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In this paper, we propose quality of service mechanisms 
for flow-based routers which have to handle several 
million flows at wire speed in high-speed networks. Traffic 
management mechanisms are proposed for guaranteed 
traffic and non-guaranteed traffic separately, and then the 
effective harmonization of the two mechanisms is 
introduced for real networks in which both traffic types 
are mixed together. A simple non-work-conserving fair 
queuing algorithm is proposed for guaranteed traffic, and 
an adaptive flow-based random early drop algorithm is 
proposed for non-guaranteed traffic. Based on that basic 
architecture, we propose a dynamic traffic identification 
method to dynamically prioritize traffic according to the 
traffic characteristics of applications. In a high-speed 
router system, the dynamic traffic identification method 
could be a good alternative to deep packet inspection, 
which requires handling of the IP packet header and 
payload. Through numerical analysis, simulation, and a 
real system experiment, we demonstrate the performance 
of the proposed mechanisms. 
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I. Introduction 

The remarkably rapid development of Internet technology 
has led to the establishment of a wide variety of businesses that 
require heavy exchanges of multimedia data. Although some 
parts of multimedia exchanges do not specify quality-of-
service (QoS) requirements, there are several applications that 
require specific QoS guarantees, such as bandwidth guarantee. 
To cope with this problem, several QoS mechanisms have 
been proposed and adopted in networks.  

IntServ [1] and DiffServ [2] are examples of such 
mechanisms. IntServ sets up a session by exchanging explicit 
signaling messages. If efficient packet scheduling algorithms 
are used, it can perfectly control each session. However, it has a 
scalability problem since it requires signaling messages to be 
exchanged between terminals periodically. Moreover, it is not 
easy to support per-session QoS in high-speed networks, which 
require per-session queues for millions of sessions. Therefore, 
IntServ cannot be deployed in large networks. On the other 
hand, DiffServ controls only traffic classes rather than each 
session within a traffic class. The mechanism uses 
differentiated service code point (DSCP) values in the IP 
header to deliver the QoS class of the traffic. In the edge nodes, 
the DSCP field is set to a proper value according to the traffic 
classification, and the core nodes use the DSCP values, which 
are already set in the edge nodes. However, DiffServ still lacks 
controllability, even though performance is far better than when   
the mechanism is not used. Traffic is classified into 
predetermined traffic classes, and QoS is addressed in terms of 
those classes. Weighted fair queuing or other suitable 
scheduling algorithms can be applied in the system, but there is 
no way to provide QoS for each flow in the traffic classes with 
this class-based traffic control architecture [3]-[8].  
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For these reasons, a simple and efficient flow management 
architecture is needed with an efficient and scalable packet 
scheduling algorithms to handle several million flows, which 
do not use expensive signaling messages. Note that we use the 
terms flow and session interchangeably. Most of the scheduling 
algorithms that have been proposed and deployed in 
commercial systems are work-conserving algorithms, which 
require per-flow queues [3]-[11]. They are appropriate for 
guaranteed services but not for non-guaranteed traffic. If they 
are applied to best-effort services, the rates for the flows should 
be dynamically chosen according to the current number of 
backlogged flows, which creates too high a burden on the 
system. Therefore, packet scheduling algorithms have 
generally been applied on a per-class basis.  

Recently, there has been active research on flow-based queue 
management [9]-[11]. For non-guaranteed traffic, drop-
probability-based active queue management and hierarchical 
weighted round robin were proposed separately. A time-slot-
based scheduling mechanism was also proposed. These studies 
mainly focus on how to allocate and manage buffers for flows 
and classes. However, it is not easy to maintain per-flow 
buffers and queues in high-speed core networks. 

We propose a different QoS architecture for the flow-based 
router system. The buffer is shared among flows, and the 
calendar queue is used for the scheduling packets [12]. The 
packets are stored in the shared memory in the system when 
they arrive in the system, and the scheduling times for the input 
packets are decided before sending them to calendar queue. If a 
packet is not appropriate to be serviced, it is dropped rather 
than being sent to the calendar queue. Scheduling algorithms 
are proposed for both guaranteed and non-guaranteed traffic, 
which are harmonized not to affect each other in a real traffic 
environment. In addition, we propose a technique to enhance 
the scheduling algorithm by dynamically identifying traffic on 
the basis of the traffic characteristics. This improves flexibility 
of the flow-based router by prioritizing the flows, which are 
identified dynamically. Dynamically identified flows can be 
treated differently from normal traffic flows. According to the 
user’s preferences, the traffic can be given higher or lower 
priority. The performance characteristics of the proposed 
algorithms are analyzed by numerical analysis, simulation, and 
real system test. 

