranges. We know that sequential w-confidence is defined as 
the ratio of the minimum weight of items within this 
sequential pattern to the maximum weight of items within the 
sequential pattern. Therefore, if ratios of the minimum weight 
to the maximum weight of different weight ranges are the 
same, the effect is the same. In other words, the w-confidence 
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of a sequential pattern is only decided by a level of w-affinity 
between items of a sequential pattern, not by a weight range. 
A level of weight (support) means weight (support) affinity 
level which shows how much items within a pattern have 
similar characteristic in terms of weight (support) values 
among the items. The weight (support) affinity levels are 
calculated by using w-confidence and s-confidence 
respectively.  
Observation 2: The Lemma 5 gives the information that 
sequential w-confidence in the pruning condition 3 can be 
applied irrespective of different weight ranges. It’s the same 
situation in sequential s-confidence of the pruning condition 2  
because the w-confidence and s-confidence measures focus 
on detecting sequential patterns containing items with similar 
weight (support) levels so two patterns with the same weight 
(support) ratio can have different weights (supports). 
A. Sequential s-confidence VS. w-confidence 

Sequential s-confidence is a support measure which is used 
to identify sequential s-affinity patterns and sequential w-
confidence is a weight measure that considers the sequential 
w-affinity of items within a sequential pattern. Both measures 
satisfy the anti-monotone property and the cross support / 
weight sequential pattern property so these measures can be 
effectively used to prune weak affinity patterns.  
B. Sequential w-confidence VS. weighted support constraint 

Although weighted support constraint considers weight and 
support, it cannot detect affinity patterns. The previous use of 
a weight constraint in WSpan [27] can generate weak affinity 
patterns containing items with different weight levels or miss 
interesting low weight patterns. Sequential w-confidence 
considers only weights of items within patterns. Patterns with 
a high support and a high weight satisfy the weighted support 
constraint but the w-confidences of these patterns may not 
satisfy the minimum w-confidence if they are sequential 
patterns with dissimilar weight levels . 

 
C. Sequential s-confidence VS. support constraint 

Sequential s-confidence and support constraint both use a 
support measure. Support constraint cannot detect affinity 
patterns. Although the sequential patterns with a high support 
satisfy the support constraint, these sequential patterns cannot 
satisfy the sequential s-confidence when they are sequential 
patterns including items with different levels of supports.  
Observation 3: Recall that our approach focuses on 
identifying strong affinity sequential patterns in terms of 
support and weight. The discovered sequential patterns can be 
useful in processing comparative analysis queries. However, 
the weak affinity patterns containing items with dissimilar 
support / weight levels may be also useful in other 
applications. The novelty of our approach is that WIS can 
identify strong or weak support (weight) affinity patterns by 
applying s-confidence (w-confidence) measure. Meanwhile, 
previous sequential pattern mining algorithms could not find 
the correlated patterns. 

4. Mining weighted interesting sequential patterns with s-
affinity and/or w-affinity 

On the framework, we develop the WIS algorithm to detect 
correlated patterns with the s-affinity and/or w-affinity. As a 
mining example, we show how to mine affinity sequential 
patterns by using a prefix-based projection approach [15] that 
computes local frequent sequential patterns of a prefix by 
scanning its projected database. The projection is based on a 
frequent prefix. We use the sequence database SDB in Table 1 
and apply 0.4 ≤ WR3 ≤ 0.8 as a weight range from Table 3. 
Assume that min_sup is 2, min_wconf is 0.7 and min_sconf is 
0.7. then, the weight list is <a:0.6, b:0.8, c:0.5, d:0.6, e: 0.4, 
f:0.8, g:0.5, h:0.6> and the maximum weight (MaxW) is 0.8. 
In the WIS, mining process is performed as follows.   
Step 1: Find length-1 weighted sequential patterns. 

