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This paper presents the design and implementation of a 
hyperelliptic curve cryptography (HECC) coprocessor 
over affine and projective coordinates, along with 
measurements of its performance, hardware complexity, 
and power consumption. We applied several design 
techniques, including parallelism, pipelining, and loop 
unrolling, in designing field arithmetic units, group 
operation units, and scalar multiplication units to improve 
the performance and power consumption.  

Our affine and projective coordinate-based HECC 
processors execute in 0.436 ms and 0.531 ms, respectively, 
based on the underlying field GF(289). These results are 
about five times faster than those for previous hardware 
implementations and at least 13 times better in terms of 
area-time products. Further results suggest that neither 
case is superior to the other when considering the 
hardware complexity and performance. The 
characteristics of our proposed HECC coprocessor show 
that it is applicable to high-speed network applications as 
well as resource-constrained environments, such as PDAs, 
smart cards, and so on. 
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I. Introduction 

With the continuous evolution of information technology, 
security technology will become increasingly important for 
protecting critical information and enhancing the privacy of 
Internet users. An increasing number of applications are being 
connected wirelessly; therefore, they require protection due to 
the vulnerability of the wireless link. The core techniques used 
to maintain security in information technology are 
cryptographic primitives such as private-key and public-key 
crypto-algorithms. Private-key algorithms such as AES and 
triple-DES are usually used to encrypt data, whereas public-
key algorithms such as RSA and elliptic curve cryptography 
(ECC) are used for secure key distribution and digital 
signatures [1].  

Hyperelliptic curve cryptography (HECC), a public-key 
crypto-algorithm, has been studied with increasing interest 
during recent years, since it was introduced by Koblitz in 1988 
[2]. Unlike the well-known RSA crypto-algorithm, HECC is 
based on the hardness of solving the discrete logarithm 
problem (DLP). The main advantages over RSA are that 
HECC requires shorter key and operand lengths than RSA. 
Hence, HECC is a promising cryptographic primitive for fast 
implementation and for resource-constrained environments. In 
this paper, we present a fast HECC coprocessor in affine and 
projective coordinates and show that it can be a candidate for 
resource-constrained and high-speed network applications. 

The remainder of this paper is organized as follows. Section 
II provides a brief overview of the background of hyperelliptic 
curve cryptosystems and summarizes the previous works 
involving field programmable gate array (FPGA) 
implementations of HECC coprocessors. Section III presents 
the proposed HECC coprocessor architecture, and section IV, 
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outlines our methodology and the different design options.  
Results and analysis are provided in section V. Finally, we 
make some concluding remarks. 

II. Background of HECC  

In this section, we present an introduction to the theory of 
HECC over finite fields of arbitrary characteristics, restricting 
our attention to material that has cryptographic relevance.  

1. Basics of HECC  

Hyperelliptic curves are a special class of algebraic curves 
and a generalization of elliptic curves [2]. A hyperelliptic curve 
of genus g = 1 is an elliptic curve. A hyperelliptic curve C of 

1g ≥ over F is the set of solutions ( , )x y F F∈ × to the 
equation 2: ( ) ( ),C y h x y f x+ =  where  ( ), ( ) [ ]h x f x F x∈  
w i t h  deg { ( )}x h x g≤ a n d  f ( x )  i s  m o n i c  w i t h 
deg { ( )} 2 1.x f x g= + There are no solutions ( , )x y F F∈ ×  
that simultaneously satisfy the equation y2+h(x)y=f(x) and the 
partial derivative equations 2y+h(x)=0 and ( ) ( ) 0.h x y f x′ ′− =  
A divisor of C is a formal sum of the points P over C, 
expressed  as , ,

i
i i iP C

D m P mP m Z∞∈
= − ∈∑ where the  

degree of D, im∑ is less than or equal to g, and P∞  is a  
point at infinity.  

The Jacobian Jac(C) of C is an Abelian group related to C. 
Each element of Jac(C) can be represented by a pair of 
polynomials div(u(x), v(x)) using Mumford’s representation. 
Here, u is a monic polynomial of degree at most g, and we 
have deg(v)<deg(u). Thus, we can easily handle Jac(C) on 
software and hardware applications [3]. If the base field of the 
curve is a finite field with cardinality q, then the Jacobian of the 
curve is a finite Abelian group of order approximately qg.  