The remainder of this paper is organized as follows. In 
section II, we propose a flow-based router framework to 
support efficient flow-based QoS. Then, traffic management 
mechanisms to support flow-based QoS are proposed in 
section III. In section IV, the results of the performance 
evaluation are given by numerical analysis, simulation, and real 
system experiment. Finally, conclusions are presented in 
section V. 

II. Framework of the Proposed Flow-Based Router 

Our flow-based router is based on the principle of recognizing 
flows, routing the first packet of a flow, dynamically associating 
state with it, and then switching the remaining packets in the 
flow using the state information. The definition of flow is not 
fixed, but it could be defined in various ways according to the 
requirements of the user or service provider. A flow could be 
defined as a traffic flow which shares the 5-tuple IP header fields, 
but for MPLS traffic, it could be defined as traffic which shares 
the same MPLS label. In this paper, a flow is an IP flow which is 
defined by 5-tuple IP header fields if it is not specifically 
mentioned. An IP flow is also called an IP micro-flow since the 
flow definition is the finest one which is most frequently used in 
flow-based router networks. The mechanism by which a flow is 
identified is based on a hashing function. The best known 
hashing functions, such as XOR and CRC32, were analyzed in 
[13], but consideration of specific hashing function is beyond the 
scope of this paper. 

If a packet comes into the system, the selected hashing 
function will generate a hash value. The hash value is used to 
find the flow state entry for the flow of the packet. If the packet 
is the first packet of the flow, no flow state entry for the flow 
exists. Therefore, a new flow state entry must be created for the 
flow with the appropriate forwarding and QoS information. 
The information can be gathered by referring to the other tables 
such as forwarding tables and the QoS classification table. On 
the other hand, if there is already a flow state entry for the flow, 
the packet is just processed according to the information in the 
flow state table.  

Since a flow is uniquely identified by its 5-tuple fields, the 
lookup for the flow state table should be an exact match instead 
of longest-prefix match as in the IP forwarding table lookup. 
The hash-based table is best for the flow state table. Even 
though there are hash collisions in hash-based tables, if the 
hash function is well designed, the hash collision rate can be 
quite well minimized [13]. 

A flow state entry is created and maintained when the first 
packet enters the system. As shown in Fig. 1, a flow state table 
is looked up first ( ) and then if there are no matching entries for 
 

 

Fig. 1. Conceptual architecture of flow-based router. 
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the hash value, the forwarding table and classification tables are 
looked up ( , ). Next, the flow state entry is created for the flow 
to gather the required information for the flow ( , ). The 
subsequent packets of the flow will simply use the already 
existing information in the flow state entry ( ). The created flow 
block is deleted if a certain time duration passes. This can be done 
by maintaining the lifetime of flows in the flow state entry [9]. 

Once flows are identified and maintained in the system, 
traffic management can be done for each flow. As mentioned in 
the previous section, our traffic management approach to 
support QoS is different from those of previous studies [9]-[11]. 
Previous studies focused on how to allocate and manage 
buffers for each flow and class. However, it is not easy to 
maintain per-flow buffers and queues in high-speed core 
networks. Therefore, we propose a simple but robust QoS 
architecture for the flow-based router system using a calendar 
queue and new packet scheduling algorithms in the shared 
buffer management system. 

III. Proposed QoS Architecture of the Flow-Based 
Router 

1. Traffic Management Architecture for Flow-Based Router 

A. Scheduler Architecture for the Proposed QoS Mechanisms 

The proposed scheduler for the flow-based router does not 
use per-flow queues or buffers as assumed in existing flow-
based router mechanisms [9]-[11]. In the real environment, to 
handle millions of flows and support per-flow queuing is not 
easy. Therefore, we propose efficient traffic management 
mechanisms, which utilize a calendar queue scheduler in 
shared buffer management systems [7], [14]. The architecture 
is shown in Fig. 2. 

For non-guaranteed traffic, drop-probability-based active 
queue management is proposed, and we use a virtual clock like a 
fair queuing algorithm in order to support guaranteed traffic. 
There are some special features in each traffic management 
method for guaranteed and non-guaranteed traffic. For non-
guaranteed traffic, each flow is dynamically identified and then 
processed differently than normal traffic. If the traffic is known to 
be malicious it will be dropped severely. If the traffic is identified 
to be guaranteed we give it higher priority not to be randomly 
discarded. In addition, we apply a shaping concept to non-
guaranteed traffic according to the congestion status. For 
guaranteed traffic, our mechanism differs from existing fair 
queuing algorithms (such as virtual clock and the other WFQ 
variants) in that the time stamping is not actually tagged to the 
packet itself, and sorting is not used to select the minimum 
virtual finishing time. Instead, if a time to send is calculated for 
the packets, the packets are inserted in the matching calendar 
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queue time slots. Therefore, it is not necessary to maintain a per-
flow queue or buffer, which is the main difference from existing 
flow-based scheduling architectures [9]-[11]. However, the 
linked list structure should be used to maintain the packet order 
of a flow as in other shared-memory architectures [10], [11]. 

