
ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 365

This paper presents the design and implementation of a
hyperelliptic curve cryptography (HECC) coprocessor
over affine and projective coordinates, along with
measurements of its performance, hardware complexity,
and power consumption. We applied several design
techniques, including parallelism, pipelining, and loop
unrolling, in designing field arithmetic units, group
operation units, and scalar multiplication units to improve
the performance and power consumption.

Our affine and projective coordinate-based HECC
processors execute in 0.436 ms and 0.531 ms, respectively,
based on the underlying field GF(289). These results are
about five times faster than those for previous hardware
implementations and at least 13 times better in terms of
area-time products. Further results suggest that neither
case is superior to the other when considering the
hardware complexity and performance. The
characteristics of our proposed HECC coprocessor show
that it is applicable to high-speed network applications as
well as resource-constrained environments, such as PDAs,
smart cards, and so on.

Keywords: Crypto-processor, hyperelliptic curve,
elliptic curve cryptosystem.

Manuscript received Jan 15, 2007; revised Oct 9, 2007.
This work was supported by the Korea Research Foundation Grant funded by the Korean

Government (MOEHRD)" (The Regional Research Universities Program/Research Center for
Logistics Information Technology)

Howon Kim (phone: 82-51-510-1010, email: howonkim@pusan.ac.kr) was with
Information Security Research Division, ETRI, Daejeon, Rep. of Korea, and is now with the
Department of Computer Engineering, Pusan National University, Pusan, Rep. of Korea.

Thomas Wollinger (email: twollinger@escrypt.com) is with the eScrypt GmbH, Bochum,
Germany.

Doo-Ho Choi (email: dhchoi@etri.re.kr) and Dong-Guk Han (christa@etri.re.kr) are with
SW & Content Research Laboratory, ETRI, Daejeon, Rep. of Korea.

Mun-Kyu Lee (email: mklee@inha.ac.kr) is with the School of Computer Science and
Engineering, Inha University, Seoul, Rep. of Korea.

I. Introduction

With the continuous evolution of information technology,
security technology will become increasingly important for
protecting critical information and enhancing the privacy of
Internet users. An increasing number of applications are being
connected wirelessly; therefore, they require protection due to
the vulnerability of the wireless link. The core techniques used
to maintain security in information technology are
cryptographic primitives such as private-key and public-key
crypto-algorithms. Private-key algorithms such as AES and
triple-DES are usually used to encrypt data, whereas public-
key algorithms such as RSA and elliptic curve cryptography
(ECC) are used for secure key distribution and digital
signatures [1].

Hyperelliptic curve cryptography (HECC), a public-key
crypto-algorithm, has been studied with increasing interest
during recent years, since it was introduced by Koblitz in 1988
[2]. Unlike the well-known RSA crypto-algorithm, HECC is
based on the hardness of solving the discrete logarithm
problem (DLP). The main advantages over RSA are that
HECC requires shorter key and operand lengths than RSA.
Hence, HECC is a promising cryptographic primitive for fast
implementation and for resource-constrained environments. In
this paper, we present a fast HECC coprocessor in affine and
projective coordinates and show that it can be a candidate for
resource-constrained and high-speed network applications.

The remainder of this paper is organized as follows. Section
II provides a brief overview of the background of hyperelliptic
curve cryptosystems and summarizes the previous works
involving field programmable gate array (FPGA)
implementations of HECC coprocessors. Section III presents
the proposed HECC coprocessor architecture, and section IV,

Hyperelliptic Curve Crypto-Coprocessor over
Affine and Projective Coordinates

 Howon Kim, Thomas Wollinger, Doo-Ho Choi, Dong-Guk Han, and Mun-Kyu Lee

366 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

outlines our methodology and the different design options.
Results and analysis are provided in section V. Finally, we
make some concluding remarks.

II. Background of HECC

In this section, we present an introduction to the theory of
HECC over finite fields of arbitrary characteristics, restricting
our attention to material that has cryptographic relevance.

1. Basics of HECC

Hyperelliptic curves are a special class of algebraic curves
and a generalization of elliptic curves [2]. A hyperelliptic curve
of genus g = 1 is an elliptic curve. A hyperelliptic curve C of

1g ≥ over F is the set of solutions (,)x y F F∈ × to the
equation 2: () (),C y h x y f x+ = where (), () []h x f x F x∈
w i t h deg { ()}x h x g≤ a n d f (x) i s m o n i c w i t h
deg { ()} 2 1.x f x g= + There are no solutions (,)x y F F∈ ×
that simultaneously satisfy the equation y2+h(x)y=f(x) and the
partial derivative equations 2y+h(x)=0 and () () 0.h x y f x′ ′− =
A divisor of C is a formal sum of the points P over C,
expressed as , ,

i
i i iP C

D m P mP m Z∞∈
= − ∈∑ where the

degree of D, im∑ is less than or equal to g, and P∞ is a
point at infinity.

The Jacobian Jac(C) of C is an Abelian group related to C.
Each element of Jac(C) can be represented by a pair of
polynomials div(u(x), v(x)) using Mumford’s representation.
Here, u is a monic polynomial of degree at most g, and we
have deg(v)<deg(u). Thus, we can easily handle Jac(C) on
software and hardware applications [3]. If the base field of the
curve is a finite field with cardinality q, then the Jacobian of the
curve is a finite Abelian group of order approximately qg.

The following Hasse-Weil bound provides an interval for
this order:

2 2(1) () () (1)g g
qq Jac C F q⎡ ⎤ ⎢ ⎥− ≤ ≤ +⎢ ⎥ ⎣ ⎦ .

The genus of a hyperelliptic curve should not be greater than
three, because of possible attacks [4]. Furthermore, it is widely
accepted that the group order for HECC should be at least
≈2160 for practical applications. Therefore, in the case of a
genus-2 hyperelliptic curve, an 80-bit field size can be
considered secure.

Because ECC is a special case of HECC (genus g = 1), the
required field size for this case is 160 bits. Therefore, to
implement ECC using hardware logic would require 160-bit
registers, digital logic gates, and so on. However, the
underlying hardware logic units for genus-2 hyperelliptic
curves, particularly the field operation logic units, are smaller

than those for ECC. This is one reason why there is currently a
great deal of research on HECC.

2. HECC over Affine and Projective Coordinates

Cantor proposed an algorithm to add and double the divisors
in Mumford’s representation [5]. This algorithm requires two
major steps. The first step involves finding a semi-reduced
divisor (() , ())D div u x v x′ ′ ′= such that 1 2 1~ ((),D D D div u x′ + =

1 2 2()) ((), ())v x div u x v x+ in the group Jac(C). The second
step involves reducing the semi-reduced divisor to an
equivalent divisor, D=div(u(x), v(x)). This algorithm is known
to be time consuming because it requires polynomial arithmetic.
However, Harley noticed that the number of operations can be
reduced by distinguishing among the possible cases based on
the properties of the input divisors. He described an efficient
algorithm using various techniques, such as Karatsuba
multiplication, CRT, and Newton iteration methods. Harley’s
algorithm reduces the overall complexity of the group
operations [6]. We refer to this algorithm as explicit formulae.

