
ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 183

In this paper, we propose quality of service mechanisms
for flow-based routers which have to handle several
million flows at wire speed in high-speed networks. Traffic
management mechanisms are proposed for guaranteed
traffic and non-guaranteed traffic separately, and then the
effective harmonization of the two mechanisms is
introduced for real networks in which both traffic types
are mixed together. A simple non-work-conserving fair
queuing algorithm is proposed for guaranteed traffic, and
an adaptive flow-based random early drop algorithm is
proposed for non-guaranteed traffic. Based on that basic
architecture, we propose a dynamic traffic identification
method to dynamically prioritize traffic according to the
traffic characteristics of applications. In a high-speed
router system, the dynamic traffic identification method
could be a good alternative to deep packet inspection,
which requires handling of the IP packet header and
payload. Through numerical analysis, simulation, and a
real system experiment, we demonstrate the performance
of the proposed mechanisms.

Keywords: Fow-based router, quality-of-service (QoS),
IntServ, DiffServ, packet scheduling, dynamic flow
identification.

Manuscript received Aug. 13, 2007; revised Jan. 4, 2008.
This work was partly supported by the IT R&D program of MIC/IITA [2007-S013-01] and

the ITRC program of MIC/IITA [C1090-0603-0035], Rep. of Korea.
Nam-Seok Ko (phone: + 82 42 860 5560, email: nsko@etri.re.kr), Sung-Back Hong (email:

sbhong@etri.re.kr) and Kyung-Ho Lee (email: kholee@etri.re.kr) are with the Broadcasting &
Telecommunications Convergence Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Hong-Shik Park (email: hspark@icu.ac.kr) is with the School of Engineering, Information
Communications University, Daejeon, Rep. of Korea.

Nam Kim (email: namkim@chungbuk.ac.kr) is with the School of Electrical & Computer
Engineering, Chungbuk University, Cheongju, Rep. of Korea.

I. Introduction

The remarkably rapid development of Internet technology
has led to the establishment of a wide variety of businesses that
require heavy exchanges of multimedia data. Although some
parts of multimedia exchanges do not specify quality-of-
service (QoS) requirements, there are several applications that
require specific QoS guarantees, such as bandwidth guarantee.
To cope with this problem, several QoS mechanisms have
been proposed and adopted in networks.

IntServ [1] and DiffServ [2] are examples of such
mechanisms. IntServ sets up a session by exchanging explicit
signaling messages. If efficient packet scheduling algorithms
are used, it can perfectly control each session. However, it has a
scalability problem since it requires signaling messages to be
exchanged between terminals periodically. Moreover, it is not
easy to support per-session QoS in high-speed networks, which
require per-session queues for millions of sessions. Therefore,
IntServ cannot be deployed in large networks. On the other
hand, DiffServ controls only traffic classes rather than each
session within a traffic class. The mechanism uses
differentiated service code point (DSCP) values in the IP
header to deliver the QoS class of the traffic. In the edge nodes,
the DSCP field is set to a proper value according to the traffic
classification, and the core nodes use the DSCP values, which
are already set in the edge nodes. However, DiffServ still lacks
controllability, even though performance is far better than when
the mechanism is not used. Traffic is classified into
predetermined traffic classes, and QoS is addressed in terms of
those classes. Weighted fair queuing or other suitable
scheduling algorithms can be applied in the system, but there is
no way to provide QoS for each flow in the traffic classes with
this class-based traffic control architecture [3]-[8].

Quality-of-Service Mechanisms for
Flow-Based Routers

Nam-Seok Ko, Sung-Back Hong, Kyung-Ho Lee, Hong-Shik Park, and Nam Kim

184 Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008

For these reasons, a simple and efficient flow management
architecture is needed with an efficient and scalable packet
scheduling algorithms to handle several million flows, which
do not use expensive signaling messages. Note that we use the
terms flow and session interchangeably. Most of the scheduling
algorithms that have been proposed and deployed in
commercial systems are work-conserving algorithms, which
require per-flow queues [3]-[11]. They are appropriate for
guaranteed services but not for non-guaranteed traffic. If they
are applied to best-effort services, the rates for the flows should
be dynamically chosen according to the current number of
backlogged flows, which creates too high a burden on the
system. Therefore, packet scheduling algorithms have
generally been applied on a per-class basis.

Recently, there has been active research on flow-based queue
management [9]-[11]. For non-guaranteed traffic, drop-
probability-based active queue management and hierarchical
weighted round robin were proposed separately. A time-slot-
based scheduling mechanism was also proposed. These studies
mainly focus on how to allocate and manage buffers for flows
and classes. However, it is not easy to maintain per-flow
buffers and queues in high-speed core networks.

We propose a different QoS architecture for the flow-based
router system. The buffer is shared among flows, and the
calendar queue is used for the scheduling packets [12]. The
packets are stored in the shared memory in the system when
they arrive in the system, and the scheduling times for the input
packets are decided before sending them to calendar queue. If a
packet is not appropriate to be serviced, it is dropped rather
than being sent to the calendar queue. Scheduling algorithms
are proposed for both guaranteed and non-guaranteed traffic,
which are harmonized not to affect each other in a real traffic
environment. In addition, we propose a technique to enhance
the scheduling algorithm by dynamically identifying traffic on
the basis of the traffic characteristics. This improves flexibility
of the flow-based router by prioritizing the flows, which are
identified dynamically. Dynamically identified flows can be
treated differently from normal traffic flows. According to the
user’s preferences, the traffic can be given higher or lower
priority. The performance characteristics of the proposed
algorithms are analyzed by numerical analysis, simulation, and
real system test.

The remainder of this paper is organized as follows. In
section II, we propose a flow-based router framework to
support efficient flow-based QoS. Then, traffic management
mechanisms to support flow-based QoS are proposed in
section III. In section IV, the results of the performance
evaluation are given by numerical analysis, simulation, and real
system experiment. Finally, conclusions are presented in
section V.