In the enqueue process, the time to send is determined 
according to the algorithm for both non-guaranteed traffic and 
guaranteed traffic. The time to send of non-guaranteed traffic is 
determined according to the traffic congestion status of the class 
with which the flow is associated; thus, non-guaranteed traffic is 
shaped according to the traffic congestion status. The time to 
send of guaranteed traffic is purely determined according to its 
reserved rate as in other fair queuing algorithms. However, 
instead of tagging time stamps to packets and sorting the packets 
according to the increasing order of time stamps, the packets are 
inserted into a time slot of a calendar queue, which is chosen by 
the calculated time to send. In this calendar-queue-based 
scheduler, if each packet is allocated to the appropriate time slot 
in the enqueue process, the dequeue process visits each time slot 
in sequence and services the packets in it [7], [19]. Those 
mechanisms are explained in detail in the following subsections. 

B. Packet Scheduling Algorithms for Guaranteed Service 

Since guaranteed traffic specifies QoS requirements, non-
work-conserving algorithms are more appropriate than work- 
conserving algorithms. In a non-work-conserving algorithm, 
even when there are backlogged packets in the system, if a 
packet is not eligible according to the QoS requirements, that 
packet is not serviced until it becomes eligible. Most work-
conserving algorithms are complex because they should adapt 
their service rates considering the assigned weight and current 
buffer status. However, if only the requested QoS requirements 
are to be guaranteed, it is simpler to use non-work-conserving 
algorithms. In this paper, we focus on the bandwidth 
requirement in relation to several QoS requirements.  
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Instead of using virtual time, we use a real-time clock to 
calculate the finishing time of a packet. In work-conserving 
algorithms, since the real finishing time is different from the 
calculated finishing time, the calculated finishing time is called 
the virtual finishing time. In non-work-conserving algorithms, 
packets are serviced at the time of the calculated finishing time. 
We call the scheduling algorithm real-time-clock fair queuing 
(RCFQ) since the proposed non-work-conserving algorithm is 
based on the real-time clock. The packet finish time of the k-th 
packet of flow i ( k

iF ) with reserved rate ri and packet length 
k
il  in RCFQ is calculated as  

1max( , )k k k
i i now i iF F T l r−= + ,  k=1, 2,…,       (1) 

where 0 ,i now nowF T T=  is the current time of the real-time clock. 
The result of max in (1) is the packet start time of k-th packet. 

It causes the packet to be delayed until the eligible time when a 
packet arrives earlier than expected. The algorithm is quite 
similar to the virtual clock (VC) [8] in that a real-time clock is 
used instead of virtual time. However, the difference is that we 
do not have the fairness problem which is intrinsic to the VC. 
In the VC, if a flow produces a large burst of data, even in a 
lightly loaded situation, the flow is affected by other newly 
activated flows. This is because the VC was using real-time 
clock instead of virtual time. However, since RCFQ is a non-
work-conserving algorithm, and it services packets only by 
each flow’s reserved rate, the algorithm has no such problem. 
In RCFQ, the difference between the finishing time of an HOL 
packet in each session and the system clock never exceeds a 
certain amount of time. This will be analyzed in section IV. 
Another important difference from the VC is that we do not 
need to maintain a separate sorting structure. The exact time to 
send is already decided when the starting and finishing times of 
a packet are calculated.  

This RCFQ has a low finishing time computation complexity 
of O(1) without requiring additional sorting structure by making 
use of a calendar queue. In the existing fair queuing algorithms, 
even when they have O(1) virtual time complexity, they have 
additional O(logN) sorting complexity intrinsically. 

C. Packet Scheduling Algorithms for Non-guaranteed Service 

Non-guaranteed service is the best-effort service for traffic 
that does not request any specific QoS requirements. Therefore, 
if we service this traffic using the packet scheduling method, 
the overhead is too big compared to the expected QoS level for 
the traffic. If fair queuing is used in the system for the best-
effort traffic, the bandwidth for a flow should be dynamically 
chosen according to the current number of flows in the system 
and the congestion status. This is not affordable in high-speed 
networks; therefore, this kind of traffic may as well be handled 

by simple active queue management. 
In active queue management, RED is a representative 

mechanism. Some variants have been proposed to address the 
basic limitations of RED, including BLUE, adaptive RED, 
flow random early drop (FRED), and dual metrics fair queuing 
(DMFQ) [3]-[20]. Among them, FRED maintains the average 
queue for the system as well as a portion of queues for each 
flow from the total queue length. It calculates each flow’s drop 
probability based on them. By first dropping packets from the 
flows whose queue lengths are longer than the average flow 
queue length, FRED provides better protection for 
unresponsive traffic. The DMFQ mechanism calculates the 
dropping probability based on the flow arrival rate and flow 
succession time.  