Our HECC coprocessor targets genus-2 curves using

Table 1. Inversion-free explicit formulae for adding a divisor on an
HECC coprocessor of genus 2 over GF(2n).

Input 11 10 11 10 1 21 20 21 20 2
5

1 0

[, , , ,]; [, , , ,];
; and

U U V V Z U U V V Z
h x f x f x f= = + +

Output
11 10 11 10 1 21 20 21 20 2

1 0 1 0[, , , ,]
[, , , ,] [, , , ,]
U U V V Z
U U V V Z U U V V Z

′ ′ ′ ′ ′ =
+

Algorithm

1 2 21 1 21 20 1 20 21 1 21 20 1 20

1 2

1 11 2 21 2 20 10 2 3 11 1 2 1
2

2 3 1 10

2

(cost: 5M)

(6M+1S)
; ; ; ;

,
; ; ;
;

precomputation:

compute resultant of

compute almost inverse of mo

;
 :

Z Z Z U Z U U Z U V Z V V Z V
r U U

z U Z U z U U Z z U z z Z
r z z z U

U

= = = = =

= − = − = +
= +

� � � �

� �

1

1 1 0 3

0 10 2 20 1 11 2 21 2 0 0

3 1 1 1 0 1 1 0 1 2 3 1 11

0 2 10 3

2

0 0 3 1 3 3 3 0 1

(8M)

(8M + 1S)

; ;

; ; ;
; ()() ();

;

; ; ; ; ; ;

d

compute

precomputation

 :

:

U
inv z inv z

w V Z V w V Z V w inv w
w inv w s inv Z inv w w w w Z U
s w U w

R Zr s s Z s s Z R Rs S s S s s
S s

s
= =

= − = − =
= = + + − − +
= −

= = = = = =
=

� �

�
�

3 1 0 3

2 21 0 20 1 21 20 2 0 2 2

2 2 2

0 0 1 1 1 21 2 3 1 1 1

2 2 1 0 0 2

(3M)

(6M + 2S)

(4M)

; ; ;

; ; ()() ; ;
:

() (); ;

;

compute

compute

precomputations

 :

:

s S s s R RS
l

l SU l SU l S S U U l l l l S
U

U s s z z U z S R s rz U Sz R

l l U w U l S

′′ ′′= =

′′= = = + + − − = +
′

′ ′= + + + + + = +

′ ′= − = −

��

� �� �

��

3 0 1 1 2 3 0 1

3 1 1 0 0

0 0 20 1 1 21

(2M)

; ();

; ; ;
' :

; ();

adjust: (3M)

compute

l w U l S U l

Z RS U RU U RU
V

V w R V V w R V Z

′ ′= + −

′ ′ ′ ′ ′= = =

′′ ′′′ ′= + = + +

� � �

� �

Total cost 45M+4S

ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 367

Table 2. Inversion-free explicit formulae for doubling a divisor on an
HECC coprocessor of genus 2 over GF(2n).

Input 5

1 0 1 0 1 0
[, , , ,]; ; and U U V V Z h x f x f x f= = + +

Output 1 0 1 0 1 0 1 0[, , , ,] 2[, , , ,]U U V V Z U U V V Z′ ′ ′ ′ ′ =

Algorithm

2 2
1 1 1 3 1

2
2 0

0 1 1 1 0

4 0 3 5 1 3 3 0 1 4 1 5
1 3 0 4

(cost: 1M+3S)

;
(3M)

(7M)

; ; ;

();
 mod :

; ; ()() (1) ;
;

compute the resultant and precomputations:

compute

compute

:
V wZ Z w U w U Z

k
k U w Z ZV w

s kinv u
w k w w w Z s w Z k w w U w
s s Z s w Z

== = =

= + +
=

= = = + + + + +
= = −

;
2

0 0 3 1

0 5

2 2 2
2 0 1 1 1 0 0 4 3 1 5 0 3

5 4

2 1 4 0 0 5 1 4 5 1 0 2 0

(6M+3S)

(3M)

(2M + 1S)

(4

;

; ; ; ; ; ;
;

; ; ()() ;
:

;

precomputations

compute

compute

precomputations

:

:

:
U

U w

R Z U R Rs S s S s s s s s s s
S s Z R Rs

l U s l U s l s s U U l l
U

S Rs Z U R

l

= = = = = =
′′= =

= = = + + + +
′

′′= +′′

;3 2 1 0 3 1 0 7 1 3 1 0 1

0

1 1 1 0 0

6 0 1 7 1

M)

(3M)

(2M)

; 6 ; ()

; ; ;
' :

; ;

adjust:

compute

l l S U w U l S l w U l S U l

Z S R U RU U RU
V

V w R V V w R V Z

′′ ′′ ′′ ′′= + + = + = + +

′ = = =

′′ ′′ ′′ = + = + +

′ ′′ ′ ′′

′

Total cost 31M+7S

underlying fields of characteristic two. For the remainder of
this paper, we will only consider the group operations of genus-
2 hyperelliptic curves (For further information, see [7] and [8].).
We have used the explicit formulae for affine coordinates that
were introduced in [9]. The explicit formulae for projective
coordinates are shown in Tables 1 and 2. The affine coordinates
require 1 inversion and 9 multiplications for group doubling
and 1 inversion and 21 multiplications for group addition. For
the case of projective coordinates, 45 and 31 multiplications are
required for group addition and doubling, respectively. In
projective coordinates, the inversion operation is not necessary
for the group operations. However, if the output of a scalar
multiplication is required in affine representation, we need one
inversion and a few extra multiplications for the conversion to
that coordinate system.

In projective coordinates based on the Mumford representation
[3], we can define the quintuple [U1, U0, V1, V0, Z] such that

2 2
1 0 1 0 1 0 1 0() (), () () , .x U Z x U Z V Z x V Z x u x u v x v⎡ ⎤ ⎡ ⎤+ + + = + + +⎣ ⎦ ⎣ ⎦

Table 1 shows the explicit formulae for the case of projective
coordinates with the explicit formulae optimized for the case of
h2=h0=0. In this case, we have optimized the explicit formulae
presented in [8] with the assumptions of h=x and f=x5+f1x+f0,
where 0 1, (2)nf f GF∈ , and f0+f1 is not equal to 0. This
assumption has also been applied to the case of affine
coordinates in [9].