The following Hasse-Weil bound provides an interval for 
this order:  

2 2( 1) ( ) ( ) ( 1)g g
qq Jac C F q⎡ ⎤ ⎢ ⎥− ≤ ≤ +⎢ ⎥ ⎣ ⎦ . 

The genus of a hyperelliptic curve should not be greater than 
three, because of possible attacks [4]. Furthermore, it is widely 
accepted that the group order for HECC should be at least 
≈2160 for practical applications. Therefore, in the case of a 
genus-2 hyperelliptic curve, an 80-bit field size can be 
considered secure.  

Because ECC is a special case of HECC (genus g = 1), the 
required field size for this case is 160 bits. Therefore, to 
implement ECC using hardware logic would require 160-bit 
registers, digital logic gates, and so on. However, the 
underlying hardware logic units for genus-2 hyperelliptic 
curves, particularly the field operation logic units, are smaller 

than those for ECC. This is one reason why there is currently a 
great deal of research on HECC.  

2. HECC over Affine and Projective Coordinates 

Cantor proposed an algorithm to add and double the divisors 
in Mumford’s representation [5]. This algorithm requires two 
major steps. The first step involves finding a semi-reduced 
divisor ( ( ) , ( ) )D div u x v x′ ′ ′= such that 1 2 1~ ( ( ),D D D div u x′ + =  

1 2 2( )) ( ( ), ( ))v x div u x v x+  in the group Jac(C). The second 
step involves reducing the semi-reduced divisor to an 
equivalent divisor, D=div(u(x), v(x)). This algorithm is known 
to be time consuming because it requires polynomial arithmetic. 
However, Harley noticed that the number of operations can be 
reduced by distinguishing among the possible cases based on 
the properties of the input divisors. He described an efficient 
algorithm using various techniques, such as Karatsuba 
multiplication, CRT, and Newton iteration methods. Harley’s 
algorithm reduces the overall complexity of the group 
operations [6]. We refer to this algorithm as explicit formulae.  

Our HECC coprocessor targets genus-2 curves using  
 

Table 1. Inversion-free explicit formulae for adding a divisor on an 
HECC coprocessor of genus 2 over GF(2n). 
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Table 2. Inversion-free explicit formulae for doubling a divisor on an
HECC coprocessor of genus 2 over GF(2n). 

Input 5

1 0 1 0 1 0
[ , , , , ]; ;  and U U V V Z h x f x f x f= = + +  

Output 1 0 1 0 1 0 1 0[ , , , , ] 2[ , , , , ]U U V V Z U U V V Z′ ′ ′ ′ ′ =  

Algorithm 

2 2
1 1 1 3 1

2
2 0

0 1 1 1 0

4 0 3 5 1 3 3 0 1 4 1 5
1 3 0 4

(cost: 1M+3S)

;
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;
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= = = + + + + +
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compute 
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underlying fields of characteristic two. For the remainder of 
this paper, we will only consider the group operations of genus-
2 hyperelliptic curves (For further information, see [7] and [8].). 
We have used the explicit formulae for affine coordinates that 
were introduced in [9]. The explicit formulae for projective 
coordinates are shown in Tables 1 and 2. The affine coordinates 
require 1 inversion and 9 multiplications for group doubling 
and 1 inversion and 21 multiplications for group addition. For 
the case of projective coordinates, 45 and 31 multiplications are 
required for group addition and doubling, respectively. In 
projective coordinates, the inversion operation is not necessary 
for the group operations. However, if the output of a scalar 
multiplication is required in affine representation, we need one 
inversion and a few extra multiplications for the conversion to 
that coordinate system.  

In projective coordinates based on the Mumford representation 
[3], we can define the quintuple [U1, U0, V1, V0, Z] such that  

2 2
1 0 1 0 1 0 1 0( ) ( ), ( ) ( ) , .x U Z x U Z V Z x V Z x u x u v x v⎡ ⎤ ⎡ ⎤+ + + = + + +⎣ ⎦ ⎣ ⎦  

Table 1 shows the explicit formulae for the case of projective 
coordinates with the explicit formulae optimized for the case of 
h2=h0=0. In this case, we have optimized the explicit formulae 
presented in [8] with the assumptions of h=x and f=x5+f1x+f0, 
where 0 1, (2 )nf f GF∈ , and f0+f1 is not equal to 0. This 
assumption has also been applied to the case of affine 
coordinates in [9]. 