The basic approach for the proposed active queue 
management mechanism is similar to DMFQ in that both 
mechanisms use the average flow rate rather than the queue 
length. However, the proposed architecture is enhanced by 
allowing the dropping probability to be changed dynamically 
according to the traffic characteristics. The basic mechanism of 
the proposed algorithm, which is called adaptive flow random 
early drop (AFRED), is described as follows for a flow i which 
is a member of traffic class x.  

 
Constants 

min_thx : minimum class threshold of class x 
max_thx : minimum class threshold of class x 
maxp: maximum drop probability 

Variables 
Qx

 : class x’s average queue length 
Rx

 : class x’s average rate 
Nx

 : average number in a class x 
îr : average flow rate of a flow i  

ir% : expected fair flow rate of a flow i 
Px: drop probability of a class x 
pi : drop probability of a flow i 
n: normalized flow drop probability factor  

For each class 
- calculate class x’s drop probability as follows 
  Px = (Qx – min_thx)/(max_thx – min_thx)       (2) 

For each packet of a flow 
- calculate expected fair flow rate as follows 

ir% = Rx / Nx                                                (3) 

- calculate normalized flow drop probability factor 
  n = ( îr / ir% ) × C1 ,                         (4) 

where C1 is a constant value 
- calculate flow’s drop probability as follows 
  pi = max (maxp, n×Px)                     (5) 
- drop packets with the drop probability of pi 
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The final drop probability of a flow i (pi) is calculated based 
on the class’s drop probability (Px) and the ratio of the current 
flow’s average rate ( îr ) to the expected flow rate ( ir% ), which is 
calculated with the average number of flows (Nx) and the 
average class’s rate (Rx). Note that a class is a group of flows, 
which is determined by the classification result. The current 
flow’s average rate ( îr ) and the average class’s rate (Rx) are 
assumed to be known a priori. Those values are maintained in 
ASIC by the exponential moving average calculation. The 
mechanism will drop fewer packets from the flows with rates 
lower than the average flow rate, but more packets from the 
flows with rates higher than the average flow rate. This is quite 
a reasonable and fair approach. 

Although this flow drop probability calculation is effective, it 
can be enhanced. In previous basic flow drop probability 
calculations, even when a class is in a heavy state of congestion, 
the drop probability of a flow that is sending under the average 
flow rate is not high enough to alleviate congestion quickly. 
Therefore, we modify the drop probability calculation method 
such that the drop probability increases slowly when a class is 
in a light state of congestion, but it increases very quickly when 
the class is in a heavy state of congestion. The relationship 
between the class’s drop probability and flow’s drop 
probability is visualized in Fig. 3. The enhanced flow drop 
calculation method is given for each packet of flow as 

pi = ((Px+ Px × n) < 1.0)? (Px×n) : (1.0–(1.0–Px)/n).     (6) 
 

 

Fig. 3. Drop probability of flow vs. class. 
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2. Advanced Traffic Management in Flow-Based Router 

A. Dynamic Flow Identification (DFI) 

In this section, we explore more enhanced mechanisms 
using more information, which we can derive from the flow 
state entry. One current Internet problem is that P2P traffic is 
very prevalent and takes up a large proportion of the network 
bandwidth. In order to cope with this problem, traffic analysis 
tools have been developed which identify P2P traffic with deep 

packet inspection (DPI). Deep packet inspection is based on 
pattern matching on various IP header and payload fields. This 
can create a serious burden to the system and makes it 
inapplicable in high-speed networks. 

We propose a useful mechanism to identify flows on the 
basis of traffic characteristics, such as flow duration, average 
packet byte, average flow rate, and so on, which are maintained 
per flow rather than by the packet header or payload. If these 
traffic characteristics are known for each application, we can 
identify the type of application of a flow more easily and 
differentiate P2P traffic from normal traffic. Some studies to 
extract the traffic characteristic information of applications 
have been done [21]. We assume that the traffic characteristic 
information for some applications can be obtained by those 
methods.  

There are two options to differentiate dynamically identified 
traffic. First, we can adjust the drop probability for the traffic. If 
traffic of a flow is decided to be an application that should be 
processed with higher priority, we decrease the drop probability. 
If the traffic of a flow is decided to be an application with low 
priority, such as P2P traffic, we increase the drop probability. 
As a mechanism to achieve this goal, dynamic traffic 
identification can be used to adjust a flow’s drop probability. As 
a simple extension to the flow drop probability factor presented 
in the previous section, we can adjust the flow drop probability 
factor calculation to penalize traffic that exceeds the thresholds 
of some traffic characteristic parameters, while keeping the 
previous approach for other normal traffic. We define the 
adaptive drop priority (ADP) value as a value to adjust the flow 
drop probability factor as follows: 

max , min( ,max )

max , min( ,max )

max , min( ,max )

max , min(

adp
threshold

adp
threshold

threshold
adp

threshold

FlowLifeTimeADP
FlowLifeTime

AvgFlowRate
FlowRate

AvgPktSize PktSize
MTU PktSize

Byt

α α

β β

γ γ

δ δ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠
⎛ ⎞−

+ ⎜ ⎟
−⎝ ⎠

+ ,max ) , (7)adp
threshold

eCount
ByteCount

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where each of α, β, γ , and δ is greater than or equal to zero, 
and α+β+γ+δ = 1. 

