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Owing to the acceleration of IoT- (Internet of Things-) based wireless sensor networks, cloud-computing services using Big Data
are rapidly growing. In order to manage and analyze Big Data efficiently, Hadoop frameworks have been used in a variety of fields.
Hadoop processes BigData as record values by usingMapReduce programming in a distributed environment.ThroughMapReduce,
data are stored in a Hadoop file system, and that form is not structured but unstructured. For this, it is not easy to grasp the cause,
although inaccurate and unreliable data occur in the process of Hadoop-based MapReduce. As a result, Big Data may lead to a
fatal flaw in the system, possibly paralyzing services. There are existing tools that monitor Hadoop systems’ status. However, the
status information is not related to inner structure of Hadoop system so it is not easy to analyze Hadoop systems. In this paper,
we propose an intrusive analyzer that detects interesting events to occur in distributed processing systems with Hadoop in wireless
sensor networks. This tool guarantees a transparent monitor as using the JDI (Java debug interface).

1. Introduction

Wireless sensor networks [1–6] construct network groups
with subminiature sensor nodes or more sensor nodes (e.g.,
high-performance sensor nodes). These nodes have a self-
wireless communicator such as an RF communicator and
mutually make up collaborative communications. Generated
network groups collect information about specific areas that
are difficult for humans to observe directly or under around-
the-clock surveillance. Then, the collected information is
transported to sink nodes.The nodes provide users it through
the Internet. Recently, most things used in their fields include
a networking function owing to the integration of many
technologies. That is, wireless sensor networks have emerged
as an important fact of cloud computing owing to the
appearance of the IoT (Internet of Things) [7–10]. The IoT
treats data generated by things and provides various services
with the new information using them. In addition, its service
has connectivity with the IoT server platform without the

involvement of humans, and it produces and consumes the
data of things. To manage massive amounts of data called
Big Data that are generated in various fields, a distributed
file system, which is the key to cloud-storage technology, is
necessary. Hadoop [11, 12] and SWIFT [13] are two public
software packages for this purpose, while some commercial
software packages include SoFS [14], EMC [15], andHDS [16].
We focus on the Hadoop file system.

Hadoop supports distributed application programs that
operate on cluster computers to expedite BigData [17, 18], and
these data are processed as a diffuse form using MapReduce
[19, 20]. Through MapReduce, data are stored in a Hadoop
file system. This form is not structured as in a relational
database, but it is unstructured. For this, it is not easy to grasp
the cause, although inaccurate and unreliable data occur
in the process of Hadoop-based MapReduce. In this study,
we propose an intrusive analyzer that detects interesting
events that occur during a MapReduce process in Hadoop
distributed file systems. The tool based on JDI [21, 22] can

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 196040, 8 pages
http://dx.doi.org/10.1155/2014/196040



2 International Journal of Distributed Sensor Networks

provide meaningful information for users while monitoring
a series of processes that store data generated in sensor
networks using the MapReduce program in the Hadoop.

In this paper, we first describe the JDI (Java Debug Inter-
face) and Hadoop framework and then explain related works
about Hadoop monitoring systems in Section 2. Section 3
discusses the JDI-based intrusive analyzer. In Section 4, we
describe aHadoop cluster system constructed for experimen-
tation and the experimental details. Section 5 summarizes the
paper and provides a brief outlook for further work.

2. Background

In this section, we describe the JDI of key technology in
observation of the Hadoop framework and briefly explain
the Hadoop framework and related works about Hadoop
monitoring systems.

2.1. JDI (Java Debug Interface). As the JDI is part of the JPDA
(Java Platform Debugger Architecture) [23], it is a Java API
that supports the writing of debugging programs. The JPDA
is a debugging platform provided in Java, and its structure is
shown in Figure 1. The JPDA consists of three components:
the JVMTI (Java VM Tool Interface), the JDWP (Java Debug
Wire Protocol), and the JDI. The JVMTI is located at the
back-end of the debuggee, and the JDI is located at the
front-end of the debugger UI. The JDWP is a packet-based
asynchronous communication protocol between the JDI and
the JVMTI, and its packet contains a command packet and
response packet.