Scan the sequence database once, count the support of each 
item, check the weight of each item and find all the weighted 
frequent items in sequences. First, after the first scan of the 
sequence database, we know that length-1 frequent sequential 
patterns (frequent sequential items) are <a> : 6, <b> : 6, <c> : 
6, <d> : 5, <e> : 5, <f> : 4, <g> : 2 and <h> : 3 because the 
supports of the items are greater than or equal to the minimum 
support (2). Using MaxW (0.8), weighted supports of the 
items are calculated and weighted infrequent items are pruned 
according to the pruning condition 1 in definition 3.9. For 
example, weighted support (6 * 0.8) of an item <a> is greater 
than the minimum support so the item is weighted frequent 
sequential item. Meanwhile, an item <g> is not weighted 
frequent because the weighted support (2 * 0.8) is less than 
the minimum support. In this way, weighted frequent 
sequential items are detected and pruned from the condition 
by the weighted support constraint. After the projected 
database is generated from the sequence database, WIS mines 
weighted interesting sequential patterns from the projected 
databases recursively and the weighted interesting patterns are 
generated by adding items one by one. 
Step 2: Divide search space. 

The complete set of weighted sequential patterns can be 
partitioned into the following seven subsets having prefix: (1) 
<a>, (2) <b>, (3) <c>, (4) <d>, (5) <e>, (6) <f>, and (7) <h>. 
Step 3: Find subsets of sequential patterns. 

The subsets of sequential patterns can be mined by 
constructing the corresponding set of projected databases and 
mining them recursively. 
A. Find affinity sequential patterns with the prefix <a> 

We only collect the sequences which have <a>. 
Additionally, in a sequence containing the prefix <a>, only 
the subsequence prefixed with the first occurrence of the 
prefix <a> should be considered. For example, in a sequence 
<a (abc) (ac) d (cf)>, only the subsequence <(abc) (ac) d 
(cf)> is considered and in a sequence <(ad) abc (bcd) (ae) 
bcde>, only the suffix sequence <(_d) abc (bcd) (ae) bcde> 
is collected. The sequences in the sequence database SDB 
containing <a> are projected with regards to the prefix <a> 
to form the <a>-projected database, which consists of six 
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suffix sequences: <(abc) (ac) d (cf)>, <(_d) abc (bcd) (ae) 
bcde>, <(ef) b (ab) c (df) ac>, <c (bc) e (af) acb (ch) (ef)>, 
<(ab) (cd) e (hf)> and <(abd) bc (he)>. By scanning the <a> 
projected database once, its locally frequent items are a:6, b:6, 
c:6, d:5, e:5, f:4, h:3, (_b):4, (_c):1, (_d):1, (_e):1 and (_f):1. 
The local items, (_c):1, (_d):1, (_e):1 and (_f):1 which have 
one as the support, are removed by weighted support 
constraint since the weighted support (0.8) of multiplying the 
support (1) of the sequences with MaxW (0.8) is less than a 
minimum support (2). In addition, a local item “e:5” is 
pruned by the sequential w-confidence. The candidate 
pattern, from a local item “e:5” and a conditional prefix “a”  
is <ae>:5 and the sequential w-confidence (0.67) of the 
candidate sequential pattern <ae>:5 is less than the minimum 
w-confidence (0.7). Moreover, the candidate pattern <ah>:3 
is pruned by the sequential s-confidence because the s-
confidence of the sequential pattern is 0.5 which is less than 
the minimum s-confidence (0.7). All the length-2 sequential 
patterns prefixed with <a> are: <aa>:6, <ab>:6, <ac>:6, 
<ad>:5 <af>:4 and <(ab)>:4. Note that previous sequential 
pattern mining algorithms only consider a support in each 
projected database so sequences <(ac)>:1 <(ad)>:1 and 
<(ae)>:1 are only pruned because they are not frequent. The 
recently developed WSpan algorithm uses weighted support 
constraint. However, in WIS, before constructing the next 
projected database, sequential w-confidence and s-
confidence are applied to prune weak affinity sequential 
patterns. The final <a>-projected database is generated as 
follows: <(abc) (ac) d (cf)>, <(_d) abc (bcd) abcd>, <fb (ab) 
c (df) ac>, <c (bc) (af) acbcf>, <(ab) (cd) f> and <(abd) bc>. 
Recursively, all the sequential patterns with the prefix <a> 
can be partitioned into six subsets prefixed with: 1) <aa>, 2) 
<ab>, 3) <ac>, 4) <ad>, 5) <af> and 6) <(ab)>. These 
subsets can be mined by constructing respective projected 
databases and mining each recursively as follows. 
1) The <aa> projected database consists of six suffix 
subsequences prefixed with <(_bc) (ac) d (cf)>, <bc (bcd) 
abcd>, <(_b) c (df) ac>, < (_f) acbcf>, < (_b) (cd) f>, and 
<(_bd) bc>. By scanning the <aa> projected database once, 
its local items are a:4, b:3, c:6, d:4, f:4, (_b):4, (_c):1 and 
(_f):1. The local items, “(_c):1” and “(_f):1”, are pruned by 
the weighted support constraint. The <aa> projected 
database returns the following sequential patterns: <aaa>:4, 
<aab>:3, <aac>:6, <aad>:4, <aaf>:4 and <a(ab)>:4. 
Sequential s-confidence and w-confidence of these patterns 
are no less than a minimum s-confidence and a minimum 
w-confidence respectively. Recursively, sequential patterns 
with the prefix <aa> are partitioned and mined. 
2) The <ab> projected database consists of six suffix 
subsequences prefixed with <ab>: <(_c) (ac) d (cf)>, <c 
(bcd) abcd>, <(ab) c (df) ac>, <(_c) (af) acbcf>, <(cd) f> 
and <(_d) bc>. By scanning the <ab> projected database 
once, we obtain its local items: a:4, b:4, c:6, d:4, f:4, (_c):2, 
and (_d):1. Local items, (_c):2, and (_d):1, are pruned by 
weighted support constraints In WIS, the sequential 
candidate pattern <abf>:4 is removed by the sequential s-
confidence since the sequential s-confidence (0.67) of the 