The cost of each stage of the explicit formulae is shown in 

Tables 1 and 2. Since the squaring operation in polynomial   
arithmetic can be implemented as rewired hardware, we can 
avoid the cost of squaring. After the completion of several 
stages of the explicit formulae, which consist of 45 
multiplications and 4 squaring operations, the divisor addition 

1 0 1 0[ , , , , ]U U V V Z′ ′ ′ ′ ′  can be obtained. 
Table 2 shows the divisor doubling equation. The result of 

doubling 1 0 1 02[ , , , , ]U U V V Z  can be obtained after 31 
multiplications and 7 squaring operations. As in the case of the 
addition operation, this equation is derived from [8] with the 
condition that h=x and f=x5+f1x+f0. There are 14 fewer 
multiplications than with the divisor sum operation. 

3. Previous Works on HECC Coprocessors 

This subsection surveys the major preceding works on HECC 
coprocessor design. The first HECC coprocessor implemented 
on an FPGA was introduced in [10] It targeted a genus-2 HECC 
over GF(2113). The scalar multiplication latency of this design is 
about 20 ms and the group operation is based on the Cantor 
algorithm. The first result of an HECC coprocessor using the 
explicit formulae was presented in [11]. This coprocessor is 
based on projective coordinates, and the latency of the divisor 
multiplication is approximately 2.03 ms. The most recent result 
based on affine coordinates was presented in [12]. The authors 
show that an HECC coprocessor can be used not only for high-
performance applications but also for resource-restricted 
applications because of its high performance and low hardware 
requirements. The main difference between the work in [12] and 
our study is that our study is targeted for projective coordinates 
(in order to reduce the necessity for inversion operations) and 
that the circuit presented in [12] is designed for low power 
consumption. 

III. Architecture of the HECC Coprocessor  

The HECC coprocessor was implemented at the level of scalar 
multiplication and verified on an FPGA. The processor 
architecture includes the main control unit, arithmetic unit, and 
register file. The main control unit controls the scalar 
multiplication algorithm, arithmetic unit, and register file. 
Figure 1 shows the architecture of the HECC coprocessor. The 
arithmetic unit comprises an underlying field arithmetic unit 
and a group operation unit. The register file is used for storing 
the input/output divisor values and temporary data used in the 
HECC computation. Our HECC coprocessors were 
implemented on specific fields such as GF(289) and GF(2113), 
and their arithmetic units were optimized with the minimal  
polynomials, x89 + x38 + 1 and x113 + x9 + 1, respectively. 
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Fig. 1. Block diagram of the HECC coprocessor architecture. 
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The main control unit is responsible for controlling the scalar 
multiplication portion of the HECC coprocessor. We have 
implemented three scalar multiplication algorithms, including 
parallel binary, binary, and comb methods [12], [10], [13]. The 
arithmetic unit in the HECC coprocessor includes group 
operation units, such as group doubling and group addition. 
These are based on the explicit formulae [8], [12]. The group 
arithmetic units are responsible for field operations, such as 
field addition, squaring, multiplication, and inversion over a 
binary field. Since the HECC coprocessor is realized over a 
characteristic two field, the field addition operation is realized 
with modular two operations (that is, an exclusive-OR 
operation). Field squaring is realized with simple expansion 
and reduction based on an underlying minimal polynomial. 
The field multiplication and inversion operations are more 
complex, and we have designed these two field operation units 
to be fast, power efficient, and scalable.  

1. Field Inversion  

The field inversion unit is implemented with a modified 
almost inverse algorithm (MAIA), which is modified by 
applying a loop unrolling technique. By this technique, the 
MAIA with unrolling level 4 can complete its four internal 
iteration loops in just a single loop (see [12]). We have also 
implemented the extended Euclidean algorithm (EEA) on 
hardware by using the loop unrolling technique. As shown in 
Table 3, the operating frequency of the MAIA algorithm is 
8.5% and 87.6% faster than that of the EEA algorithm with 
unrolling levels 1 and 4, respectively. Moreover, the hardware 
complexity of the MAIA algorithm is less than that of the EEA 
algorithm; hence, we have chosen the MAIA algorithm for the 
inversion operation of the HECC coprocessor.  

Table 3. Features of the EEA and MAIA algorithms (Target 
platform: Xilinx XC2C1000bg575-6). 

Field Algorithm
Unrolling 

level # of LUTs 
Frequency 

(MHz) 
1 1,754 89.2 

EEA 
4 4,161 51.8 

1 1,421 96.8 
GF(2233) 

MAIA 
4 3,886 97.2 

Table 4. Features of the inversion unit of the HECC coprocessors.