The cost of each stage of the explicit formulae is shown in

Tables 1 and 2. Since the squaring operation in polynomial
arithmetic can be implemented as rewired hardware, we can
avoid the cost of squaring. After the completion of several
stages of the explicit formulae, which consist of 45
multiplications and 4 squaring operations, the divisor addition

1 0 1 0[, , , ,]U U V V Z′ ′ ′ ′ ′ can be obtained.
Table 2 shows the divisor doubling equation. The result of

doubling 1 0 1 02[, , , ,]U U V V Z can be obtained after 31
multiplications and 7 squaring operations. As in the case of the
addition operation, this equation is derived from [8] with the
condition that h=x and f=x5+f1x+f0. There are 14 fewer
multiplications than with the divisor sum operation.

3. Previous Works on HECC Coprocessors

This subsection surveys the major preceding works on HECC
coprocessor design. The first HECC coprocessor implemented
on an FPGA was introduced in [10] It targeted a genus-2 HECC
over GF(2113). The scalar multiplication latency of this design is
about 20 ms and the group operation is based on the Cantor
algorithm. The first result of an HECC coprocessor using the
explicit formulae was presented in [11]. This coprocessor is
based on projective coordinates, and the latency of the divisor
multiplication is approximately 2.03 ms. The most recent result
based on affine coordinates was presented in [12]. The authors
show that an HECC coprocessor can be used not only for high-
performance applications but also for resource-restricted
applications because of its high performance and low hardware
requirements. The main difference between the work in [12] and
our study is that our study is targeted for projective coordinates
(in order to reduce the necessity for inversion operations) and
that the circuit presented in [12] is designed for low power
consumption.

III. Architecture of the HECC Coprocessor

The HECC coprocessor was implemented at the level of scalar
multiplication and verified on an FPGA. The processor
architecture includes the main control unit, arithmetic unit, and
register file. The main control unit controls the scalar
multiplication algorithm, arithmetic unit, and register file.
Figure 1 shows the architecture of the HECC coprocessor. The
arithmetic unit comprises an underlying field arithmetic unit
and a group operation unit. The register file is used for storing
the input/output divisor values and temporary data used in the
HECC computation. Our HECC coprocessors were
implemented on specific fields such as GF(289) and GF(2113),
and their arithmetic units were optimized with the minimal
polynomials, x89 + x38 + 1 and x113 + x9 + 1, respectively.

368 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

Fig. 1. Block diagram of the HECC coprocessor architecture.

Datapath

Control

Control

Field arithmetic unit
- Field addition
- Field squaring
- Field multiplication
- Field inversion

- Scalar multiplication control
- Datapath control
- Host inferface control

Register file or memory

Group arithmetic unit
 - Group addition doubling

Arithmetic unit

Datapath control Main
control

unit

The main control unit is responsible for controlling the scalar
multiplication portion of the HECC coprocessor. We have
implemented three scalar multiplication algorithms, including
parallel binary, binary, and comb methods [12], [10], [13]. The
arithmetic unit in the HECC coprocessor includes group
operation units, such as group doubling and group addition.
These are based on the explicit formulae [8], [12]. The group
arithmetic units are responsible for field operations, such as
field addition, squaring, multiplication, and inversion over a
binary field. Since the HECC coprocessor is realized over a
characteristic two field, the field addition operation is realized
with modular two operations (that is, an exclusive-OR
operation). Field squaring is realized with simple expansion
and reduction based on an underlying minimal polynomial.
The field multiplication and inversion operations are more
complex, and we have designed these two field operation units
to be fast, power efficient, and scalable.

1. Field Inversion

The field inversion unit is implemented with a modified
almost inverse algorithm (MAIA), which is modified by
applying a loop unrolling technique. By this technique, the
MAIA with unrolling level 4 can complete its four internal
iteration loops in just a single loop (see [12]). We have also
implemented the extended Euclidean algorithm (EEA) on
hardware by using the loop unrolling technique. As shown in
Table 3, the operating frequency of the MAIA algorithm is
8.5% and 87.6% faster than that of the EEA algorithm with
unrolling levels 1 and 4, respectively. Moreover, the hardware
complexity of the MAIA algorithm is less than that of the EEA
algorithm; hence, we have chosen the MAIA algorithm for the
inversion operation of the HECC coprocessor.

Table 3. Features of the EEA and MAIA algorithms (Target
platform: Xilinx XC2C1000bg575-6).

Field Algorithm
Unrolling

level # of LUTs
Frequency

(MHz)
1 1,754 89.2

EEA
4 4,161 51.8

1 1,421 96.8
GF(2233)

MAIA
4 3,886 97.2

Table 4. Features of the inversion unit of the HECC coprocessors.

Types
Field
size

Unrolling
level # of slices

Frequency
(MHz)

Clock
cycles

TTC*
(µs)

1 303 116.4 178 1.53

2 547 65.0 120 1.85

3 679 100.0 103 1.03
GF
(289)

4 733 97.6 97 0.99

1 387 95.1 226 2.38

2 481 75.3 152 2.02

3 856 82.9 131 1.58

MAIA
with loop
unrolling

GF
(2113)

4 954 82.1 123 1.50

 * TTC: time to completion

 The loop unrolling technique has two major positive effects
on the inversion unit: high performance and low power
consumption. The detailed algorithm may be found in [12].
Table 4 shows the characteristics of an inversion unit targeted
for implementation on an FPGA. As the unrolling level
increases, the clock cycles required to complete the field
inversion operation decrease while maintaining a reasonable
operating frequency. For example, when moving from
unrolling level 1 to level 4 in the case of GF(289), the clock
cycles drop from 178 to 79 cycles; however, the operating
frequency is reduced by only 19 MHz from 116 MHz to 97
MHz. Therefore, the latency of the inversion logic is reduced
as the unrolling level increases at the cost of hardware
complexity.

In Fig. 2, we have re-drawn the latency and maximal
operating frequency characteristics of the inversion unit based
on the data in Table 4. The TTC of the inversion unit over
GF(2113) decreases as the unrolling level increases. However,
for the case of GF(289), the TTC of the inversion unit at
unrolling level 2 is worse than that at unrolling level 1. If we
unroll the inversion algorithm, then the number of clock cycles
required to perform its operation certainly decreases. However,
the latency of the inversion unit increases due to the data-path
of the inversion unit, for which each cycle of operation becomes

ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 369

Fig. 2. Latency and operating frequency of the inversion units of
the HECC coprocessors versus the unrolling level.

GF(289)

1 2 3 4
0.8

1.2

1.6

2.0

2.4

1.0

1.4

1.8

2.2

1.53

1.85

1.03 0.99

2.38

2.02

1.58
1.5

116.4
65 100 97.6 95.1 75.3 82.9 82.1

Unrolling level

TT
C

 (µ
s)

GF(2113)

GF(2113)
GF(289)

longer. In the case of inversion logic with unrolling level 2 over
GF(289), increasing datapath delay has a much greater influence
than the shortening of clock cycles. Thus, the overall
performance of an inversion unit in which 2 loops are unrolled is
worse than that in which loop unrolling is not applied. Based on
these results, we can apply the loop unrolling technique to
HECC coprocessor design in order to meet the desired trade-offs
between performance and hardware complexity.