The JVMPI is not a monitoring technology in an event-
driven way, but it is that of byte-code instrumentation. Here,
byte-code instrumentation changes the original programs
in order to monitor or trace them. Thus, the JVMTI can
control and monitor Java application programs executed on
the JVM. The JDI provides APIs that are able to monitor the
execution states of Java application programs on-the-fly and
provides a platform-independent debugging environment as
a high-level debugging facility. For example, the JDI can
connect with Java programs locally or remotely using a
connector API. When the connection is completed, the JDI
accesses the VM using the VirtualMachineManager API and
then requests events with the Request API. In this state,
the JDI collects information regarding the requested events
while Java application programs are executed. Hence, the
JDI provides an environment for monitoring threads and
variables that occur during program execution.

2.2. Hadoop. Hadoop is a Java-based open-source frame-
work that can dispose of Big Data in the HDFS (Hadoop
distribution file system) and MapReduce. The file structure
in a file system such as FAT, NTFS, and EXT consists of
metadata (file name, owner, permission, directory, etc.) and
data (contents). Its block size is generally 4 KB or 8KB.
However, Hadoop’s block size is basically 64MB, and it can
be extended up to 128MB, 256MB, and 1GB. As the size
increases, the chunk size of the data increases so that files can
be saved gradually. By doing this, the performance for reading
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Figure 1: Structure of the Java Debug Interface.

andwriting data improves.Hadoop-based files do not depend
on the particular storage subsystems, and they copy their data
blocks in distributed systems. In addition, the Hadoop file
system is designed to not use high equipment such as RAID
storage. It guarantees the scalability of the system and a cost-
reduction effect.

For processingBigData, theHadoopfile systemcan adopt
MapReduce. MapReduce resolves various complex subjects
of a Big Data nature by using parallel processing. However,
the commands for processing are simple and abstract so it
is easy for programmers to use a MapReduce event if they
are not used to parallel programming. Further, MapReduce
supports high throughput via distributed computing. A
MapReduce process is composed of Map and Reduce phases.
Each phase has a pair of Key-Value as the input and output,
and the type is selected by the programmer. In theMap phase,
the input is the original data, and its records are processed
one by one, whereupon pairs of temporary Key-Value are
created. Before sending the pairs to the Reduce phase, they
are sorted with Key, and new groups are generated for them.
The Reduce function reravels all Value with the same Key in
pairs of temporary Key-Value, and it then treats the Values
and outputs a processing result. Through MapReduce, data
are stored in Hadoop file systems, and their type is not
structured as in a relational database, but it is unstructured.
For this, it is not easy to grasp the cause, although inaccurate
and unreliable data occur in the process of Hadoop-based
MapReduce. Figure 2 shows a MapReduce process. Job-
tracker of namenode has three functions: governing execution
of jobs, task scheduling decision, and responding to heartbeat
message from tasktrackers. Tasktracker of datanode has two
functions: governs execution of tasks and periodically reports
the progress of tasks via heartbeat message.

2.3. Related Works. Ganglia [24] is a scalable system for
monitoring high-performance computing system such as
clusters and grids and a BSD-licensed open-source project.
This tool provides cluster-system information (memory,
disk, network, and execution process) and Hadoop-system
information (HDFS capacity, #HDFS underreplicated block,
#heartbeats, and heap memory) in real-time. It uses carefully
engineered data structures and algorithms to achieve low per-
node overheads and high concurrency.
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Figure 2: Works of MapReduce in the Hadoop framework.