Types 
Field 
size 

Unrolling 
level # of slices 

Frequency 
(MHz) 

Clock 
cycles

TTC* 
(µs)

1 303 116.4 178 1.53

2 547 65.0 120 1.85

3 679 100.0 103 1.03
GF 
(289)

4 733 97.6 97 0.99

1 387 95.1 226 2.38

2 481 75.3 152 2.02

3 856 82.9 131 1.58

MAIA 
with loop
unrolling

GF 
(2113)

4 954 82.1 123 1.50

 * TTC: time to completion 

  The loop unrolling technique has two major positive effects 
on the inversion unit: high performance and low power 
consumption. The detailed algorithm may be found in [12]. 
Table 4 shows the characteristics of an inversion unit targeted 
for implementation on an FPGA. As the unrolling level 
increases, the clock cycles required to complete the field 
inversion operation decrease while maintaining a reasonable 
operating frequency. For example, when moving from 
unrolling level 1 to level 4 in the case of GF(289), the clock 
cycles drop from 178 to 79 cycles; however, the operating 
frequency is reduced by only 19 MHz from 116 MHz to 97 
MHz. Therefore, the latency of the inversion logic is reduced 
as the unrolling level increases at the cost of hardware 
complexity.  

In Fig. 2, we have re-drawn the latency and maximal 
operating frequency characteristics of the inversion unit based 
on the data in Table 4. The TTC of the inversion unit over 
GF(2113) decreases as the unrolling level increases. However, 
for the case of GF(289), the TTC of the inversion unit at 
unrolling level 2 is worse than that at unrolling level 1. If we 
unroll the inversion algorithm, then the number of clock cycles 
required to perform its operation certainly decreases. However, 
the latency of the inversion unit increases due to the data-path 
of the inversion unit, for which each cycle of operation becomes 
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Fig. 2. Latency and operating frequency of the inversion units of 
the HECC coprocessors versus the unrolling level. 
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longer. In the case of inversion logic with unrolling level 2 over 
GF(289), increasing datapath delay has a much greater influence 
than the shortening of clock cycles. Thus, the overall 
performance of an inversion unit in which 2 loops are unrolled is 
worse than that in which loop unrolling is not applied. Based on 
these results, we can apply the loop unrolling technique to 
HECC coprocessor design in order to meet the desired trade-offs 
between performance and hardware complexity. 

2. Field Multiplication 

For field multiplication, we used the digit-serial multiplier 
introduced in [14] and [15]. This kind of multiplier allows 
trade-offs among the speed, area, and power consumption. 
Table 5 shows the implementation results for the least 
significant digit (LSD)-first multiplier. As seen in this table, the 
TTC of the multiplier decreases as the digit size increases; 
however, the hardware complexity (number of slices) also 
increases. We can choose the proper digit size by considering 
the target coprocessor’s requirements. That is, if the 
coprocessor requires fast execution for field multiplication 
despite the high hardware complexity, a large-digit-size 
multiplier will be chosen.  

In Fig. 3, we have re-drawn the latency plot of the 
multiplication unit based on the data in Table 5. The TTC of the 
multiplication units over the different fields decreases as the 
digit size increases. This result is straightforward and is as we 
had expected. However, when we consider the factor of the 
maximal operating frequency versus the digit size, we find that 
the case with digit sizes of 8 and 4 over GF(289) and GF(2113), 
respectively, has the highest maximal operating frequency. We 

Table 5. Features of the multiplication unit of the HECC 
coprocessors. 

Types 
Field 
size

Digit size
(bits) 

# of slices 
Frequency 

(MHz) 
Clock 
cycles

TTC
(µs)

1 145 97.5 89 0.913

4 239 106.8 23 0.215

8 414 110.1 12 0.109

16 645 87.4 6 0.069

32 1,189 71.6 3 0.042

45 1,616 63.7 2 0.031

GF
(289)

89 3,205 52.2 1 0.019

1 294 84.8 113 1.345

4 366 106.6 29 0.282

8 614 93.2 15 0.172

16 931 86.4 8 0.104

32 1,931 85.3 4 0.059

38 2,288 83.3 3 0.048

57 3,195 68.2 2 0.044

Digit-
serial 

multiplier

GF
(2113)

113 7,278 63.1 1 0.032

 

 

Fig. 3. Latency of the multiplication units of the HECC 
coprocessors versus the digit size. 
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can explain this if we only consider the datapath of the 
multiplication unit. The critical path of the multiplication unit in 
the case with digit sizes of 1 and 4 over GF(289) is not on the 
datapath but along the control logic of the multiplication unit. 
The same reason can explain why the case of a multiplication 
unit over GF(2113) with a digit size of 1 has a lower operating 
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frequency than the cases with digit sizes of 4, 8, 16, and 32.   