2. Field Multiplication

For field multiplication, we used the digit-serial multiplier
introduced in [14] and [15]. This kind of multiplier allows
trade-offs among the speed, area, and power consumption.
Table 5 shows the implementation results for the least
significant digit (LSD)-first multiplier. As seen in this table, the
TTC of the multiplier decreases as the digit size increases;
however, the hardware complexity (number of slices) also
increases. We can choose the proper digit size by considering
the target coprocessor’s requirements. That is, if the
coprocessor requires fast execution for field multiplication
despite the high hardware complexity, a large-digit-size
multiplier will be chosen.

In Fig. 3, we have re-drawn the latency plot of the
multiplication unit based on the data in Table 5. The TTC of the
multiplication units over the different fields decreases as the
digit size increases. This result is straightforward and is as we
had expected. However, when we consider the factor of the
maximal operating frequency versus the digit size, we find that
the case with digit sizes of 8 and 4 over GF(289) and GF(2113),
respectively, has the highest maximal operating frequency. We

Table 5. Features of the multiplication unit of the HECC
coprocessors.

Types
Field
size

Digit size
(bits)

of slices
Frequency

(MHz)
Clock
cycles

TTC
(µs)

1 145 97.5 89 0.913

4 239 106.8 23 0.215

8 414 110.1 12 0.109

16 645 87.4 6 0.069

32 1,189 71.6 3 0.042

45 1,616 63.7 2 0.031

GF
(289)

89 3,205 52.2 1 0.019

1 294 84.8 113 1.345

4 366 106.6 29 0.282

8 614 93.2 15 0.172

16 931 86.4 8 0.104

32 1,931 85.3 4 0.059

38 2,288 83.3 3 0.048

57 3,195 68.2 2 0.044

Digit-
serial

multiplier

GF
(2113)

113 7,278 63.1 1 0.032

Fig. 3. Latency of the multiplication units of the HECC
coprocessors versus the digit size.

14 8 16 32 38 45 57 89 113

1.2

0.913

0.215

0.109
0.069 0.042 0.031

0.019

1.345

0.282

0.172

0.104
0.059 0.048 0.044 0.032

1.0

0.8

0.6

0.4

0.2

0

GF (289)
GF (2113)

Digit size (bit)

TT
C

 (µ
s)

can explain this if we only consider the datapath of the
multiplication unit. The critical path of the multiplication unit in
the case with digit sizes of 1 and 4 over GF(289) is not on the
datapath but along the control logic of the multiplication unit.
The same reason can explain why the case of a multiplication
unit over GF(2113) with a digit size of 1 has a lower operating

370 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

frequency than the cases with digit sizes of 4, 8, 16, and 32.

3. Architectural Characteristics of the HECC Coprocessor

The proposed HECC coprocessor includes several
architectural features for attaining high performance. First, field
operation units, such as the field multiplier and inversion logic
units, are designed for high performance and low power.
Second, field addition and squaring operations are executed
during data movement between the register file and the field
multiplier and inversion logic units. Third, the interconnect
network between the register file and the field operation units is
carefully designed for low hardware complexity and low
latency. Since the HECC explicit formulae require several tens
of multiplication operations to complete the scalar
multiplication, the interconnect network (which is
implemented with multiplexers or a bus) is complex. Thus, the
issue of register allocation and multiplier assignment is
important for high performance and low hardware complexity.
We described these issues in [12] for designing an affine-
coordinate-based HECC coprocessor, and the same
methodology has been used to design the projective-
coordinate-based HECC coprocessor presented in this work.

Table 6 shows the architectural characteristics of the HECC
coprocessor over affine and projective coordinates. In the explicit
formulae over affine coordinates, group doubling requires 1 field

Table 6. Architectural characteristics of HECC coprocessors.

Coord Types Logic
Inter-

connect

Scalar
mult.

method

Storage
for RF

Type 1

Addition:
2 mult. + 1 inv.

Doubling:
1 mult. + 1 inv.

MUX
Parallel
binary

(R to L)
13 REGs

Type 2
2 mult. + 1 inv.

(shared) MUX
Binary
(L to R) 10 REGs

Affine
coord

Type 3
2 mult. + 1 inv.

(shared) MUX BUS
Binary
(L to R)

Memory
(14 entries)

Addition: 2 mult.
Type 1

Doubling: 1 mult.
MUX

Parallel
binary

(R to L)
25 REGs

Type 2 2 mult. (shared) MUX
Binary
(L to R) 20 REGs

Proj*
coord

Type 3
2 mult. + 1 inv.

(shared) MUX BUS
Binary
(L to R)

Memory
(25 entries)

 * The core logic of the HECC coprocessor over projective coordinates does not
include inversion logic, but we have added inversion logic as a peripheral block to
convert the projective results to affine results for the projective-coordinate-based
HECC coprocessors. Two inversion logic units are added for the type-1 coprocessor
and one inversion logic unit each is added for the type-2 and type-3 HECC
coprocessors over the projective coordinates.

inversion, 9 field multiplications, and 6 field squarings. Group
addition requires 1 field inversion, 21 field multiplications, and
3 field squarings [12]. Also, for the explicit formulae over
projective coordinates, as seen in Tables 1 and 2, 31
multiplications and 7 squarings are necessary for group doubling
and 45 multiplications and 4 squarings are necessary for group
addition.

We implemented three different HECC coprocessors, which
are referred to as types 1, 2, and 3. The type-1 HECC
coprocessor is designed for high performance, and the type-2
and type-3 versions are designed for lower hardware
complexity while maintaining reasonable performance. The
type-1 coprocessor has two independent group operation units,
consisting of group addition and group doubling logic. It
performs group addition and doubling in parallel. The type-2
coprocessor has one group operation unit and shares the field
arithmetic unit, register file, interconnect logic, and control
logic. There are two major differences between types 2 and 3.
Type 3 uses memory for storing data and a bus for the
interconnect network, whereas type 2 uses registers for storing
data and multiplexers for the interconnect network.

As shown in Table 6, there are more registers in the
projective-coordinate-based HECC coprocessor than in the
affine-coordinate-based coprocessor. This is because the
explicit formulae for projective coordinates are more complex
than those for affine coordinates.

IV. Design Methodology for the HECC Coprocessor

We followed the typical hardware coprocessor design
methodology. First, we modeled the HECC coprocessor using
the VHSIC hardware description language (VHDL), and
implemented it on an FPGA chip after functional simulation
and verification. The operating frequency derived from the
FPGA Place & Route tool was confirmed by burning the
design data onto an actual FPGA chip. To estimate the power
consumption of the field operation units and the HECC
coprocessors, we used a switching-activity-based power
estimation technique. The power estimation technique is
described in the following section.

V. Results and Analysis

In this section, we present the implementation results and the
analysis of these results with respect to performance, hardware
complexity, and power consumption1).