Chukwa [25] is a data collection system for monitoring
large-scale distributed system environments. It consists of
agent, collector, data processing, data analysis, and data
display. Agent uses self-developed adaptor and collects log
data of Hadoop systems. Collector periodically receives the
log data sent from agent and stores it into HDFS. Data
processing is a pair of MapReduce jobs. The first job is that
log data are archived without processing and interpreting.
The second job is that structured data are generated through
parsing the log data and are loaded into a data store. HICC
(Hadoop Infrastructure Care Center) analyzes the log data
and then displays analyzed results (global status, HDFS
status, and cluster status) on web. Then this tool can manage
status of Hadoop file systems and server computers.

Mochi [26] analyzes tasktracker and datanode logs
obtained from SALSA while MapReduce is executed. This
tool provides execution flows of data input and output used
for MapReduce and dynamic behaviors of Hadoop systems.
Also, results aggregated in the process are displayed. For this,
Mochi can monitor Hadoop systems without any modifica-
tion, so this tool is interworked toHadoop systems freely.The
status information which generates in such existing tools is
not related to inner structure of Hadoop system so it is not
easy to analyze Hadoop systems.

3. A JDI-Based Intrusive Analyzer

In this paper, we propose a JDI-based intrusive analyzer that
detects interesting events that occur during a MapReduce
process in Hadoop distributed file systems. The tool can
provide meaningful information for users while monitoring
a series of processes that store data generated in sensor
networks using the MapReduce program in the Hadoop
systems. The intrusive analyzer consists of four parts: VM

generator, event monitor, event filter, and event analyzer. VM
generator launches a target program to JVM in order to
monitor the program. It generates a VM object with a target
program’s property as output. Event monitor sets monitoring
events by users to JVM and registered events are identified in
run-time by it. Event monitor’s outputs are events to occur in
the target program. Event filter not onlymonitors events such
as threads, variables, and classes, but also selects and records
specific/interesting events of them all. Recorded information
is utilized by event analyzer to analyze a MapReduce process
running in a Hadoop system.

Figure 3 shows the structure of the suggested intrusive
analyzer. In this figure, the JDI-based intrusive analyzer
requests specific events from the JVM as soon as the Hadoop
framework is started byCommands andHadoop Environment
Variables. When the framework is functioning normally,
the agent monitors the various Hadoop daemons including
jobtracker, tasktracker, namenode, and datanode. Upon the
execution of these daemons, events configured by the agent
pass through the JDI. Of these events, the interesting events
(threads, variables, and queues) are observed. That is, the
Hadoop framework is monitored by the analyzer. The JDI-
based analyzer runs in each node.

Figure 4 shows the overall structure of a Hadoop frame-
work based on a wireless sensor network. In this figure, each
sensor network group (sensor network 1, sensor network 2, and
sensor network 3) has different sensors and purposes as well
as generating a variety of sensing data. For example, sensor
network 1 collects sensing data regarding environmental
information (humidity, temperature, carbon dioxide, carbon
monoxide, ozone, etc.). Sensor network 2 collects sensing
data regarding historical information (water level, rainfall,
etc.). Sensor network 3 collects sensing data regarding video
information (proximity distance, image, vision, etc.). The
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Figure 3: Structure of an intrusive analyzer based on JDI.
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Figure 4: Overall design of the Hadoop framework.

collected sensing data will be very large in size; hence,
it is called Big Data. These data are first stored in the
local file system of the namenode. Stored data are again
stored in the distributed file systems based on the Hadoop
framework through MapReduce. The Hadoop framework
is comprised of namenodes and datanodes. Each node has
either a server agent or a client agent in order to monitor
the Hadoop framework during MapReduce. These agents are
implemented with the JDI where an agent is an intrusive
analyzer. In addition, the namenode has a manager that
controls the client agents included in the datanodes of the
subsystems and offers the user the analyzed results.

4. Experimentation

This section is comprised of two parts: experimental environ-
ment and experimental results. In experimental environment,
we introduce three types of Hadoop systems and explain

how our Hadoop system is constructed. And for analyzing
a Hadoop system which we construct, two types of experi-
mental sets are mentioned. One is self-made data sets and the
other is published data sets.