II. Framework of the Proposed Flow-Based Router

Our flow-based router is based on the principle of recognizing
flows, routing the first packet of a flow, dynamically associating
state with it, and then switching the remaining packets in the
flow using the state information. The definition of flow is not
fixed, but it could be defined in various ways according to the
requirements of the user or service provider. A flow could be
defined as a traffic flow which shares the 5-tuple IP header fields,
but for MPLS traffic, it could be defined as traffic which shares
the same MPLS label. In this paper, a flow is an IP flow which is
defined by 5-tuple IP header fields if it is not specifically
mentioned. An IP flow is also called an IP micro-flow since the
flow definition is the finest one which is most frequently used in
flow-based router networks. The mechanism by which a flow is
identified is based on a hashing function. The best known
hashing functions, such as XOR and CRC32, were analyzed in
[13], but consideration of specific hashing function is beyond the
scope of this paper.

If a packet comes into the system, the selected hashing
function will generate a hash value. The hash value is used to
find the flow state entry for the flow of the packet. If the packet
is the first packet of the flow, no flow state entry for the flow
exists. Therefore, a new flow state entry must be created for the
flow with the appropriate forwarding and QoS information.
The information can be gathered by referring to the other tables
such as forwarding tables and the QoS classification table. On
the other hand, if there is already a flow state entry for the flow,
the packet is just processed according to the information in the
flow state table.

Since a flow is uniquely identified by its 5-tuple fields, the
lookup for the flow state table should be an exact match instead
of longest-prefix match as in the IP forwarding table lookup.
The hash-based table is best for the flow state table. Even
though there are hash collisions in hash-based tables, if the
hash function is well designed, the hash collision rate can be
quite well minimized [13].

A flow state entry is created and maintained when the first
packet enters the system. As shown in Fig. 1, a flow state table
is looked up first () and then if there are no matching entries for

Fig. 1. Conceptual architecture of flow-based router.

Packet processing engine

1st packet
Subsequent

packets

Flow state
table

Forwarding
table

Classification
table

1

5

4
3 2

1

ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 185

the hash value, the forwarding table and classification tables are
looked up (,). Next, the flow state entry is created for the flow
to gather the required information for the flow (,). The
subsequent packets of the flow will simply use the already
existing information in the flow state entry (). The created flow
block is deleted if a certain time duration passes. This can be done
by maintaining the lifetime of flows in the flow state entry [9].

Once flows are identified and maintained in the system,
traffic management can be done for each flow. As mentioned in
the previous section, our traffic management approach to
support QoS is different from those of previous studies [9]-[11].
Previous studies focused on how to allocate and manage
buffers for each flow and class. However, it is not easy to
maintain per-flow buffers and queues in high-speed core
networks. Therefore, we propose a simple but robust QoS
architecture for the flow-based router system using a calendar
queue and new packet scheduling algorithms in the shared
buffer management system.

III. Proposed QoS Architecture of the Flow-Based
Router

1. Traffic Management Architecture for Flow-Based Router

A. Scheduler Architecture for the Proposed QoS Mechanisms

The proposed scheduler for the flow-based router does not
use per-flow queues or buffers as assumed in existing flow-
based router mechanisms [9]-[11]. In the real environment, to
handle millions of flows and support per-flow queuing is not
easy. Therefore, we propose efficient traffic management
mechanisms, which utilize a calendar queue scheduler in
shared buffer management systems [7], [14]. The architecture
is shown in Fig. 2.

For non-guaranteed traffic, drop-probability-based active
queue management is proposed, and we use a virtual clock like a
fair queuing algorithm in order to support guaranteed traffic.
There are some special features in each traffic management
method for guaranteed and non-guaranteed traffic. For non-
guaranteed traffic, each flow is dynamically identified and then
processed differently than normal traffic. If the traffic is known to
be malicious it will be dropped severely. If the traffic is identified
to be guaranteed we give it higher priority not to be randomly
discarded. In addition, we apply a shaping concept to non-
guaranteed traffic according to the congestion status. For
guaranteed traffic, our mechanism differs from existing fair
queuing algorithms (such as virtual clock and the other WFQ
variants) in that the time stamping is not actually tagged to the
packet itself, and sorting is not used to select the minimum
virtual finishing time. Instead, if a time to send is calculated for
the packets, the packets are inserted in the matching calendar

Shared data

memory

Fig. 2. Proposed forwarding architecture.

TNOW

Packet
payload

Calendar queue

Forwarding
engine

Flow state table
memory

Packet
header

Packet
header

Packet
payload

queue time slots. Therefore, it is not necessary to maintain a per-
flow queue or buffer, which is the main difference from existing
flow-based scheduling architectures [9]-[11]. However, the
linked list structure should be used to maintain the packet order
of a flow as in other shared-memory architectures [10], [11].

In the enqueue process, the time to send is determined
according to the algorithm for both non-guaranteed traffic and
guaranteed traffic. The time to send of non-guaranteed traffic is
determined according to the traffic congestion status of the class
with which the flow is associated; thus, non-guaranteed traffic is
shaped according to the traffic congestion status. The time to
send of guaranteed traffic is purely determined according to its
reserved rate as in other fair queuing algorithms. However,
instead of tagging time stamps to packets and sorting the packets
according to the increasing order of time stamps, the packets are
inserted into a time slot of a calendar queue, which is chosen by
the calculated time to send. In this calendar-queue-based
scheduler, if each packet is allocated to the appropriate time slot
in the enqueue process, the dequeue process visits each time slot
in sequence and services the packets in it [7], [19]. Those
mechanisms are explained in detail in the following subsections.