1) Note that some of the results for the HECC coprocessor over affine coordinates are
presented in [12]. In that paper, we only presented the performance results for HECC
coprocessors in GF(289) over affine coordinates, which have parallel binary and binary-method-
based scalar multiplications.

ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 371

1. Performance of the HECC Coprocessors

As shown in Tables 7 and 8, we implemented 5 different
HECC coprocessors for the cases of underlying fields GF(289)
and GF(2113). The group orders for GF(289) and GF(2113) are
2178 and 2226, respectively. In Table 7, which shows the results
for our HECC coprocessors over affine coordinates, we note
that type 1 is better than types 2 and 3 in terms of the area-time
product (ATP). Furthermore, as seen in the last four rows of
Tables 7 and 8, the comb scalar multiplication method is better
than the parallel binary or binary scalar multiplication methods
[13].

We can confirm that the comb method with a 4-bit window

Table 7. Performance of HECC coprocessors over affine coordinates.

Field
size

Scalar
mult. Type

Size
(slices)

Freq.
(MHz)

Time
(ms)

ATP

Parallel
binary 1 9,950 62.90 0.436 2.530

Binary 2 7,096 50.08 0.791 3.277
GF
(289)

Binary 3 4,995 50.54 1.020 2.973
Parallel
binary 1 11,361 59.07 0.722 4.786

Binary 2 8,934 42.43 1.459 7.605
GF

(2113)
Binary 3 6,436 43.47 1.767 6.638

Comb 2 7,255 45.98 0.290 1.226GF
(289) Comb 3 5,328 55.53 0.322 1.000

Comb 2 8,998 45.83 0.458 2.407GF
(2113) Comb 3 6,753 55.49 0.482 1.898

Table 8. Performance of HECC coprocessors over projective
coordinates.

Field
size

Scalar
mult.

Type
Size

(slices)
Freq.

(MHz)
Time
(ms)

ATP

Parallel
binary 1 12,133 36.51 0.531 4.285

Binary 2 8,693 27.07 0.986 5.699
GF
(289)

Binary 3 5,605 48.10 0.684 2.549
Parallel
binary 1 15,850 31.55 0.924 9.735

Binary 2 11,251 25.74 1.568 11.728
GF

(2113)
Binary 3 7,105 42.77 1.128 5.329

Comb 2 9,454 33.50 0.282 1.772GF
(289) Comb 3 6,421 50.55 0.234 1.000

Comb 2 11,872 27.32 0.522 4.121GF
(2113) Comb 3 7,821 46.98 0.369 1.917

is faster than a simple binary scalar multiplication method. In
Tables 7 and 8, the ATP term refers to the normalized ATP. That
is, the ATP value of the type-3 HECC coprocessor over
GF(289), which is the lowest, is used to normalize the
performance of the other HECC coprocessors.

Type-1 HECC coprocessors implement the group addition
and doubling operation units separately and, therefore, allow
for faster scalar multiplication operations than the other two
types (types 2 and 3). However, the hardware complexity of
the type-1 coprocessor is higher.

Table 8 shows the implementation results for the HECC
coprocessors over projective coordinates. Contrary to the results
shown in Table 7, from the point of view of the ATP, the type-3
coprocessor exhibits better performance than the other two types
(types 1 and 2), which use parallel binary or binary scalar
multiplication methods. Furthermore, type 1 is better than type 2.
When we compare Tables 7 and 8, we observe that the operating
frequency of the projective-coordinate-based HECC
coprocessors is lower than that of the affine-coordinate-based
coprocessors. The reason for this is that the larger number of field
multiplications in the explicit formulae in the projective
coordinate case results in increased hardware complexity in the
interconnect network as compared to that in the affine case. As in
the affine case, the type-3 coprocessor with the comb method
exhibits the best performance because of its fast scalar
multiplication method and reduced hardware complexity (fast
operating frequency). Also, the type-2 coprocessor with the
binary method exhibits the worst performance.

2. Power Consumption Characteristics of the HECC
Coprocessors

In this section, we compare the power consumption
characteristics of the HECC coprocessors and their basic
components such as multiplication and inversion logic. Though
we could estimate the power consumption of the HECC
coprocessors on FPGAs by using a proper tool such as Xilinx’s
XPower Analyzer [16], we decided to estimate the power
consumption characteristics of the HECC coprocessors on the
ASIC level because power consumption estimates at the ASIC
level are known to be more accurate than those at the FPGA
level [17]. At the FPGA level, we cannot neglect the power
consumption factors introduced by pads and routing layers.
Hence, we have chosen the power estimation method at the
ASIC level to understand more accurately the power
consumption characteristics of the hardware architecture.

To estimate the power consumption, we first extracted the
forward switching activity interchange format (SAIF) file from
the VHDL code for our HECC coprocessor by using a logic-
level simulation tool. This forward SAIF annotation file

372 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

provides the input and output port information as well as
hierarchical information for the design. Second, we compiled
and simulated our HECC coprocessors using the forward-
annotation file and various test vectors as inputs. During this
step, we could obtain the most important information for logic-
level power estimation—the switching activity of the circuit.
Finally, we simulated and estimated the power consumption
with our design after synthesis with this back-annotation
information.

To make our estimation of the power consumption as
accurate as possible, we used an accurately modeled 0.25-µm
CMOS technology file provided by a chip fabrication service
provider. Furthermore, we verified that this power estimation
technique affords the estimated results within 10% to 20% of
the power analysis results obtained with SPICE.

In our design, we focused on applying architectural level
techniques for power consumption reduction to the primitive
operation logic of the HECC coprocessor (multiplier and
inversion logic). We also estimated and analyzed the power
characteristics of different architectures for HECC coprocessors.
Our approach was motivated by the fact that several researchers
have demonstrated that architectural level design decisions can
have a significant impact on the power consumption of general
circuits [18]. In general, the power consumption of a certain
circuit is proportional to its operating frequency, as shown in the
following equation: PD=CV2f, where PD is the level of dynamic
power consumption, C is the capacitance of the circuit, V is the
applied voltage, and f is the operating frequency. Hence, in this
work, we have used the normalized power (the power
consumption on a per-MHz basis) as a metric to understand the
characteristics of the multiplication unit. The normalized power
consumption values are shown in Table 9.

The 4-bit digit sized (D = 4) multiplier consumes the least

Table 9. Power consumption of the multiplication block (2.5 V,
0.25-µm CMOS process, normalized power (mW/MHz),
and normalized energy (mJ/MHz)).

Digit size 1 4 8 16 32 45 89
Normalized

power in
GF(289)

0.134 0.042 0.064 0.129 0.322 1.21 1.087

Normalized
energy 11.909 0.962 0.766 0.772 0.966 2.420 1.087

Digit size 1 4 8 16 32 57 113
Normalized

power in
GF(2113)

0.17 0.032 0.068 0.173 0.454 2.302 1.976

Normalized
energy 19.211 0.917 1.026 1.383 1.816 4.604 1.976

Fig. 4. Power consumption of the multiplication units of the
HECC coprocessors versus the digit size (2.5 V, 0.25-µm
CMOS process).