sequential pattern <abf> is less than a min_sconf (0.7). 
From the sequential w-confidence, the sequence candidate 
<abc>:4 is pruned because the w-confidence (0.625) of the 
sequence candidate <abc>:4 is less than min_wconf (0.7). 
The final weighted sequential patterns are <aba>:4, 
<abb>:4 and <abd>:4. Recursively, sequential patterns with 
the prefix <ab> are partitioned and mined. 
3) The <ac> projected database consists of five suffix 
subsequences prefixed with <ac>: <(ac) d (cf)>, <(bcd) 
abcd>, <(df) ac>,  <(bc) (af) acbcf>, and <(_d) f>.  By 
scanning the <ac> projected database once, its local items 
are a:4, b:2, c:4, d:3, f:4, (_d):1 and (_f):1. Sequential 
candidate patterns, <acb>:2, <a(cd)>:1, and <a(cf)>:1, are 
pruned by weighted support constraint. The weighted 
sequential patterns <aca>: 4, <acc>:4 <acd>:3 and <acf>:4 
are generated. Recursively, sequential patterns with the 
prefix <ac> are partitioned and mined. 
4) The <ad> projected database consists of five suffix 
subsequences prefixed with <ad>: <(cf)>, <abcd>, <(_f) 
ac>, <f> and <bc>. By scanning the <ad> projected 
database once, its local items are a:2, b:2, c:4, d:1, f:2, and 
(_f):1. Among these candidate patterns, the only weighted 
frequent item is c:4 which satisfies sequential s-confidence 
and w-confidence, so <ad> projected database returns a 
sequential pattern <adc>:4. Recursively, sequential patterns 
with the prefix <ad> are partitioned and mined. 
5) The <af> projected database consists of two suffix 
subsequences prefixed with <af>: <b (ab) c (df) ac>, and 
<acbcf>. By scanning the <af> projected database once, its 
local items are a:2, b:2, c:2, d:1, and f:2. All local items are 
pruned because they do not satisfy the conditions in 
definition 3.9. 
6) The <(ab)> projected database consists of four suffix 
subsequences prefixed with <(ab)>: <(_c) (ac) d (cf)>, <c 
(df) ac>, <(cd) f> and <(_d) bc>. By scanning the <(ab)> 
projected database once, its local items are a:2, b:1, c:4 d:3, 
f:3, (_c):1 and (_d):1. Local items “a:2”, “b:1” “(_c):1 and 
“(_d):1” are pruned by the weighted support constraint and 
the sequential candidate pattern <(ab)c>:4 is pruned by the 
sequential w-confidence because the w-confidence of the 
pattern is 0.625 which is less than the minimum w-
confidence (0.7). The candidate pattern “(ab)f” is pruned  
by the sequential s-confidence since it is a weak s-affinity 
pattern. The sequential s-confidence (0.67) of the candidate 
sequential pattern <(ab)f>:3 is less than the minimum s-
confidence (0.7). Finally, the sequential pattern generated 
by the <(ab)> projected database is <(ab)d>:3. Recursively, 
sequential patterns with prefix <(ab)> are partitioned and 
mined. 