B. Packet Scheduling Algorithms for Guaranteed Service

Since guaranteed traffic specifies QoS requirements, non-
work-conserving algorithms are more appropriate than work-
conserving algorithms. In a non-work-conserving algorithm,
even when there are backlogged packets in the system, if a
packet is not eligible according to the QoS requirements, that
packet is not serviced until it becomes eligible. Most work-
conserving algorithms are complex because they should adapt
their service rates considering the assigned weight and current
buffer status. However, if only the requested QoS requirements
are to be guaranteed, it is simpler to use non-work-conserving
algorithms. In this paper, we focus on the bandwidth
requirement in relation to several QoS requirements.

186 Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008

Instead of using virtual time, we use a real-time clock to
calculate the finishing time of a packet. In work-conserving
algorithms, since the real finishing time is different from the
calculated finishing time, the calculated finishing time is called
the virtual finishing time. In non-work-conserving algorithms,
packets are serviced at the time of the calculated finishing time.
We call the scheduling algorithm real-time-clock fair queuing
(RCFQ) since the proposed non-work-conserving algorithm is
based on the real-time clock. The packet finish time of the k-th
packet of flow i (k

iF) with reserved rate ri and packet length
k
il in RCFQ is calculated as

1max(,)k k k
i i now i iF F T l r−= + , k=1, 2,…, (1)

where 0 ,i now nowF T T= is the current time of the real-time clock.
The result of max in (1) is the packet start time of k-th packet.

It causes the packet to be delayed until the eligible time when a
packet arrives earlier than expected. The algorithm is quite
similar to the virtual clock (VC) [8] in that a real-time clock is
used instead of virtual time. However, the difference is that we
do not have the fairness problem which is intrinsic to the VC.
In the VC, if a flow produces a large burst of data, even in a
lightly loaded situation, the flow is affected by other newly
activated flows. This is because the VC was using real-time
clock instead of virtual time. However, since RCFQ is a non-
work-conserving algorithm, and it services packets only by
each flow’s reserved rate, the algorithm has no such problem.
In RCFQ, the difference between the finishing time of an HOL
packet in each session and the system clock never exceeds a
certain amount of time. This will be analyzed in section IV.
Another important difference from the VC is that we do not
need to maintain a separate sorting structure. The exact time to
send is already decided when the starting and finishing times of
a packet are calculated.

This RCFQ has a low finishing time computation complexity
of O(1) without requiring additional sorting structure by making
use of a calendar queue. In the existing fair queuing algorithms,
even when they have O(1) virtual time complexity, they have
additional O(logN) sorting complexity intrinsically.

C. Packet Scheduling Algorithms for Non-guaranteed Service

Non-guaranteed service is the best-effort service for traffic
that does not request any specific QoS requirements. Therefore,
if we service this traffic using the packet scheduling method,
the overhead is too big compared to the expected QoS level for
the traffic. If fair queuing is used in the system for the best-
effort traffic, the bandwidth for a flow should be dynamically
chosen according to the current number of flows in the system
and the congestion status. This is not affordable in high-speed
networks; therefore, this kind of traffic may as well be handled

by simple active queue management.
In active queue management, RED is a representative

mechanism. Some variants have been proposed to address the
basic limitations of RED, including BLUE, adaptive RED,
flow random early drop (FRED), and dual metrics fair queuing
(DMFQ) [3]-[20]. Among them, FRED maintains the average
queue for the system as well as a portion of queues for each
flow from the total queue length. It calculates each flow’s drop
probability based on them. By first dropping packets from the
flows whose queue lengths are longer than the average flow
queue length, FRED provides better protection for
unresponsive traffic. The DMFQ mechanism calculates the
dropping probability based on the flow arrival rate and flow
succession time.

The basic approach for the proposed active queue
management mechanism is similar to DMFQ in that both
mechanisms use the average flow rate rather than the queue
length. However, the proposed architecture is enhanced by
allowing the dropping probability to be changed dynamically
according to the traffic characteristics. The basic mechanism of
the proposed algorithm, which is called adaptive flow random
early drop (AFRED), is described as follows for a flow i which
is a member of traffic class x.

Constants

min_thx : minimum class threshold of class x
max_thx : minimum class threshold of class x
maxp: maximum drop probability

Variables
Qx

 : class x’s average queue length
Rx

 : class x’s average rate
Nx

 : average number in a class x
îr : average flow rate of a flow i

ir% : expected fair flow rate of a flow i
Px: drop probability of a class x
pi : drop probability of a flow i
n: normalized flow drop probability factor

For each class
- calculate class x’s drop probability as follows
 Px = (Qx – min_thx)/(max_thx – min_thx) (2)

For each packet of a flow
- calculate expected fair flow rate as follows

ir% = Rx / Nx (3)

- calculate normalized flow drop probability factor
 n = (îr / ir%) × C1 , (4)

where C1 is a constant value
- calculate flow’s drop probability as follows
 pi = max (maxp, n×Px) (5)
- drop packets with the drop probability of pi

ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 187

The final drop probability of a flow i (pi) is calculated based
on the class’s drop probability (Px) and the ratio of the current
flow’s average rate (îr) to the expected flow rate (ir%), which is
calculated with the average number of flows (Nx) and the
average class’s rate (Rx). Note that a class is a group of flows,
which is determined by the classification result. The current
flow’s average rate (îr) and the average class’s rate (Rx) are
assumed to be known a priori. Those values are maintained in
ASIC by the exponential moving average calculation. The
mechanism will drop fewer packets from the flows with rates
lower than the average flow rate, but more packets from the
flows with rates higher than the average flow rate. This is quite
a reasonable and fair approach.