GF (289)

14 8 16 32 45 57 89 113
0

0.50

1.00

1.50

2.00

2.50

0.25

0.75

1.25

1.75

2.25

0.134

0.042
0.064

0.129

0.322

1.21
1.087

0.17

0.032
0.068 0.173

0.454

2.302

1.976

GF (2113)

Digit size (bitz)

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

(m
W

/M
H

z)

power, and the 8- and 16-bit digit sized multipliers consume
less power than the bit-serial (D = 1) multiplier. From the point
of view of energy consumption, which is the time integral of
the power consumption, the bit-serial multiplier is worse than
even the largest multipliers (fully parallel multipliers), such as
89- and 113-bit multipliers. This is because most of the power
consumption results from the switching activity of the circuit,
and the bit-serial multiplier requires shift and add operations
during every clock cycle. The digit-serial multiplier multiplies
the multiplicand with the digit size D in parallel, as shown in
the following equations [14].

Assume a digit size of D bits. Let d denote the total number
of digits with / .d m D= ⎡ ⎤⎢ ⎥ Let 1

0

m j
jj

A a α−

=
= ∑ and

1

0
,d Di

ii
B Bα−

=
= ∑ where

1

0

1 (1)

0

, 0 2

, 1

D j
Di jj

i m D d j
Di jj

b i d
B

b i d

α

α

−

+=

− − −

+=

⎧ ≤ ≤ −⎪= ⎨
= −⎪⎩

∑
∑

.

Then, 1

0
mod () mod ()d Di

ii
C A B p x A B p xα−

=
= = ∑i i .

From this equation, we can see that the total number of clock
cycles required to perform the multiplication is d, and D bits
are computed in parallel. The energy consumption levels of the
8-bit multiplier over GF(289) and that of the 4-bit multiplier
over GF(2113) are the lowest.

Based on this fact, we observe that the digit-serial multiplier
is efficient in terms of its energy consumption. Moreover, we
can select the digit size based on other factors such as the

ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 373

Table 10. Power consumption of the inversion block (2.5 V, 0.25-µm
CMOS process, normalized power (mW/MHz), and
normalized energy (mJ/MHz)).

Unrolling level 1 2 3 4
Normalized power in

GF(289) 0.055 0.052 0.064 0.129

Clock cycles 178 120 103 97

Normalized energy 9.790 6.240 6.592 12.513

Unrolling level 1 2 3 4
Normalized Power in

GF(2113) 0.063 0.064 0.086 0.082

Clock cycles 226 152 131 123

Normalized energy 14.238 9.728 11.266 10.086

Fig. 5. Power consumption of the inversion block of the HECC
coprocessors versus the unrolling level (2.5 V, 0.25-µm
CMOS process).

1 2 3 4
0.04

0.06

0.08

0.10

0.12

0.14

0.05

0.07

0.09

0.11

0.13

0.055
0.052

0.064

0.129

0.063 0.064

0.086
0.082

GF (289)
GF (2113)

Unrolling level

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

(m
W

/M
H

z)

performance and hardware size.

Table 10 shows the power consumption characteristics of the
inversion logic. The inversion logic with unrolling level 1
consumes less power than others. However, from the
viewpoint of the energy consumption, the inversion logic with
unrolling level 1 consumes more energy than the others on
GF(2113). Therefore, the inversion logic with unrolling level 4
seems to be the best choice for GF(2113), and level 3 seems to
be the best for GF(289).

After considering the power consumption characteristics of
the multipliers, we have chosen the 16-bit multiplier over
GF(289) and the 32-bit multiplier over GF(2113) for the HECC
coprocessors. In addition, for inversion, we have chosen the
logic with unrolling level 4. Table 11 shows the power
consumption characteristics of the HECC coprocessors in

Table 11. Power consumption of the HECC coprocessors (2.5 V,
0.25-µm CMOS process).

Field
size

Types*
Dynamic

power @ 50
MHz (mW)

Leakage
power
(uW)

Normalized
power

(mW/MHz)

Clock
cycles

Normalized
energy

(J/MHz)
A1 37.56 6.8 0.751 27,410 20.5

A2 27.25 4.99 0.545 39,630 21.6
GF
(289)

A3 19.80 5.55 0.396 51,550 20.4

A1 43.33 9.55 0.867 42,640 36.9

A2 31.52 6.31 0.631 61,890 39.0
GF

(2113)
A3 24.23 7.01 0.485 76,830 37.2

P1 120.73 10.1 2.415 19,390 46.8

P2 92.84 6.59 1.857 26,690 49.5
GF
(289)

P3 98.50 24.36 1.970 32,900 64.8

P1 159.75 13.10 3.195 29,140 93.1

P2 116.58 8.37 2.332 40,350 94.0
GF

(2113)
P3 117.59 30.78 2.352 48,240 113.4

 * A: Affine coordinate type (A1 denotes affine coordinate type 1),
P: Projective coordinate type

affine and projective coordinates. The type-1 affine- and
projective-coordinate-based HECC coprocessors with a field
size of 89 bits consume 0.751 mW and 2.415 mW of
normalized power, respectively. We note that the affine-
coordinate-based HECC coprocessors consume less power
than the projective-coordinate-based HECC coprocessors
because the latter have the same number of multiplication and
inversion logic units as affine coprocessors. Also, they require a
larger interconnection network than the affine cases (see Table
6). As a result, they consume more energy than affine-
coordinate-based coprocessors despite their faster operations.

Comparing the three types of HECC coprocessors for the
affine case, we find that type 1 (A1) is faster than the others
(A2 and A3) but consumes more power. This is because the A2
and A3 coprocessors share their underlying field arithmetic
logic units to reduce both the power consumption and
hardware complexity.

The A3 coprocessor consumes less power than the A2
coprocessor. This is because the A3 coprocessor uses memory
for its storage elements and a bus for its interconnection
network. The use of a bus makes its operation slower but
reduces its power consumption. It is interesting to note that the
A2 coprocessor consumes more energy than the A1 and A3
coprocessors. The energy consumption factor is due to its
slower operation and the high power consumption
characteristics of its interconnection network.

Unlike the affine-coordinate-based HECC coprocessors, the
P2 (the type-2 projective-coordinate-based HECC) coprocessor

374 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

consumes less power than the P1 and P3 ones. In the case of
projective-coordinate-based HECC coprocessors, the number
of bus transaction operations is greater than that in the cases of
the affine-coordinate-based coprocessors. Therefore, the P2
coprocessor consumes less power than the P3 coprocessor
despite the high complexity of its interconnection network. In
performance metrics, it is natural that the P1 coprocessor is
faster than the others because of its parallel execution of scalar
multiplication. In energy consumption, the P1 coprocessor is
the least demanding. The P1 coprocessor’s faster completion of
scalar multiplication operations makes it consume less energy
than the others. Thus, from these data and [19], the power
consumption of the HECC coprocessors is less than 3.0
mW/MHz except in the case of P1 on GF(2113). Hence, we can
say that our HECC coprocessors can be used in resource-
constrained environments such as in smart cards2).