B. Mine remaining affinity sequential patterns. This can 
be done by constructing the <b>, <c>, <d>, <e>, <f> and 
<h> projected databases and mining them, respectively as 
shown above.   

Step 4: The set of sequential patterns is the collection of 
patterns found in the above recursive mining process.  
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Table 5. Examples of pruning candidate patterns. 

Candidate   
patterns 

Weighted  
support 

Sequential   
w-confidence 

 Sequential   
s-confidence 

<ae> : 5 (0.8 * 5) Pruned 
0.67 (0.4/0.6) 

0.83 (5/6) 

<ah> : 3 (0.8 * 3) 1 (0.6/0.6) Pruned     
0.5 (3/6) 

<acb> : 2 Pruned 
(0.8 * 2) 

Pruned     
0.625 (0.5/0.8) 

1 (6/6) 

<adb> : 2 Pruned 
(0.8 * 2) 

0.75 (0.6/0.8) 0.83 (5/6) 

<(ab)c> : 4 (0.8 * 4) Pruned     
0.625 (0.5/0.8) 

1 (6/6) 

<(ab)f> : 3 (0.8 * 3) 0.75 (0.6/0.8) Pruned  
0.67(4/6) 

Table 5 shows examples of pruning candidate patterns in 
the mining process with a minimum support of 2 and a 
minimum s-confidence and w-confidence of 0.7 respectively. 
By using two objective measures, sequential s-confidence and 
w-confidence, these weak affinity patterns are pruned first 
when the number of patterns need to be reduced.  
Observation 4: WIS used the prefix projected sequential 
pattern growth approach as a framework. However, note that 
the main focus of our work is the suggestion of the concept of 
affinity sequential pattern mining. WIS can be developed by 
using other frameworks such as depth first traversal 
algorithms with a vertical bitmap format [5, 6] or Apriori 
based algorithms [1, 2].   

5. WIS algorithm 

We show the weighted sequential pattern mining algorithm.  
 
WIS algorithm: Weighted sequential pattern mining with the s-
affinity and/or w-affinity.  
 
Input: (1) A sequence database: SDB,  
     (2) A support threshold: min_sup,  
     (3) A w-confidence threshold: min_wconf, 
     (4) A s-confidence threshold: min_sconf. 
Output: The complete set of weighted sequential patterns. 
Begin 
1. Let WSP be the set of Weighted Sequential Patterns that satisfy 
the constraints. Initialize WSP ← {}; 

2. Scan SDB once, count the support of each item, check the 
weight of each item and find each weighted frequent item, β, in 
sequences satisfying the following pruning condition: β is a 
weighted sequential item if the weighted support of the item is 
no less than the minimum support.   

3. For each weighted frequent item, β, in SDB   
         Call WIS (WSP, <β>, 1, SDB) 
   End for 
End 

 
 

 
Procedure WIS (WSP, α, L, S|α) 

 
Parameter:  
(1) α is a weighted sequential pattern that satisfies the above 
pruning conditions, 
(2) L is the length of α,  
(3) S | α is the sequence database, SDB if α is null, otherwise, it is 
the α-projected database. 
1. Scan S |α once, count the support of each item, and find each 

weighted frequent item, β in sequences: β is a weighted 
sequential item if the following pruning conditions are satisfied.  