Although this flow drop probability calculation is effective, it
can be enhanced. In previous basic flow drop probability
calculations, even when a class is in a heavy state of congestion,
the drop probability of a flow that is sending under the average
flow rate is not high enough to alleviate congestion quickly.
Therefore, we modify the drop probability calculation method
such that the drop probability increases slowly when a class is
in a light state of congestion, but it increases very quickly when
the class is in a heavy state of congestion. The relationship
between the class’s drop probability and flow’s drop
probability is visualized in Fig. 3. The enhanced flow drop
calculation method is given for each packet of flow as

pi = ((Px+ Px × n) < 1.0)? (Px×n) : (1.0–(1.0–Px)/n). (6)

Fig. 3. Drop probability of flow vs. class.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Class’s drop probability

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9

1.0

Fl
ow

’s
 d

ro
p

pr
ob

ab
ili

ty

n=0.25
n=0.5
n=0.75
n=1.0
n=1.5
n=2.0
n=3.0
n=4.0
n=6.0
n=8.0
n=12.0
n=32.0

n=32.0

n=0.25

1.0

2. Advanced Traffic Management in Flow-Based Router

A. Dynamic Flow Identification (DFI)

In this section, we explore more enhanced mechanisms
using more information, which we can derive from the flow
state entry. One current Internet problem is that P2P traffic is
very prevalent and takes up a large proportion of the network
bandwidth. In order to cope with this problem, traffic analysis
tools have been developed which identify P2P traffic with deep

packet inspection (DPI). Deep packet inspection is based on
pattern matching on various IP header and payload fields. This
can create a serious burden to the system and makes it
inapplicable in high-speed networks.

We propose a useful mechanism to identify flows on the
basis of traffic characteristics, such as flow duration, average
packet byte, average flow rate, and so on, which are maintained
per flow rather than by the packet header or payload. If these
traffic characteristics are known for each application, we can
identify the type of application of a flow more easily and
differentiate P2P traffic from normal traffic. Some studies to
extract the traffic characteristic information of applications
have been done [21]. We assume that the traffic characteristic
information for some applications can be obtained by those
methods.

There are two options to differentiate dynamically identified
traffic. First, we can adjust the drop probability for the traffic. If
traffic of a flow is decided to be an application that should be
processed with higher priority, we decrease the drop probability.
If the traffic of a flow is decided to be an application with low
priority, such as P2P traffic, we increase the drop probability.
As a mechanism to achieve this goal, dynamic traffic
identification can be used to adjust a flow’s drop probability. As
a simple extension to the flow drop probability factor presented
in the previous section, we can adjust the flow drop probability
factor calculation to penalize traffic that exceeds the thresholds
of some traffic characteristic parameters, while keeping the
previous approach for other normal traffic. We define the
adaptive drop priority (ADP) value as a value to adjust the flow
drop probability factor as follows:

max , min(,max)

max , min(,max)

max , min(,max)

max , min(

adp
threshold

adp
threshold

threshold
adp

threshold

FlowLifeTimeADP
FlowLifeTime

AvgFlowRate
FlowRate

AvgPktSize PktSize
MTU PktSize

Byt

α α

β β

γ γ

δ δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠
⎛ ⎞−

+ ⎜ ⎟
−⎝ ⎠

+ ,max) , (7)adp
threshold

eCount
ByteCount

⎛ ⎞
⎜ ⎟
⎝ ⎠

where each of α, β, γ , and δ is greater than or equal to zero,
and α+β+γ+δ = 1.

The current design of ADP only considers flow lifetime
(FlowLifeTime), average flow rate (AvgFlowRate), average
packet size (AvgPktSize), and the total byte count of each flow
(ByteCount), but if we can identify any other distinctive traffic
characteristics of a flow, we can add the parameters to the
above equation. In (7), the values α, β, γ , and δ, work as
weight factors in each traffic parameter. If we do not want to

188 Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008

consider a parameter to calculate ADP, we can just set its
weight factor to zero. The value of maxadp is used to limit the
value of ADP to a certain maximum value. The traffic
characteristic of each application is beyond the scope of this
paper, but if the characteristics are analyzed clearly, the ADP
approach could be used to control specific applications
effectively.

Now we can again modify the flow probability calculation.
Equation (6) is not changed, but the normalized flow drop
probability factor n in (4) is changed:

2ˆ(/) ADP ,i in r r C= × ×% (8)

where C2 is a constant value.
The threshold-based dynamic flow identification (DFI), its

ADP value calculation, and its adaptation to the flow drop
probability factor are somewhat limited since they depend only
on the threshold values. Therefore, we can also adopt the range
concept on the values. This range-based DFI is not directly
applied to the flow drop probability calculation; rather, it can be
used to give the identified traffic strict priority. The priority
could be lower or higher than that of normal traffic. That is, if
the traffic is given a higher priority, the traffic will never be
dropped until the congestion becomes severe. If the traffic is
given a lower priority, the traffic is dropped before dropping the
normal traffic.

B. Flow-Based Integrated Packet Scheduling Combining
RCFQ and AFRED

In the previous sections, we proposed traffic management
mechanisms for guaranteed traffic and non-guaranteed traffic,
RCFQ and AFRED, respectively. Both algorithms were
proposed for their own specific traffic types: guaranteed and
non-guaranteed traffic. However, we did not mention how the
two mechanisms should cooperate with each other when they
coexist in the system. In this section, we propose a
harmonization method for RCFQ and AFRED.