4.1. Environment. There are threeways to construct aHadoop
cluster: the single construction way, the virtual distribution
way, and the complete distribution way. The single con-
struction way is a nondistribution mode in which Hadoop
is executed by a Java process in one local system; it is
mostly helpful for debugging Hadoop-based applications.
The virtual distributionway sets several virtual Java processes
and executes namenodes and datanodes. The complete dis-
tribution way constructs one cluster composed of multiple
nodes that communicate with TCP/IP. As shown in Figure 5,
we employ a Hadoop framework based on the complete
distribution way. This framework uses three computers and
one switching hub and consists of two datanodes and one
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Figure 5: Experimental environment: Hadoop framework based on a complete distribution.

namenode. The same OS (Ubuntu 12.04 LTS) and Hadoop
1.2.1 are installed in eachnode.The specifications of eachnode
are listed in Figure 5.

4.2. Results. The Hadoop system of Figure 5 is actually
constructed in our laboratory like a picture of Figure 5. We
have analyzed internal states (threads, variables, etc.) of the
constructed system itself.The reason to analyze internal states
is to graph a relation of MapReduce processing to a Hadoop
system. We empirically prove the relation using two types of
experimental sets. One is self-made data sets and the other
is published data sets. Self-made data sets consist of seven
cases and their size is 16MB, 32MB, 64MB, 128MB, 256MB,
512MB, and 1024MB, respectively. It is an assumption that
self-made data are sensing data to occur in the wireless
sensor networks. Published data sets have six cases and
their data names are Texas weather data, Twitter token data,
and Wikipedia dump data (including category, title, index,
and page). As the results of self-made data sets, Table 1,
Figures 6 and 7 are presented as experimental results. We
carry out the experiments about Jobtracker of the namenode
in the Hadoop framework (Figure 2). When these data are
processed by MapReduce, the Hadoop framework is worked
to dispersively store the data in datanodes. Table 1 shows the
experimental results for the number of threads, the number of
total accesses for the variables, and the consumed time for the
JHS (JDI Hadoop system) and PHS (pure Hadoop system).

In a result of Table 1, we have found that the number
of threads and number of total accesses increase as the
input data size increases. However, there is no increase in
the number of variables. That is, the number of variables is
237 and 491 for static and nonstatic variables, respectively,
although the input data size increases. In static column,
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Figure 6: Relationship between the number of threads and the
number of accesses.

the occurrence ratio of read access increases steadily and
that of write access decreases steadily. In nonstatic column,
the occurrence ratio of read access increases entirely but
decreases in file size 32MB, and that of write access decreases
entirely but increases in file size 32MB. With this result, we
caught two factors. (1) The maximum occurrence ratio of
write access is figured out (e.g., when the number of threads
is 60, static write access is 6.06%, and when the number of
threads is 82, nonstatic write access is 30.78%). (2) Accesses of
nonstatic variables affectmonitoring performance ofHadoop
systems. To further understand the results, we plot the data
of Table 1 on two graphs (Figures 6 and 7). Figure 6 shows
a relation between the number of threads and the number
of accesses while executing MapReduce in a Hadoop system.
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Table 1: Number of Threads, Number of Total Accesses, and the Time Consumed in the JHS and PHS (Self-made Data Sets).