3. Performance Comparisons

In this section, we compare our HECC coprocessors with
those of previous works and ECC coprocessors. We have
chosen to use the same methodology and the same FPGA chip
model as in previous work to allow a fair comparison. The
performance comparison results are shown in Table 12. To
ensure a fair comparison, we have also omitted our results for
comb-method-based coprocessors despite their higher
performance compared with those using the binary method.
The HECC and ECC crypto-coprocessors are compared use a
binary or parallel binary method for their scalar multiplications,
except for Elias’ crypto-coprocessor.

Analyzing the ATP values for our designs, we observe that
the type-3 HECC coprocessor over projective coordinates is
the best; therefore, this value is normalized to 1. The second
most efficient coprocessor in terms of the ATP is the type-1
coprocessor over affine coordinates, which is the best-
performing (low TTC value) device among our coprocessors.

Our HECC coprocessors perform between 6 and 140 times
better than previously reported HECC coprocessors. In terms
of the ATP, our 226-bit type-3 coprocessor over projective
coordinates performs 6 times better than Elias’ device with a
226-bit key. Comparing the results for the affine- and
projective-coordinate-based coprocessors, we can state that
neither outperforms the other. This data suggests that from a
practical viewpoint, projective coordinates have both positive
and negative aspects. Our projective-coordinate-based HECC
coprocessor uses field inversion logic to convert its computed
scalar multiplication results into affine coordinates. Omitting

2) In [19], the authors state that the typical power consumption of a 13.56-MHz contactless
smart card is about 30 mW when operated at around 10 MHz (3.0 mW/MHz). This is on the
order of the power consumption of our HECC coprocessors.

Table 12. Performance comparison with ECC and HECC
coprocessors.

Type
Coord
type

Scalar
mult.

Key
size

of
slices

Freq
(MHz)

TTC
(ms)

ATP

22,000 - 10.0 57.39Cla03
[20]

Proj
Parallel
binary

166 bits
60,000 - 9.0 140.85

21,550 45.6 7.39 41.54Elias
[11]

Proj NAF 226 bits
25,271 45.3 2.03 13.38

Type 1
Parallel
binary 9,950 62.90 0.436 1.13

Type 2 Binary 7,096 50.08 0.791 1.47

Type 3 Binary

178 bits

4,995 50.54 1.020 1.33

Type 1
Parallel
binary 11,361 59.07 0.722 2.14

Type 2 Binary 8,934 42.43 1.459 3.40

Type 3

Affine

Binary

226 bits

6,436 43.47 1.767 2.97

Type 1
Parallel
binary 12,133 36.5 0.531 1.68

Type 2 Binary 8,693 27.1 0.986 2.24

Type 3 Binary

178 bits

5,605 48.1 0.684 1.00

Type 1
Parallel
binary 15,850 31.5 0.924 3.82

Type 2 Binary 11,251 25.7 1.568 4.60

Type 3

Proj

Binary

226 bits

7,105 42.8 1.128 2.09

Orlando et al. [21] 167 bits 1,501 76.7 0.210 -
ECC

Gura et al. [22] 163 bits 11,845 66.4 0.143 0.44

the inversion logic in a projective-coordinate-based
coprocessor is not practical because performing such a
conversion using software results in considerably more
overhead for a given system.

Table 12 shows that our devices are about 5 times faster than
previous hardware implementations and at least 13 times better in
terms of the ATP (when compared with Elias’ results). This higher
performance can be the result of the hardware design features,
such as loop unrolling, optimized scheduling, parallel execution
of arithmetic operations, and trade-off design of the digit-serial
multiplier. In Table 12, we can see that the ATP performance of
the ECC coprocessors is 2.2 times better than that of the HECC
coprocessors. Though HECC still requires an upgrade to
outperform ECC, HECC can be considered a candidate public-
key crypto-system for practical application environments.

VI. Conclusion

In this paper, we have implemented three different HECC
coprocessors in affine and projective coordinates and analyzed

ETRI Journal, Volume 30, Number 3, June 2008 Howon Kim et al. 375

their performance, hardware complexity, and power
consumption. Among our HECC coprocessors, the type-1
HECC coprocessor over affine coordinates with a field size of
GF(289) executes its scalar multiplication operation within
0.436 ms. This is about 5 times faster and 13 times better than
previous results in terms of the area and time products. Also,
the power consumptions of our HECC coprocessors are less
than 30 mW, which is known as the typical power
consumption value of a contactless smart card. Moreover, the
implemented HECC coprocessors are scalable because their
field operation units are scalable.

Based on computational and experimental results with
FPGA implementations, we conclude that our HECC
coprocessor achieves higher performance than those of
previous works due to

- its efficient explicit formulae;
- its high-performance inversion logic;
- the high operating frequency of the multiplier design despite

its large digit size;
- its reduced interconnect network latency achieved through

the use of a buffer allocation mechanism and an efficient
arithmetic unit design;

- its parallel execution of field and group operations;
- and its pipelined execution of field operations and data

movement between register files.

Therefore, our HECC coprocessor is suitable for high-
performance applications, such as public-key crypto-server
systems. It is also suitable for resource-constrained
environments, such as PDAs and smart cards, because of its
high performance and moderate power consumption.
Comparisons with an ECC coprocessor show that our HECC
coprocessor performs comparably.

Secure implementation of cryptographic algorithms is
another important issue in addition to the speed, area, and
power consumption. Especially in small devices such as smart
cards, it is necessary to have an implementation that is immune
to side-channel attacks, such as timing analysis and power
analysis attacks [23], [24]. While we have concentrated on
efficiency in this paper, the implementation of secure HECC
operations would be an interesting research direction. Finally,
since the publication of [12], there have been some advances in
the research on HEC algorithms, including Lange and
Stevens’s faster doubling formulas [25]. Hence, it would be
another interesting possibility to upgrade our HECC
coprocessor into one equipped with these latest algorithms.

References

[1] B. Schneier, Applied Cryptography, John Wiley & Sons, New

York, 1996.
[2] N. Koblitz, “CM-Curves with Good Cryptographic Properties,”

Advances in Cryptology-CRYPTO’91, 1992, pp. 279-287.
[3] D. Mumford, “Tata Lectures on Theta II,” Progress in

Mathematics, vol. 43, Birkauser, Boston, 1984.
[4] N. Theriault, “Index Calculus Attack for Hyperelliptic Curves of

Small Genus,” Proc. ASIACRYPT, 2003, pp. 79-92.
[5] D.G. Cantor, “Computing in the Jacobian of a Hyperelliptic

Curve,” Mathematics of Computation, vol. 48, no. 177, 1987, pp.
95-101.