The time to send for packets in RCFQ is clear, and the
packets are scheduled to the appropriate time slot in the
scheduler. However, the time to send for packets in AFRED is
not defined clearly. It is usually assumed to be allocated to the
current time as in legacy active queue management schemes.
Therefore, if both kinds of traffic are allocated to the same time
in the heavy congestion status, there will be cases in which
guaranteed traffic is affected by non-guaranteed traffic. To
address this issue, we adopted a spacing mechanism for non-
guaranteed traffic. Non-guaranteed traffic is spaced properly so
that it has a minimal effect on guaranteed traffic. We achieve
this goal by adopting a packet finishing time concept for non-
guaranteed traffic in a class. However, we use a class’s average

bandwidth instead of using the each flow’s rate. The packet
finish time of the k-th packet of class ()k

xx F is calculated as
follows, while still being randomly dropped according to the
congestion status by AFRED:

1
maxmax(, min(/ , /)),k k

x x now x x xF F T Q R Q R−= + (9)

where Qmax is the maximum queue for the class.
With (9), the time-to-send of non-guaranteed traffic is

decided clearly to minimize the effect on the guaranteed traffic.
We can also use multiple priority queues for guaranteed traffic
and non-guaranteed traffic. However, we need to space the
non-guaranteed traffic to minimize the probability that one
time-slot is congested.

3. Implementation of Flow-Based Traffic Management

From the point of view of implementation complexity, it is
clear that the complexity of a flow-based router is much higher
than that of a legacy class-based traffic management scheme
since the number of flows that should be handled by the flow-
based router can be up to several million, compared to 64 in a
DiffServ router. However, complexity can be overcome as the
hardware technology advances, and its speed increases as time
goes on. We can also reduce the implementation complexity by
using a calendar queue in the shared memory architecture,
while applying efficient algorithms for guaranteed and non-
guaranteed traffic. In section IV, we will demonstrate that
packets can be scheduled effectively when the proposed
scheduling algorithms are used.

As the algorithms for the enqueue process were discussed in
section III for both guaranteed and non-guaranteed traffic, the
time to send for non-guaranteed traffic is clearly chosen
according to the class’s congestion status. More specifically, the
time to send of a packet is chosen according to the average rate
of the class to which the flow of the packet is allocated, while
packets are dropped according to the congestion status of the
class. Therefore, there is no need to use per-flow queuing;
rather, a calendar queue using the proposed algorithms is
perfectly suitable for implementation of the proposed
mechanisms.

IV. Performance Analysis

In this section, we analyze the traffic management
mechanisms that have been proposed in the previous sections.
First, we analyze RCFQ numerically. We did not build any
concrete numerical methodologies to analyze the active queue
management schemes; therefore, we provide simulation results
using an event driven network simulation tool, NS-2 [22], and
test results from the real system that we have implemented to

ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 189

demonstrate the performance of the proposed algorithms.

1. Numerical Analysis

A. Delay Analysis of RCFQ

The delay limitation for the RCFQ is clear since the
algorithm is non-work-conserving, and it services each
sessions with only the reserved rates. However, we show the
delay performance more clearly with the numerical analysis in
this section. As in other scheduling algorithm analyses, we use
the fluid flow model for RCFQ (f-RCFQ). The fluid flow
model assumes that a packet is serviced in an infinitesimal unit
[5]-[7]. In a normal packet-by-packet system, no other packets
are serviced until the service of a packet finishes. However,
packets can be serviced at the same time as other packets in a
fluid flow model scheduler. Before performing the analysis, we
define two concepts.

- A session busy period is a maximal interval of time (τ, t)
which satisfies Ai(τ, t) ≥ ri(t-τ).

- A system busy period is a maximal interval of time during
which there is at least one busy session.

Note that the above definitions are defined with respect to a
non-work-conserving system. The system busy period in a
work-conserving system is different from the above definition.
In a work-conserving system, it is defined as a maximal
interval of time during which the server is never idle. However,
in the non-work-conserving system, there could be some time
intervals during which the server is idle in the system busy
period.

Lemma 1. In the fluid model of RCFQ (f-RCFQ), the order
of service completion of packets is the same regardless of the
arrival patterns of other packets.

Proof. Since the f-RCFQ algorithm is non-work-conserving,
the rate of service for each session does not change with future
packet arrivals. �

Lemma 2. In the packet-by-packet model of RCFQ, we
have the following equality:

max ,k k
p f

L
t t

r
≤ + (10)

where k
pt and k

ft are the departure times of k-th packet in
RCFQ and f-RCFQ, respectively.

Proof. The proof of the lemma is very intuitive. The f-RCFQ
algorithm is a zero latency server. That is, if the first packet of a
session comes into the system, the packet begins to be serviced
without delay. However, in an RCFQ system, even though the
packet should be serviced right away, if a packet from another
session is already being serviced, the packet should wait until
the last bit of the packet has departed. Therefore, the packet

should wait throughout the time during which a packet with
maximum size is serviced with the system capacity in the worst
case. �

Theorem 1. The latency of RCFQ is

max i

i

L L
r r

+ , (11)

where Lmax is the maximum packet size in the system, and Li is
the maximum packet size of session i.

Proof. Let (,)RCFQ
iW tτ and (,)f RCFQ

iW tτ− be the amount
of session i traffic served by RCFQ and f-RCFQ in the time
interval [τ, t]. We should note that a packet is considered to be
serviced when the last bit of the packet has left the system.
Therefore, the difference between (,)RCFQ

iW tτ and
(,)f RCFQ

iW tτ− reaches maximum just before the last bit of a
packet is serviced in RCFQ. Let the time instant be tp. At tp, the
service offered to session i in the RCFQ will be equal to the
following, which is the service offered to session i by the
f-RCFQ minus the size of the packet being serviced:

(,) (,)

(,) .

RCFQ f RCFQ
i p i p i

f RCFQ
i f i

W t W t L

W t L

τ τ

τ

−

−

= −

≥ −

From the lemma 2, we have

max

max

max

(,) (,)

max(0, ())

max(0, ()).

RCFQ f RCFQ
i p i p i

i i

i
i

i

L
W t W t L

r
L

r t L
r

L L
r t

r r

τ τ

τ

τ

−≥ − −

≥ − − −

≥ − − −

�

B. Fairness Analysis of RCFQ

In terms of fairness, it is clear that this is quite a fair
algorithm since it is non-work-conserving and serves the
sessions based only on their reserved rate. No flow sends more
or less than its reserved rate.