Condition 1: (support * MaxW ≥  min_sup)  
Condition 2: (w-confidence ≥  min_wconf)  
Condition 3: (s-confidence ≥  min_sconf)  

(a) β can be assembled to the last element of α to form a 
sequential pattern or   

(b) <β> can be appended to α to form a sequential pattern.  
2. For each weighted frequent item β,  
     Add it to α to form a sequential pattern α ,̀ and output α ;̀ 
3. For each α ,̀  
     Construct α  ̀projected database S| α ;̀ 
     Call WIS (α ,̀ L+1, S | α’) 
  End for 

 

After WIS algorithm calls the procedure WIS (WSP, <β>, 
0, SDB), WIS (α ,̀ L+1, S | α`) is called recursively after α  ̀
projected database S|a  ̀ is constructed. Recall that the 
approximate maximum weighted support (support (S) * 
MaxW) is used instead of a pattern’s real weighted support 
which does not satisfy the anti-monotone property. Therefore, 
in final step, we should prune weighted infrequent sequential 
patterns which satisfy this condition ("support (S) * MaxW ≥ 
min_sup").  

6. Applications of mining weighted sequential patterns 
with s-affinity and/or w-affinity 

Weighted sequential pattern mining with s-affinity and/or 
w-affinity can be used in several application domains such as 
analyzing retail data, telecommunications data, and financial 
data and so on. First, correlated sequential patterns with the w-
affinity/s-affinity can be applied in analyzing customer buying 
patterns and planning marketing policies with the association 
structure of different products by analyzing the sequential 
time data. Second, the techniques of mining patterns with 
different level of support and/or weight can be applied to find 
previous fraudulent users and their usage patterns in crimes 
such as money laundering, purchase of expensive items 
within a short time, use of stolen mobile and other financial 
crimes. The usage (transaction) frequency for each user is 
usually regular and customers have purchasing styles so 
sequential patterns containing products with different levels of 
frequency (price) may be fraudulent patterns. Therefore, the 
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level of affinity can help catch fraudulent patterns. Third, 
sequential patterns with s-affinity and/or w-affinity can be 
applied to identify co-occurring gene sequences in biomedical 
data and DNA analysis. The pattern mining with s-affinity 
and/or w-affinity can help determine the kinds of genes that 
are likely to co-occur together in target samples. 

IV. Performance evaluation 
In this section, we present our performance study over 

various datasets. The WIS is the first sequential pattern 
mining algorithm to consider a level of support and/or weight 
between items of sequential patterns. We report our 
experimental results on the performance of WIS in 
comparison with recently developed algorithms: PrefixSpan 
[15], SPAM [2] and WSpan [27] because PrefixSpan and 
SPAM are traditional sequential pattern mining algorithms 
and WSpan is a weight based sequential pattern mining 
algorithm. The main purpose of this experiment is to 
demonstrate how effectively the weighted sequential affinity 
patterns can be found by using sequential s-confidence and/or 
w-confidence. First, we show how the number of weighted 
sequential affinity patterns can be adjusted through user 
feedback. Specifically, in this performance test, the number of 
sequential patterns and maximum sequential patterns without 
inclusions (Fig. 5, and Fig. 13) are checked. Second, we 
present the efficiency of the WIS algorithm, and quality of 
weighted affinity sequential patterns. Finally, we illustrate that 
WIS has good scalability against the number of sequences in 
the datasets. 

Table 4. Parameters for IBM Quest Data Generator. 