File Size #Thread #Total Access JHS PHS
Static (Read/Write) Non-Static (Read/Write)

16MB 60 5,508 (93.94%/6.06%) 161,629 (73.16%/26.84%) 2m 43 s 29 s
32MB 82 26,113 (98.72%/1.28%) 1,209,834 (69.22%/30.78%) 1m 52 s 40 s
64MB 102 31,405 (98.94%/1.06%) 1,403,795 (70.56%/29.44%) 2m 17 s 1m 4 s
128MB 125 39,304 (99.15%/0.85%) 1,688,238 (72.59%/27.41%) 3m 20 s 1m 56 s
256MB 152 57,091 (99.41%/0.59%) 2,526,793 (75.1%/24.9%) 5m 18 s 3m 34 s
512MB 186 77,223 (99.57%/0.43%) 3,408,869 (78.51%/21.49%) 8m 54 s 7m 5 s
1024MB 233 110,603 (99.7%/0.3%) 5,167,399 (82.73%/17.27%) 16m 10 s 13m 39 s

Table 2: Number of Threads, Number of Total Accesses, and the Time Consumed in the PHS and JHS (Published Data Sets).

Data Name Data Size #Thread #Total Access JHS PHS
Static (Read/Write) Non-Static (Read/Write)

Texas Weather 45MB 103 15,641 (97.86%/2.14%) 614,824 (81.95%/18.05%) 3m 19 s 56 s
Wikipedia (category) 89MB 123 22,385 (98.51%/1.49%) 800,296 (77.08%/22.92%) 1m 52 s 34 s
Wikipedia (title) 211MB 148 32,062 (98.96%/1.04%) 1,414,719 (83.30%/16.70%) 4m 38 s 2m 44 s
Wikipedia (index) 610MB 183 57,358 (99.42%/0.58%) 2,484,391 (83.16%/16.84%) 10m 06 s 7m 47 s
Wikipedia (page) 2.94GB 233 89,790 (99.63%/0.37%) 4,609,454 (87.75%/12.25%) 17m 13 s 11m 55 s
Twitter 5.99GB 400 191,716 (99.83%/0.17%) 14,590,222 (93.47%/6.53%) 78m 30 s 50m 33 s
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Owing to the growth of the number of threads according to
the input values, the number of total accesses also increases.
In particular, the number of accesses for nonstatic variables
increases exponentially and the number of read accesses is
bigger than that of write accesses. We infer that temporary
variables in Jobtracker are mainly used in order to decide
jobs assigning to tasktrackers. Also, as static variables are
similar to shared variables among threads, a wide variation
for the number of their accesses is not great. However,
in the future, these variables will be important point for
adjusting and debugging Hadoop systems. Figure 7 shows
the time consumed in the JHS and PHS. On average, the
JHS is slower than the PHS by approximately 2.3 times.
However, we have found that this overhead does not reach
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Figure 8: Relationship between the number of threads and the
number of accesses (published data sets).

a serious level because the processing time of the JHS is
worse by approximately 1.2 times in the case of 1 GB. Thus,
it is sufficient to use a JDI technique for monitoring Hadoop
systems.

Table 2 and Figures 8 and 9 show experimental results
about published data sets. Overall, the result pattern of these
sets is similar to that of self-made data sets. The difference
in experimental results between self-made data sets and
published data sets, however, is the number of threads and
the number of accesses according to data size. In spite of the
difference, the ratio of read and write accesses for static and
nonstatic variables and that of consumed time in JHS and
PHS are approximately similar to those of Table 1. To bemore
concrete, the JHS is slower than the PHS by approximately
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2.1 times on average. The reason there is a sudden change in
Figures 8 and 9 is that data size is suddenly great (3011MB to
6144MB).

5. Conclusion

Wehave constructed aHadoop system based on the complete
distribution way and have designed the JDI-based intrusive
analyzer. For experimental verification of the designed tool,
we utilize the Big Data produced in sensor networks. This
data does not occur in the real world but is instead virtual
data. During MapReduce of the data, our analyzer monitors
threads and accesses to work in a Hadoop system. As a
result, we have found a relation between the number of
threads and the number of accesses according to size of
the Big Data. However, the JDI-based Hadoop framework
with the intrusive analyzer has a greater execution time than
the pure Hadoop framework. In the future, we will seek
a solution to reduce the time overhead for the suggested
Hadoop framework.
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