2. Test Results of Traffic Management Mechanisms

In this section, we present performance results of the flow-
based router both in NS-2 simulation environment [22] and a
system prototype. First, we show the simulation results and
then provide test result for the prototype. The network topology
for the simulation is shown in Fig. 4. The node r1 runs the
proposed algorithms. The links between nodes are set to have a
link speed of 1 Gbps and 5 ms delay. In this test, we focus on
the performance results for unresponsive traffic. Other test
results for diverse traffic types will be studied in a future work.
Background traffic of 100 flows is generated by s1 and sent to

190 Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008

Fig. 4. Test network diagram for simulation.

Background traffic (1 Gbps) s1

s2

s3

r1 r2

d1

d2

1 Gbps (5 ms)

z

Fig. 5. Throughput changes in FRED.

0 2 4 6 8 10

Time (s)

0

2,000

4,000

6,000

8,000

R
at

e
(B

/3
.2

 m
s)

Fig. 6. Throughput changes in AFRED and RCFQ.

0 2 4 6 8 10
Time (s)

8,000

6,000

4,000

2,000

0

R
at

e
(B

/3
.2

 m
s)

Non-GR flows

20 Mbps GR flow

d1, and s2 and s3 each generate 50 flows of 20 Mbps to send to
s4. Therefore, a total of 2 Gbps traffic is trying to be sent to d2.
A CBR traffic generator was used to send the FTP application.
The packet size was set to 1,000 bytes. The throughput is
calculated as the total number of bytes which has been
transmitted per 3.2 ms.

Figure 5 shows node r1’s throughput when FRED is applied
as the traffic management mechanism. As we can expect, the
rates of the flows are fairly distributed. In total, 100 flows share
1 Gbps fairly; therefore, each flow receives about 10 Mbps
(4,000 bytes per 3.2 ms). However, if we need to guarantee the
bandwidth of a certain flow to 20 Mbps, it is not possible in
that architecture.

In Fig. 6, our mechanism can guarantee 20 Mbps for a
certain flow, and the rest of the bandwidth can be fairly shared
among the other flows. One of the 100 flows is set to be

Fig. 7. Throughput changes for dynamically identified flows.
Action: class change.

0 2 4 6 8 10

Time (s)

0

2,000

4,000

6,000

8,000

R
at

e
(B

/3
.2

 m
s)

Fig. 8. Throughput changes for dynamically identified flows.
Action: ADP.

0 2 3 4 8 10
Time (s)

DFled flows

Normal flows

0

2,000

4,000

6,000

8,000

R
at

e
(B

/3
.2

 m
s)

guaranteed to 20 Mbps. The exact bandwidth is guaranteed by
(1) for the guaranteed traffic while the rest of the bandwidth is
shared by the other flows.

In Figs. 7 and 8, we show how DFI works, which is one of
the unique characteristics of the proposed flow-based traffic
management scheme. We can set several different traffic
characteristics for this feature, such as flow lifetime, average
bytes, packet count, and average rate. In this test, we set the
flow’s lifetime threshold to two seconds as one of the DFI
thresholds for all the flows; therefore, flows taking more than
two seconds to be sent would be dynamically identified. Then,
we can apply a different class for the dynamically identified
flows or increase the drop probabilities of the flows to be
higher than those of the normal flows. Figure 7 shows how the
bandwidth is limited after two seconds when we limit the total
bandwidth of flows to which DFI has been applied to the
5 Gbps class. Initially, each flow receives about 20 Mbps.
However, since the flows are dynamically identified after two
seconds, and the classes of the flows are changed to the 5 Gbps
class, each of 100 flows starts to receive 5 Mbps (2,000 bytes
per 3.2 ms) from then on. If the dynamically identified flows
are known to be misbehaving flows, we can effectively limit
the whole misbehaving traffic to a certain amount of
bandwidth. Figure 8 shows how the bandwidth of dynamically

ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 191

Fig. 9. Test network diagram for real system.

VoIP call
generator

Legacy
router

VoIP call
generator

Legacy
router

Flow-based
router

Traffic
generator

Traffic
generator

Flow-based
router

 Data traffic

 VoIP call

identified flows starts to decrease as the dropping probability
increases according to (6) to (8) after they meet one of the DFI
thresholds. The bandwidth of the dynamically identified flows
decreases more as they get further from the DFI threshold. The
remainder of the bandwidth is given to the normal flows.

Here, we present some performance results of flow-based
routers and legacy class-based routers in a real test
environment. We set up the test network as shown in Fig. 9.
Two flow-based routers and two legacy class-based routers
were used. A Spirent AX/4000 traffic generator was used to
send the traffic between the systems being tested [23]. Also, a
Charriot client and server were used to test VoIP performance
[24]. Two traffic classes were set up in the system with
maximums of 640 Mbps and 100 Mbps, respectively. The
traffic generator generated 64 kbps for each of the 10,000 flows
that were included in 640 Mbps class. The AX4000 allowed us
to use only aggregate flow mode to generate more than 5,000
flows. Thus, we used two flow aggregates of 5,000 flows each.
As a result, each flow aggregate sent 320 Mbps. All the source
addresses of the flows in one flow aggregate were set to
10.0.0.0, and those for the other flow aggregate were set to
20.0.0.0. We set a DFI threshold for the traffic with source
address 20.0.0.0 to the flow duration of 25 s. Therefore, if a
flow with source address 20.0.0.0 took more than 25 s to be
sent, it would be dynamically identified.

Figure 10 shows how throughput of a flow aggregate
changes when we apply a different class for the dynamically

Fig. 10. Throughput changes for dynamically identified flows.
Action: class change.

0 20 40 60 80 100
Time (s)

0

10

20

30

40

Th
ro

ug
hp

ut
 (%

)

Fig. 11. Throughput changes for dynamically identified flows.
Action: ADP.