Symbol Meaning 
D Number of customers in the dataset 
C Average number of transactions per customer
T Average number of items per transaction 
S Average length of maximal sequences 
I Average length of transactions within the 

maximal sequences 
N  Number of different items 

1. Test environment and datasets 

WIS was written in C++. Experiments were performed on 
a sparcv9 processor operating at 1062 MHz, with 2048MB of 
memory. All experiments were performed on a Unix machine. 
In our experiments, a random generation function was used to 
generate weights of items. The IBM dataset generator is used 
to generate synthetic sequence datasets. It accepts essential 
parameters such as the number of sequences (customers), the 
average number of itemsets (transactions) in each sequence, 
the average number of items (products) in each itemset, and 
the number of different items in the dataset. Table 4 shows 
parameters and their meanings in this sequential dataset 
generation. More detail information can be found in [1]. To 
make our experiments fair, the synthetic datasets used in the 

experiments are the same as those used in SPAM [2]. 

2. Experimental results 

A. Comparison of WIS with other algorithms 
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Fig. 1. Num of patterns 
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Fig. 2. Runtime 
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Fig. 3. Num of patterns 
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Fig. 4. Runtime 
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Fig. 5. Num of Maximum patterns (Min_sup = 2.0%) 

0

10

20

30

40

50

60

90% 80% 70% 60% 50%
Minimum s-confidence

R
un

tim
e 

in
 s

ec
on

ds

WSpan
WIS min_wconf = 40%
WIS min_wconf = 60%
WIS min_wconf = 80%

 
Fig. 6. Runtime (Min_sup = 2.0%) 

D1C10T5S8I5 dataset 
 
From Fig. 1 to Fig. 6, we evaluated the performance on the 
D1C10T5S8I5 dataset. Weights of items are set up between 
0.3 and 0.6. In WIS, by using two measures s-confidence and 
w-confidence, sequential support / weight affinity patterns can 
be identified. In Fig. 1 and Fig. 2, the effect of sequential w-
confidence is shown. Meanwhile, in Fig. 3 and Fig. 4, the 
results of using sequential s-confidence are presented. When 
the minimum support fixed, sequential patterns with a 
dissimilar weight or support levels are much pruned as the 
minimum w-confidence or s-confidence becomes higher. We 
can see that the effect of sequential w-confidence / s-
confidence is better at lower minimum supports such as 4%. 
Specifically, the performance gaps increase as the minimum 
s-confidence / the minimum w-confidence becomes higher. 
PrefixSpan (SPAM) generates a huge number of sequential 
patterns with a minimum support of less than 10%. For 
instance, the numbers of patterns of PrefixSpan (SPAM) are 
38,615 with a minimum support of 10%, 160,685 with a 
minimum support of 8%, and 443,639 with a minimum 
support of 6%. In Fig. 5 and Fig. 6, a minimum support 
threshold is fixed at 2% and the performance is evaluated as 
the minimum s-confidence and w-confidence are changed. In 
this test, we can check the effect of combination of two 
measures. In particular, we count the number of maximum 
sequential patterns without any inclusion and the runtime as 
the minimum s-confidence and minimum w-confidence are 
changed. From Fig. 5 and Fig. 6, we can know that the 

number of sequential affinity patterns and runtimes can be 
adjustable by changing two thresholds. For instance, with a 
minimum s-confidence of 80% and a minimum w-confidence 
of 80%, the runtime is less than 2 seconds. However, the 
runtimes are more than 10 seconds by using s-confidence and 
w-confidence thresholds of 60% respectively. Sequential s-
confidence and w-confidence are effectively used to prune 
weak affinity patterns in terms of support and weight. It may 
not be surprising that the number of sequential patterns and 
the runtime are reduced. However, in previous sequential 
pattern mining algorithms such as PrefixSpan and SPAM, 
sequential weight (support) affinity patterns cannot be 
detected. Although the weight constraints are used in WSpan, 
the correlated sequential patterns with similar weight /support 
levels are not mined. 
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Fig. 7. Num of patterns 

0

40

80

120

160

200

2% 2.50% 3% 3.50% 4%
Minimum support (in %)

R
un

tim
e 

(in
 s

ec
on

ds
)

PrefixSpan

SPAM

WSpan

WIS min_wconf = 60%

WIS min_sconf = 60%

WIS min_sconf = 60%,
min_wconf = 60%

 
Fig. 8. Runtime 
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Fig. 9. Num of patterns 
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Fig. 10. Runtime 