[6] P. Gaudry and R. Harley, “Counting Points on Hyperelliptic
Curves over Finite Fields,” Proc. ANTS IV, 2000, pp. 297-312.

[7] T. Wollinger, Software and Hardware Implementation of
Hyperelliptic Curve Cryptosystems, PhD. thesis, Ruhr-
Universitaet Bochum, Germany, 2004.

[8] T. Lange, “Formulae for Arithmetic on Genus 2 Hyperelliptic
Curves,” Applicable Algebra in Engineering Communication and
Computing (AAECC), vol. 15, no. 5, 2005, pp. 295-328.

[9] J. Pelzl, T. Wollinger, and C. Paar. “High Performance Arithmetic
for Special Hyperelliptic Curve Cryptosystems of Genus Two,”
Proc. ITCC 2004, 2004, pp. 513-517.

[10] N. Boston, T. Clancy, Y. Liow, and J. Webster, “Genus Two
Hyperelliptic Curve Coprocessor,” Proc. CHES 2002, 2003, pp.
383-397.

[11] G. Elias, A. Miri, and T.H. Yeap, “High-Performance, FPGA-
Based Hyperelliptic Curve Cryptosystems,” Proc. 22nd Biennial
Symposium on Communications, 2004.

[12] H.W. Kim, T. Wollinger, Y.J. Choi, K. Chung, and C. Paar,
“Hyperelliptic Curve Coprocessors on a FPGA,” Proc. WISA,
2004, pp. 360-374.

[13] P.C. van Oorschot, A.J. Menezes, and S.A. Vanstone, Handbook
of Applied Cryptography, CRC Press, Inc., Boca Raton, FL, 1996.

[14] L. Song and K.K. Parhi, “Low-Energy Digit-Serial/Parallel Finite
Field Multipliers,” Journal of VLSI Signal Processing Systems,
vol. 19, no. 2, 1998, pp. 149-166.

[15] C.H. Kim, C.P. Hong, and S. Kwon, “A Digit Serial Multiplier for
Finite Field GF(2m),” IEEE Transactions on VLSI, vol. 13, no. 4,
2005, pp. 476-483.

[16] http://www.xilinx.com, Xilinx XPower Analyzer.
[17] S. Hassoun and T. Sasao, Logic Synthesis and Verification,

Kluwer International, Norwell, MA, 2001.
[18] S. Sheng, A. Chandrakasan, and R.W. Brodersen, “A Portable

Multimedia Terminal,” IEEE Communication Magazine, vol. 30,
no. 12, 1992, pp. 64-75.

[19] C.P. Yu, C.S. Choy, H. Min, C.F. Chan, and K.P. Pun, “A Low
Power Asynchronous Java Processor for Contactless Smart
Card,” Proc. ASP-DAC, 2004, pp. 553-554.

[20] T. Clancy, “FPGA-based Hyperelliptic Curve Cryptosystems,”
invited paper presented at AMS Central Section Meeting, April
2003.

376 Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008

[21] G. Orlando and C. Paar, “A High-Performance Reconfigurable
Elliptic Curve Processor for GF(2m),” CHES 2000, 2000, pp. 41-
56.

[22] H. Eberle, N. Gura, and S. Chang-Shantz, “A Cryptographic
Processor for Arbitrary Elliptic Curves over GF(2m),” ASAP 2003,
2003, pp. 444-454.

[23] C. Kocher, “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems,” Proc. Advances in
Cryptology-CRYPTO, 1996, pp. 104-113.

[24] C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
Proc. Advances in Cryptology-CRYPTO, 1999, pp. 388-397.

[25] T. Lange and M. Stevens, “Efficient Doubling on Genus Two
Curves over Binary Fields,” Selected Areas in Cryptography,
LNCS 3357, 2004, pp.170-181.

Howon Kim received the BSEE degree from
Kyungpook National University, Daegu, Rep.
of Korea, in 1993, and the MS and PhD degrees
in electronic and electrical engineering from
Pohang University of Science and Technology
(POSTECH), Pohang, Rep. of Korea, in 1995
and 1999, respectively. From July 2003 to June

2004, he studied with the COSY group at the Ruhr-University of
Bochum, Germany. He was a senior member of technical staff at the
Electronics and Telecommunications Research Institute (ETRI),
Daejeon, Rep. of Korea. He is currently working as an assistant
professor with the Department of Computer Engineering of Pusan
National University, Busan, Rep. of Korea. His research interests
include RFID technology, sensor networks, information security, and
computer architecture. Currently, his main research focus is on mobile
RFID technology and sensor networks, public key cryptosystems and
their security issues. He is a member of the IEEE, IEEE Computer
Society, and IACR.

Thomas Wollinger obtained his BS degree
from the University of Dieburg in 1998. From
1999 to 2001, he had the opportunity with the
support of a Fulbright grant and a corporate
graduate fellowship to obtain his Master of
Science at the WPI with emphasis on
cryptology in Worcester (USA). In June 2003,

he obtained his PhD with honors from the University of Bochum. His
research interests are in improvements of hyperelliptic curve
cryptosystems, fast software and hardware implementations of
cryptographic algorithms, all aspects of embedded security, and side-
channel attacks.

Doo-Ho Choi received his BS degree in
mathematics from Sungkyunkwan University,
Seoul, Rep. of Korea in 1994, and the MS and
PhD degrees in mathematics from Korea
Advanced Institute of Science and Technology
(KAIST), Daejeon, Rep. of Korea in 1996 and
2002, respectively. He has been a senior

researcher in Electronics and Telecommunications Research Institute
(ETRI) since Jan. 2002. His research interests include security
technologies of RFID and sensor networks. He is an editor of the ITU-
T X.nidsec-1.

Dong-Guk Han received his BS and MS
degrees in mathematics from Korea University
in 1999 and 2002, respectively. He received his
PhD in information security engineering from
Korea University in 2005. He was a post
doctoral researcher with the Future University-
Hakodate, Japan. After finishing the doctor

course, he was an exchange student with the Department of Computer
Science and Communication Engineering of Kyushu University from
April 2004 to March 2005. He has been a senior researcher with ETRI
since June 2006. He is a member of KIISC, IEEK, and IACR.

Mun-Kyu Lee received the BS and MS
degrees in computer engineering from Seoul
National University in 1996 and 1998,
respectively, and the PhD degree in electrical
engineering and computer science from Seoul
National University in 2003. From 2003 to
2005, he was a senior engineer at ETRI. He is

currently with the School of Computer Science and Engineering of
Inha University, Rep. of Korea. His research interests are in the areas of
information security and theory of computation.

	I. Introduction
	II. Background of HECC
	III. Architecture of the HECC Coprocessor
	IV. Design Methodology for the HECC Coprocessor
	V. Results and Analysis
	VI. Conclusion
	References