0 20 40 60 80 100
0

10

20

30

40

Time (s)

Th
ro

ug
hp

ut
 (%

)

DFled aggregated flow

Normal aggregated flow

identified flows. For the dynamically identified flows, we
changed their class to the smaller class of 100 Mbps. The x axis
represents testing time and the y axis represents the percentage
of port bandwidth. Initially, each of the two aggregated flow
groups sends about 320 Mbps. However, the throughput of one
of the flow aggregates (flows with source address 10.0.0.0)
drops to 100 Mbps at about 25 s. This is because the flows in
the flow aggregate are dynamically identified, and then the
class of the flows is changed to the 100 Mbps class. Figure 11
shows how throughput of a flow changes when we apply ADP
for the dynamically identified flows. At the beginning of the
test, each of the two flow aggregate groups sent about
400 Mbps. However, since the total bandwidth was limited to
the 640 Mbps class, the throughput of each flow aggregate
group was 320 Mbps. The throughput of one flow aggregate
group dropped gradually after 25 s when the DFI threshold for
flow duration was met. The drop probability increased
according to (6) to (8) for the dynamically identified flows. On
the other hand, the normal flows received more throughput as
time went on since the flows could use the extra bandwidth that
dynamically identified flows in that class could not use. As
shown in Figs. 6 to 8, the results of both tests are almost
identical to the simulation results.

Our tests also show that the proposed method guarantees for
each flow better packet loss, MOS, delay, and jitter
characteristics than those of the legacy class-based router

192 Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008

system under network congestion. A Chariot client was
attached to one of the systems under test (either the flow-based
router or the legacy class-based router) and a Chariot server
was attached to the other system under test. Background traffic
flowed at 1 Gbps between the two systems being tested. We set
the VoIP traffic to the highest priority in the class-based router.
However, the maximum queue percentage to allocate to the
priority queue was 30%. Therefore, if the highest input traffic
exceeded the highest priority queue, the other traffic used a
lower priority queue. In the flow-based router, each VoIP flow
was reserved to be serviced at 87 kbps, which is the exact
generating rate of a VoIP call in Chariot.

Table 1 summarizes the performance results for the class-
based router and the proposed flow-based router. When we
sent 100 VoIP calls with 1 Gbps background traffic, the
performance of the two systems was almost the same (case 1).
However, when we sent 20 more VoIP calls, it made the new
VoIP calls exceed the priority queue. Therefore, some VoIP
calls had to contend with the background traffic in the legacy
router, which led to some performance degradation. On the
other hand, bandwidth was allocated and reserved for the
guaranteed traffic in the proposed flow-based router, and the
performance results were the same as those of case 1.

Table 1. Performance comparison of legacy router and proposed
flow-based router.

 Legacy router Flow-based router

Packet loss 0 % 0 %

MOS 4.38 4.38

Delay 5 to 9 ms 1 ms
Case 1

Jitter 0 to 1 ms 0 to 1 ms

Packet loss 0 to 54% 0 %

MOS 0.99 to 4.4 4.3 to 4.38

Delay 13 to 16 ms 1 ms
Case 2

Jitter 0 to 6 ms 0 to 1 ms

V. Conclusion

We proposed traffic management mechanisms to support QoS
for flow-based routers. Separate traffic management
mechanisms (RCFQ and AFRED) were proposed for
guaranteed traffic and non-guaranteed traffic, respectively. Then,
AFRED was extended so that guaranteed traffic could be
isolated from non-guaranteed traffic in real networks in which
both traffic types are mixed together. The extension was done by
incorporating the fair queuing concept into the active queue

management mechanism. Non-guaranteed traffic was shaped to
minimize the effect on the guaranteed traffic in the mechanism.
In addition, we proposed a dynamic traffic identification method
to dynamically prioritize traffic according to the traffic
characteristics of applications. The drop probability can be
changed or a different traffic class can be allocated to
dynamically identified traffic. For high-speed router systems, the
dynamic traffic identification method is a good alternative to
deep packet inspection, which requires significant processing
power to handle the IP packet header and payload. We
demonstrated the performance of the proposed mechanisms by
the numerical analysis, simulation, and real system tests. We
believe that the architecture is suitable for flow-based high-speed
routers, which handle millions of flows at wire speed.

References

[1] R. Braden et al., Integrated Services in the Internet Architecture:
An Overview, IETF RFC 1633, June 1994.

[2] S. Blake et al., An Architecture for Differentiated Services, IETF
RFC 2475, Dec. 1998.

[3] K. Parekh and R.G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Single-Node Case,” Proc. IEEE INFOCOM, vol. 2, May 1992,
pp. 915-924.

[4] B.H. Choi and H.S. Park, “Rate Proportional SCFQ (RP-SCFQ)
Algorithm for High-Speed Packet-Switched Networks,” ETRI
Journal, vol. 22, no. 3, Sept. 2000, pp. 1-9.

[5] D. Stiliadis and A. Varma, “Efficient Fair Queuing Algorithms for
Packet-Switched Networks,” IEEE/ACM Trans. Networking,
vol. 6, no. 2, Apr. 1998, pp. 175-185.

[6] D.Y. Kwak, N.S. Ko, B. Kim, and H.S. Park, “A New Starting
Potential Fair Queuing Algorithm with O(1) Virtual Time
Computation Complexity,” ETRI Journal, vol. 25, no. 6, Dec.
2003, pp. 475-488.

[7] F.M. Chiussi, A. Francini, and J.G. Kneuer, “Implementing Fair
Queuing in ATM Switches, Part 2: The Logarithmic Calendar
Queue,” Proc. IEEE INFOCOM, vol. 1, Nov. 1997, pp. 519-525.

[8] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for
Packet Switching,” ACM Trans. Computer Systems, vol. 9, no. 2,
May 1991, pp. 101-124.