D7C7T7S7I7 dataset 

From Fig. 7 to Fig. 10, we report the evaluation results for 
D7C7T7S7I7 dataset. We set up weights from 0.1 to 0.3 for 
Fig. 7 to Fig. 10. The main performance difference between 
WIS and other algorithms such as PrefixSpan, SPAM and 
WSpan results from using sequential s-confidence and/or 
sequential w-confidence. By using sequential s-confidence 
and/or w-confidence thresholds, correlated sequential patterns 
with a higher level of affinity in terms of support and/or 
weight are generated. We can also see that the performance of 
using both sequential s-confidence and w-confidence is better 
than using either one alone. In addition, given a minimum s-
confidence and w-confidence at 60%, the effect of sequential 
s-confidence is better than that of sequential w-confidence. 
However, at a threshold of 70%, the performance of 
sequential w-confidence becomes better than that of 
sequential s-confidence. In Fig. 7 and Fig. 8, we could not 
show the number of patterns generated by PrefixSpan 
(SPAM) because the number of patterns becomes huge at less 
than 4%. For example, the number of patterns in PrefixSpan 
(SPAM) are 170,965 with the min_sup of 4%, 292,161 with 
the min_sup of 3.5%, 439,953 with a minimum support of 
3.0%, 701,760 with min_sup of 2.5%, and 1,646,818 with 
min_sup of 2%.  
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Fg. 11. Num of patterns 
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Fig. 12. Runtime 
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Fig. 13. Num of Maximum patterns (Min_sup = 45%) 
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Fig. 14. Runtime (Min_sup = 45%) 

D15C15T15S15I15 dataset 

Fig.11 to Fig. 14 demonstrates the results of a performance 
test using the D15C15T15S15I15 dataset with weights from 
0.4 to 0.8. When w-confidence threshold is lowered, the 
performance difference of sequential w-confidence measure 
becomes larger. At higher weight confidences, such as 90%, 
the performance of WIS becomes better. We can see that the 
number of (maximum) sequential affinity patterns for WIS is 
decreased as the sequential s-confidence and w-confidence 
are increased. Recall that WSpan can also adjust the number 
of patterns by resetting the weight range, although we fixed 
the weight range in these tests. Decreasing a weight range 
means more priority is given to a support measure. However, 
WIS prunes the (maximum) sequential patterns with weak s-
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affinity and/or w-affinity. If users increase the sequential w-
confidence threshold, it means they want patterns that involve 
items with higher w-affinity. Users can choose their level of 
interest and use a sequential s-confidence and/or w-
confidence. 
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Fig. 15. Num of Maximum patterns  
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Fig. 16. Runtime    

Real Gazelle dataset: We report the evaluation results for 
Gazelle dataset. The Gazelle dataset is click stream data 
which is used in KDDCup-2000. Product pages by a 
customer in a session are considered as an itemset and 
difference sessions by one use is thought as a sequence. For 
more detail information, we can refer to [15, 23]. In this 
experiment, minimum supports are used with normalized 
weights, 0.1 – 0.9. From Fig. 15 and Fig. 16, we can see that 
WIS detects support and weight affinity sequential patterns 
with sequential s-confidence and w-confidence respectively. 
Moreover, by using higher s-confidence and w-confidence 
thresholds, strong affinity sequential patterns are mined. 