The current design of ADP only considers flow lifetime 
(FlowLifeTime), average flow rate (AvgFlowRate), average 
packet size (AvgPktSize), and the total byte count of each flow 
(ByteCount), but if we can identify any other distinctive traffic 
characteristics of a flow, we can add the parameters to the 
above equation. In (7), the values α, β, γ , and δ, work as 
weight factors in each traffic parameter. If we do not want to 



188   Nam-Seok Ko et al. ETRI Journal, Volume 30, Number 2, April 2008 

consider a parameter to calculate ADP, we can just set its 
weight factor to zero. The value of maxadp is used to limit the 
value of ADP to a certain maximum value. The traffic 
characteristic of each application is beyond the scope of this 
paper, but if the characteristics are analyzed clearly, the ADP 
approach could be used to control specific applications 
effectively. 

Now we can again modify the flow probability calculation. 
Equation (6) is not changed, but the normalized flow drop 
probability factor n in (4) is changed: 

2ˆ( / ) ADP ,i in r r C= × ×%               (8) 

where C2 is a constant value. 
The threshold-based dynamic flow identification (DFI), its 

ADP value calculation, and its adaptation to the flow drop 
probability factor are somewhat limited since they depend only 
on the threshold values. Therefore, we can also adopt the range 
concept on the values. This range-based DFI is not directly 
applied to the flow drop probability calculation; rather, it can be 
used to give the identified traffic strict priority. The priority 
could be lower or higher than that of normal traffic. That is, if 
the traffic is given a higher priority, the traffic will never be 
dropped until the congestion becomes severe. If the traffic is 
given a lower priority, the traffic is dropped before dropping the 
normal traffic.  

B. Flow-Based Integrated Packet Scheduling Combining 
RCFQ and AFRED 

In the previous sections, we proposed traffic management 
mechanisms for guaranteed traffic and non-guaranteed traffic, 
RCFQ and AFRED, respectively. Both algorithms were 
proposed for their own specific traffic types: guaranteed and 
non-guaranteed traffic. However, we did not mention how the 
two mechanisms should cooperate with each other when they 
coexist in the system. In this section, we propose a 
harmonization method for RCFQ and AFRED.  

The time to send for packets in RCFQ is clear, and the 
packets are scheduled to the appropriate time slot in the 
scheduler. However, the time to send for packets in AFRED is 
not defined clearly. It is usually assumed to be allocated to the 
current time as in legacy active queue management schemes. 
Therefore, if both kinds of traffic are allocated to the same time 
in the heavy congestion status, there will be cases in which 
guaranteed traffic is affected by non-guaranteed traffic. To 
address this issue, we adopted a spacing mechanism for non-
guaranteed traffic. Non-guaranteed traffic is spaced properly so 
that it has a minimal effect on guaranteed traffic. We achieve 
this goal by adopting a packet finishing time concept for non-
guaranteed traffic in a class. However, we use a class’s average 

bandwidth instead of using the each flow’s rate. The packet 
finish time of the k-th packet of class ( )k

xx F  is calculated as 
follows, while still being randomly dropped according to the 
congestion status by AFRED: 

1
maxmax( , min( / , / )),k k

x x now x x xF F T Q R Q R−= +    (9) 

where Qmax is the maximum queue for the class. 
With (9), the time-to-send of non-guaranteed traffic is 

decided clearly to minimize the effect on the guaranteed traffic. 
We can also use multiple priority queues for guaranteed traffic 
and non-guaranteed traffic. However, we need to space the 
non-guaranteed traffic to minimize the probability that one 
time-slot is congested.  

3. Implementation of Flow-Based Traffic Management 

From the point of view of implementation complexity, it is 
clear that the complexity of a flow-based router is much higher 
than that of a legacy class-based traffic management scheme 
since the number of flows that should be handled by the flow-
based router can be up to several million, compared to 64 in a 
DiffServ router. However, complexity can be overcome as the 
hardware technology advances, and its speed increases as time 
goes on. We can also reduce the implementation complexity by 
using a calendar queue in the shared memory architecture, 
while applying efficient algorithms for guaranteed and non-
guaranteed traffic. In section IV, we will demonstrate that 
packets can be scheduled effectively when the proposed 
scheduling algorithms are used.  