[9] N. Yamagaki, H. Tode, and K. Murakami, “DMFQ: Hardware
Design of Flow-Based Queue Management Scheme for
Improving the Fairness,” IEICE Trans. Comm., vol. E88-B, no. 4,
Apr. 2005, pp. 1413-1423.

[10] D. Yamamoto, H. Tode, T. Masaki, and K. Murakami, “Design
and Empirical Evaluation of Control Scheme for End-to-End
Delay Stabilization and Packet Loss Improvement in Broadband
IP Network,” IEEE ICCCN, TP9, Hawaii, USA, Aug. 2007.

[11] R. Fujita, H. Shimabara, H. Tode, T. Masaki, and K. Murakami

ETRI Journal, Volume 30, Number 2, April 2008 Nam-Seok Ko et al. 193

“QoS Control Scheme Guaranteeing the Delay, Jitter and
Throughput in the IP Router,” IEEE LCN, Tampa, USA, Nov.
2004, pp. 413-414.

[12] R. Brown, “Calendar Queues: A Fast 0(1) Priority Queue
Implementation for the Simulation Event Set Problem,” Comm.
of the ACM, vol. 31, no. 10, Oct. 1998, pp. 1220-1227.

[13] Z. Cao and Z. Wang, “Flow Identification for Supporting Per-
Flow Queuing,” Computer Comm. and Networks, Oct. 2000, pp.
88-93.

[14] W. Feng, K.G. Shin, D. Kandlur, and D. Saha, “The BLUE
Active Queue Management Algorithms,” IEEE/ACM Trans.
Networking, vol. 10, no. 4, Aug. 2002, pp. 513-528.

[15] D. Lin and R. Morris, “Dynamics of Random Early Detection,”
IEEE/ACM Trans. Networking, Aug. 1993.

[16] F.A.L. Raddady and M. Woodward, “A New Adaptive
Congestion Control Mechanism for the Internet Based on RED,”
AINA Workshops, vol. 2, May 2007, pp. 934-939.

[17] J. Hong, C. Joo and S. Bahk, “Active Queue Management
Algorithm Considering Queue and Load States,” Computer
Comm., vol. 30, no. 4, Feb. 2007, pp. 886-891.

[18] M. Shin, S. Chang, and I. Rhee, “Dual-Resource TCP/AQM for
Processing-Constrained Networks,” INFOCOM, Apr. 2006.

[19] S. Floyd, R. Gummadi, and S. Shenker, “Adaptive RED: An
Algorithm for Increasing the Robustness of RED’s Active Queue
Management,” http://www.icir.org/floyd/ papers/adaptiveRed.pdf,
Aug. 2001.

[20] S. Floyd and V. Jacobson, “Random Early Detection for
Congestion Avoidance,” IEEE/ACM Trans. Networking, vol. 1,
no. 4, Aug. 1993, pp. 397-413.

[21] J. Erman, A. Mahanti, and M. Arlitt, “Internet Traffic
Identification Using Machine Learning,” Proc. IEEE Globecom,
Nov. 1996, pp. 1-6.

[22] The official NS-2 webpage, http://nsnam.isi.edu/nsnam/
index.php/User_Information.

[23] AX/4000, http://www.spirentcom.com.
[24] NetIQ Chariot, http://www.netiq.com.

Nam-Seok Ko received the BS degree in
computer engineering from Chonbuk National
University, Korea, in 1998, and the MS degree
in engineering from the Information
Communications University, Korea, in 2000. In
2001, he joined ETRI and has participated in
several R&D projects including ATM

switching systems and high-speed router systems. Currently he is
working towards the PhD degree with the School of Engineering of
ICU. His research interests include traffic engineering mechanisms for
QoS and fixed mobile convergence technologies including mobility
management protocols.

Sung-Back Hong received the BS degree in
electronics and telecommunication engineering
from Kwangwoon University, Korea, in 1982;
the MS degree in electronics engineering from
Yonsei University, Korea, in 1990; and the PhD
degree in information and communication
engineering from Chungbuk University in 2008.

Since joining ETRI in 1982, he has been involved with many
government-sponsored projects. He is currently the leader of the FMC
Technology Team of ETRI. His research interests include fixed-mobile
convergence networks and ubiquitous sensor networks and
applications.

Kyung-Ho Lee received the BS and MS
degree in electronics and telecommunication
engineering from Kwangwoon University,
Korea, in 1980 and 1982, respectively. Since
joining ETRI in 1982, he has participated in
many R&D projects including TDX digital
switching systems and ATM switching systems.

He is currently with the FMC Technology Team of ETRI. His research
interests include fixed-mobile convergence networks, QoS
technologies in BcN networks, and ubiquitous sensor networks and
applications.

Hong-Shik Park received the BS degree in
electrical engineering from Seoul National
University, Seoul, Korea, in 1977. He received
the MS and PhD degrees in electrical
engineering from KAIST, Daejeon, Korea, in
1986 and 1995, respectively. In 1977, he joined
ETRI, where he worked on the development of

the TDX digital switching system family including TDX-1, TDX-1A,
TDX-1B, TDX-10, and ATM switching systems. In 1998, he moved
to ICU, Daejeon, Korea, where he is currently a professor. His research
interests are network architecture, network protocols, and performance
analysis of telecommunication system. He is a member of the IEEK
and KICS, Korea.

Nam Kim received the BS, MS, and Ph.D.
degrees from Yonsei University, Korea in 1981,
1983, and 1988, respectively. He is currently
working as a professor in Chungbuk National
University in Cheongju, Korea. His research
interests include optical networks and mobile
communication.

	I. Introduction
	II. Framework of the Proposed Flow-Based Router
	III. Proposed QoS Architecture of the Flow-BasedRouter
	IV. Performance Analysis
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