B. Quality of weighted sequential patterns with s-affinity 
and/or w-affinity 

In previous evaluation, we showed that the sequential s-
confidence and w-confidence can be used to detect sequential 
patterns with the s-affinity and/or w-affinity. In all test datasets, 
items are expressed as integer values so it is difficult to 
understand the meaning of items and discovered sequential 
patterns. In this evaluation, the D7C7T5S4I2.5 dataset is used 
to illustrate the quality of affinity sequential pattern mining. A 
minimum support is set to 2.5% and weights are set as 0.1 – 

0.3. We analyzed the patterns discovered by WIS. We 
compared the patterns mined by WIS with those of 
PrefixSpan (SPAM) and WSpan. For example, sequential 
patterns <(2) (45) (27, 91) (17, 70)>:12 and <(1, 61, 91) (27) 
(91) (70)>:12 are mined by PrefixSpan (SPAM) and 
sequential patterns <(70) (61) (45, 61)>:40 and <(91) (47) 
(91) (27, 91)>:47 are discovered by WSpan. However, these 
patterns are all pruned by s-confidence (min_sconf = 0.6) and 
w-confidence (min_wconf = 0.6) respectively. In other words, 
these sequential patterns are weak affinity patterns. Although 
the minimum support is increased, these weak affinity 
patterns such as <(2) (45) (27, 91) (17, 70)>:12 and <(1, 61, 
91) (27) (91) (70)>:12 are found by PrefixSpan (SPAM). In 
addition, although the minimum support threshold is 
increased and/or the weight range is changed, the weak 
affinity patterns such as <(70) (61) (45, 61)>:40 and <(91) 
(47) (91) (27, 91)>:47 are still discovered in result patterns in 
WSpan. The weak affinity patterns can be effectively pruned 
by sequential s-confidence and/or w-confidence.  

C. Scalability Test 
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Fig. 17. Scalability test of s-confidence and w-confidence     

DxC2.5T5S4I2.5 dataset 
The DxC2.5T5S4I2.5 dataset was used to test scalability 

with the number of sequences in the database. In this test, we 
set a minimum support as 0.4% and weights as 0.1 to 0.5. To 
show differences clearly among algorithms, the number of 
sequences in X-axis is increased up to 140k and the scalability 
test is performed. In Fig. 17, the slope differences among the 
algorithms become bigger as the number of sequences in x-
axis is increased. We can see that the slope ratio of WIS is 
lower than those of PrefixSpan and WSpan. When WIS is 
compared with PrefixSpan, definitely, the scalability of WIS 
is better than that of PrefixSpan. Moreover, WIS shows 
somewhat better scalability than WSpan. As a result, WIS 
shows better scalability than other two algorithms in terms of 
number of sequences. 

V. Future research 
As future work, there are a few things to be researched. 

First, WIS is a main memory based sequential pattern mining 
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algorithm but this assumption give a limitation when the 
database is very large or the minimum threshold becomes low. 
WIS should be extended as a disk based method. Second, to 
set up weights of items, prices of items can be used as a 
weight factor in market basket data and the prices of items can 
be normalized into a weight range. However, we should think 
of ways to assign weights to items in other types of datasets 
such as web log data, biomedical data, DNA data and data 
used in other applications. Third, WIS uses three thresholds 
which are the minimum support, the minimum s-confidence 
and/or w-confidence. Effective settings of thresholds are 
essential although it is the common problem of all threshold-
based mining algorithms. For example, the sequential weak 
affinity patterns can be much pruned by increasing the 
difference between a maximum weight and a minimum 
weight in a sequence database although the minimum w-
confidence and/or s-confidence are fixed. Meanwhile, the 
effect of the w-confidence can be reduced by decreasing the 
difference between the maximum weight and the minimum 
weight. We need to have more research and experiment to 
give guidance of how efficiently to set up the thresholds. 
Finally, improved techniques such as sequential pattern 
mining using pseudo projection [15] or bitmap representation 
[2] have been suggested. In future work, WIS can be extended 
by using a combination of these techniques.   

VI. Conclusion 

In this paper, we studied the problem of mining weighted 
sequential affinity patterns. We introduced sequential s-
confidence and w-confidence measures and the concept of 
weighted interesting sequential patterns by using the two 
measures. The sequential s-confidence and/or w-confidence 
measures can be used to prune weak sequential patterns 
involving items from dissimilar support and/or weight levels. 
The extensive performance analysis shows that WIS is 
efficient and scalable in sequential affinity pattern mining. In 
addition, from the experiments, we showed that WIS 
algorithm is very effective to detect support and/or weight 
affinity sequential patterns. 
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