As the algorithms for the enqueue process were discussed in 
section III for both guaranteed and non-guaranteed traffic, the 
time to send for non-guaranteed traffic is clearly chosen 
according to the class’s congestion status. More specifically, the 
time to send of a packet is chosen according to the average rate 
of the class to which the flow of the packet is allocated, while 
packets are dropped according to the congestion status of the 
class. Therefore, there is no need to use per-flow queuing; 
rather, a calendar queue using the proposed algorithms is 
perfectly suitable for implementation of the proposed 
mechanisms.  

IV. Performance Analysis 

In this section, we analyze the traffic management 
mechanisms that have been proposed in the previous sections. 
First, we analyze RCFQ numerically. We did not build any 
concrete numerical methodologies to analyze the active queue 
management schemes; therefore, we provide simulation results 
using an event driven network simulation tool, NS-2 [22], and 
test results from the real system that we have implemented to 
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demonstrate the performance of the proposed algorithms. 

1. Numerical Analysis 

A. Delay Analysis of RCFQ 

The delay limitation for the RCFQ is clear since the 
algorithm is non-work-conserving, and it services each 
sessions with only the reserved rates. However, we show the 
delay performance more clearly with the numerical analysis in 
this section. As in other scheduling algorithm analyses, we use 
the fluid flow model for RCFQ (f-RCFQ). The fluid flow 
model assumes that a packet is serviced in an infinitesimal unit 
[5]-[7]. In a normal packet-by-packet system, no other packets 
are serviced until the service of a packet finishes. However, 
packets can be serviced at the same time as other packets in a 
fluid flow model scheduler. Before performing the analysis, we 
define two concepts.  

- A session busy period is a maximal interval of time (τ, t) 
which satisfies Ai(τ, t) ≥ ri(t-τ). 

- A system busy period is a maximal interval of time during 
which there is at least one busy session. 

Note that the above definitions are defined with respect to a 
non-work-conserving system. The system busy period in a 
work-conserving system is different from the above definition. 
In a work-conserving system, it is defined as a maximal 
interval of time during which the server is never idle. However, 
in the non-work-conserving system, there could be some time 
intervals during which the server is idle in the system busy 
period. 

Lemma 1. In the fluid model of RCFQ (f-RCFQ), the order 
of service completion of packets is the same regardless of the 
arrival patterns of other packets. 

Proof. Since the f-RCFQ algorithm is non-work-conserving, 
the rate of service for each session does not change with future 
packet arrivals.                                    � 

Lemma 2. In the packet-by-packet model of RCFQ, we 
have the following equality: 

max ,k k
p f

L
t t

r
≤ +               (10) 

where k
pt  and k

ft  are the departure times of k-th packet in 
RCFQ and f-RCFQ, respectively. 

Proof. The proof of the lemma is very intuitive. The f-RCFQ 
algorithm is a zero latency server. That is, if the first packet of a 
session comes into the system, the packet begins to be serviced 
without delay. However, in an RCFQ system, even though the 
packet should be serviced right away, if a packet from another 
session is already being serviced, the packet should wait until 
the last bit of the packet has departed. Therefore, the packet 

should wait throughout the time during which a packet with 
maximum size is serviced with the system capacity in the worst 
case.                                            � 

Theorem 1. The latency of RCFQ is  

max i

i

L L
r r

+ ,                  (11) 

where Lmax is the maximum packet size in the system, and Li is 
the maximum packet size of session i. 

Proof. Let ( , )RCFQ
iW tτ  and ( , )f RCFQ

iW tτ−  be the amount 
of session i traffic served by RCFQ and f-RCFQ in the time 
interval [τ, t]. We should note that a packet is considered to be 
serviced when the last bit of the packet has left the system. 
Therefore, the difference between ( , )RCFQ

iW tτ and 
( , )f RCFQ

iW tτ− reaches maximum just before the last bit of a 
packet is serviced in RCFQ. Let the time instant be tp. At tp, the 
service offered to session i in the RCFQ will be equal to the 
following, which is the service offered to session i by the     
f-RCFQ minus the size of the packet being serviced:  

( , ) ( , )

( , ) .

RCFQ f RCFQ
i p i p i

f RCFQ
i f i

W t W t L

W t L

τ τ

τ

−

−

= −

≥ −
 

From the lemma 2, we have 

max

max

max

( , ) ( , )

max(0, ( ) )

max(0, ( )).

RCFQ f RCFQ
i p i p i

i i

i
i

i

L
W t W t L

r
L

r t L
r

L L
r t

r r

τ τ

τ

τ

−≥ − −

≥ − − −

≥ − − −
       

�

 

B. Fairness Analysis of RCFQ 

In terms of fairness, it is clear that this is quite a fair 
algorithm since it is non-work-conserving and serves the 
sessions based only on their reserved rate. No flow sends more 
or less than its reserved rate.  

2. Test Results of Traffic Management Mechanisms 

In this section, we present performance results of the flow-
based router both in NS-2 simulation environment [22] and a 
system prototype. First, we show the simulation results and 
then provide test result for the prototype. The network topology 
for the simulation is shown in Fig. 4. The node r1 runs the 
proposed algorithms. The links between nodes are set to have a 
link speed of 1 Gbps and 5 ms delay. In this test, we focus on 
the performance results for unresponsive traffic. Other test 
results for diverse traffic types will be studied in a future work. 
Background traffic of 100 flows is generated by s1 and sent to 
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Fig. 4. Test network diagram for simulation. 
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Fig. 5. Throughput changes in FRED. 
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Fig. 6. Throughput changes in AFRED and RCFQ. 
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d1, and s2 and s3 each generate 50 flows of 20 Mbps to send to 
s4. Therefore, a total of 2 Gbps traffic is trying to be sent to d2. 
A CBR traffic generator was used to send the FTP application. 
The packet size was set to 1,000 bytes. The throughput is 
calculated as the total number of bytes which has been 
transmitted per 3.2 ms.  

Figure 5 shows node r1’s throughput when FRED is applied 
as the traffic management mechanism. As we can expect, the 
rates of the flows are fairly distributed. In total, 100 flows share 
1 Gbps fairly; therefore, each flow receives about 10 Mbps 
(4,000 bytes per 3.2 ms). However, if we need to guarantee the 
bandwidth of a certain flow to 20 Mbps, it is not possible in 
that architecture. 

In Fig. 6, our mechanism can guarantee 20 Mbps for a 
certain flow, and the rest of the bandwidth can be fairly shared 
among the other flows. One of the 100 flows is set to be 

 

Fig. 7. Throughput changes for dynamically identified flows. 
Action: class change. 
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Fig. 8. Throughput changes for dynamically identified flows. 
Action: ADP. 
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guaranteed to 20 Mbps. The exact bandwidth is guaranteed by 
(1) for the guaranteed traffic while the rest of the bandwidth is 
shared by the other flows. 

In Figs. 7 and 8, we show how DFI works, which is one of 
the unique characteristics of the proposed flow-based traffic 
management scheme. We can set several different traffic 
characteristics for this feature, such as flow lifetime, average 
bytes, packet count, and average rate. In this test, we set the 
flow’s lifetime threshold to two seconds as one of the DFI 
thresholds for all the flows; therefore, flows taking more than 
two seconds to be sent would be dynamically identified. Then, 
we can apply a different class for the dynamically identified 
flows or increase the drop probabilities of the flows to be 
higher than those of the normal flows. Figure 7 shows how the 
bandwidth is limited after two seconds when we limit the total 
bandwidth of flows to which DFI has been applied to the     
5 Gbps class. Initially, each flow receives about 20 Mbps. 
However, since the flows are dynamically identified after two 
seconds, and the classes of the flows are changed to the 5 Gbps 
class, each of 100 flows starts to receive 5 Mbps (2,000 bytes 
per 3.2 ms) from then on. If the dynamically identified flows 
are known to be misbehaving flows, we can effectively limit 
the whole misbehaving traffic to a certain amount of 
bandwidth. Figure 8 shows how the bandwidth of dynamically 
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Fig. 9. Test network diagram for real system. 
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identified flows starts to decrease as the dropping probability 
increases according to (6) to (8) after they meet one of the DFI 
thresholds. The bandwidth of the dynamically identified flows 
decreases more as they get further from the DFI threshold. The 
remainder of the bandwidth is given to the normal flows. 

Here, we present some performance results of flow-based 
routers and legacy class-based routers in a real test 
environment. We set up the test network as shown in Fig. 9. 
Two flow-based routers and two legacy class-based routers 
were used. A Spirent AX/4000 traffic generator was used to 
send the traffic between the systems being tested [23]. Also, a 
Charriot client and server were used to test VoIP performance 
[24]. Two traffic classes were set up in the system with 
maximums of 640 Mbps and 100 Mbps, respectively. The 
traffic generator generated 64 kbps for each of the 10,000 flows 
that were included in 640 Mbps class. The AX4000 allowed us 
to use only aggregate flow mode to generate more than 5,000 
flows. Thus, we used two flow aggregates of 5,000 flows each. 
As a result, each flow aggregate sent 320 Mbps. All the source 
addresses of the flows in one flow aggregate were set to 
10.0.0.0, and those for the other flow aggregate were set to 
20.0.0.0. We set a DFI threshold for the traffic with source 
address 20.0.0.0 to the flow duration of 25 s. Therefore, if a 
flow with source address 20.0.0.0 took more than 25 s to be 
sent, it would be dynamically identified. 

Figure 10 shows how throughput of a flow aggregate 
changes when we apply a different class for the dynamically 

 

Fig. 10. Throughput changes for dynamically identified flows. 
Action: class change. 

0 20 40 60 80 100
Time (s) 

0

10

20

30

40

Th
ro

ug
hp

ut
 (%

) 

 
 

 

Fig. 11. Throughput changes for dynamically identified flows. 
Action: ADP. 
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identified flows. For the dynamically identified flows, we 
changed their class to the smaller class of 100 Mbps. The x axis 
represents testing time and the y axis represents the percentage 
of port bandwidth. Initially, each of the two aggregated flow 
groups sends about 320 Mbps. However, the throughput of one 
of the flow aggregates (flows with source address 10.0.0.0) 
drops to 100 Mbps at about 25 s. This is because the flows in 
the flow aggregate are dynamically identified, and then the 
class of the flows is changed to the 100 Mbps class. Figure 11 
shows how throughput of a flow changes when we apply ADP 
for the dynamically identified flows. At the beginning of the 
test, each of the two flow aggregate groups sent about     
400 Mbps. However, since the total bandwidth was limited to 
the 640 Mbps class, the throughput of each flow aggregate 
group was 320 Mbps. The throughput of one flow aggregate 
group dropped gradually after 25 s when the DFI threshold for 
flow duration was met. The drop probability increased 
according to (6) to (8) for the dynamically identified flows. On 
the other hand, the normal flows received more throughput as 
time went on since the flows could use the extra bandwidth that 
dynamically identified flows in that class could not use. As 
shown in Figs. 6 to 8, the results of both tests are almost 
identical to the simulation results. 

Our tests also show that the proposed method guarantees for 
each flow better packet loss, MOS, delay, and jitter 
characteristics than those of the legacy class-based router 
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system under network congestion. A Chariot client was 
attached to one of the systems under test (either the flow-based 
router or the legacy class-based router) and a Chariot server 
was attached to the other system under test. Background traffic 
flowed at 1 Gbps between the two systems being tested. We set 
the VoIP traffic to the highest priority in the class-based router. 
However, the maximum queue percentage to allocate to the 
priority queue was 30%. Therefore, if the highest input traffic 
exceeded the highest priority queue, the other traffic used a 
lower priority queue. In the flow-based router, each VoIP flow 
was reserved to be serviced at 87 kbps, which is the exact 
generating rate of a VoIP call in Chariot. 

Table 1 summarizes the performance results for the class-
based router and the proposed flow-based router. When we 
sent 100 VoIP calls with 1 Gbps background traffic, the 
performance of the two systems was almost the same (case 1). 
However, when we sent 20 more VoIP calls, it made the new 
VoIP calls exceed the priority queue. Therefore, some VoIP 
calls had to contend with the background traffic in the legacy 
router, which led to some performance degradation. On the 
other hand, bandwidth was allocated and reserved for the 
guaranteed traffic in the proposed flow-based router, and the 
performance results were the same as those of case 1. 
 

Table 1. Performance comparison of legacy router and proposed 
flow-based router. 

 Legacy router Flow-based router 

Packet loss 0 %  0 % 

MOS  4.38  4.38  

Delay  5 to 9 ms  1 ms  
Case 1 

Jitter 0 to 1 ms 0 to 1 ms 

Packet loss 0 to 54%  0 % 

MOS  0.99 to 4.4  4.3 to 4.38  

Delay  13 to 16 ms  1 ms  
Case 2 

Jitter 0 to 6 ms 0 to 1 ms 

  

V. Conclusion 

We proposed traffic management mechanisms to support QoS 
for flow-based routers. Separate traffic management 
mechanisms (RCFQ and AFRED) were proposed for 
guaranteed traffic and non-guaranteed traffic, respectively. Then, 
AFRED was extended so that guaranteed traffic could be 
isolated from non-guaranteed traffic in real networks in which 
both traffic types are mixed together. The extension was done by 
incorporating the fair queuing concept into the active queue 

management mechanism. Non-guaranteed traffic was shaped to 
minimize the effect on the guaranteed traffic in the mechanism. 
In addition, we proposed a dynamic traffic identification method 
to dynamically prioritize traffic according to the traffic 
characteristics of applications. The drop probability can be 
changed or a different traffic class can be allocated to 
dynamically identified traffic. For high-speed router systems, the 
dynamic traffic identification method is a good alternative to 
deep packet inspection, which requires significant processing 
power to handle the IP packet header and payload. We 
demonstrated the performance of the proposed mechanisms by 
the numerical analysis, simulation, and real system tests. We 
believe that the architecture is suitable for flow-based high-speed 
routers, which handle millions of flows at wire speed.  
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