3. Architectural Characteristics of the HECC Coprocessor  

The proposed HECC coprocessor includes several 
architectural features for attaining high performance. First, field 
operation units, such as the field multiplier and inversion logic 
units, are designed for high performance and low power. 
Second, field addition and squaring operations are executed 
during data movement between the register file and the field 
multiplier and inversion logic units. Third, the interconnect 
network between the register file and the field operation units is 
carefully designed for low hardware complexity and low 
latency. Since the HECC explicit formulae require several tens 
of multiplication operations to complete the scalar 
multiplication, the interconnect network (which is 
implemented with multiplexers or a bus) is complex. Thus, the 
issue of register allocation and multiplier assignment is 
important for high performance and low hardware complexity. 
We described these issues in [12] for designing an affine-
coordinate-based HECC coprocessor, and the same 
methodology has been used to design the projective-
coordinate-based HECC coprocessor presented in this work.  

Table 6 shows the architectural characteristics of the HECC 
coprocessor over affine and projective coordinates. In the explicit 
formulae over affine coordinates, group doubling requires 1 field 
 

Table 6. Architectural characteristics of HECC coprocessors. 

Coord Types Logic 
Inter- 

connect 

Scalar 
mult. 

method 

Storage 
for RF 

Type 1 

Addition:  
2 mult. + 1 inv. 

Doubling:  
1 mult. + 1 inv. 

MUX 
Parallel 
binary 

(R to L) 
13 REGs

Type 2 
2 mult. + 1 inv. 

(shared) MUX 
Binary 
(L to R) 10 REGs

Affine 
coord 

Type 3 
2 mult. + 1 inv. 

(shared) MUX BUS 
Binary 
(L to R) 

Memory 
(14 entries)

Addition: 2 mult. 
Type 1 

Doubling: 1 mult. 
MUX 

Parallel 
binary 

(R to L) 
25 REGs

Type 2 2 mult. (shared) MUX 
Binary 
(L to R) 20 REGs

Proj* 
coord 

Type 3 
2 mult. + 1 inv. 

(shared) MUX BUS 
Binary 
(L to R) 

Memory 
(25 entries)

 * The core logic of the HECC coprocessor over projective coordinates does not 
include inversion logic, but we have added inversion logic as a peripheral block to
convert the projective results to affine results for the projective-coordinate-based 
HECC coprocessors. Two inversion logic units are added for the type-1 coprocessor 
and one inversion logic unit each is added for the type-2 and type-3 HECC 
coprocessors over the projective coordinates. 

inversion, 9 field multiplications, and 6 field squarings. Group 
addition requires 1 field inversion, 21 field multiplications, and 
3 field squarings [12]. Also, for the explicit formulae over 
projective coordinates, as seen in Tables 1 and 2, 31 
multiplications and 7 squarings are necessary for group doubling 
and 45 multiplications and 4 squarings are necessary for group 
addition. 

We implemented three different HECC coprocessors, which 
are referred to as types 1, 2, and 3. The type-1 HECC 
coprocessor is designed for high performance, and the type-2 
and type-3 versions are designed for lower hardware 
complexity while maintaining reasonable performance. The 
type-1 coprocessor has two independent group operation units, 
consisting of group addition and group doubling logic. It 
performs group addition and doubling in parallel. The type-2 
coprocessor has one group operation unit and shares the field 
arithmetic unit, register file, interconnect logic, and control 
logic. There are two major differences between types 2 and 3. 
Type 3 uses memory for storing data and a bus for the 
interconnect network, whereas type 2 uses registers for storing 
data and multiplexers for the interconnect network.  

As shown in Table 6, there are more registers in the 
projective-coordinate-based HECC coprocessor than in the 
affine-coordinate-based coprocessor. This is because the 
explicit formulae for projective coordinates are more complex 
than those for affine coordinates.  

IV. Design Methodology for the HECC Coprocessor 

We followed the typical hardware coprocessor design 
methodology. First, we modeled the HECC coprocessor using 
the VHSIC hardware description language (VHDL), and 
implemented it on an FPGA chip after functional simulation 
and verification. The operating frequency derived from the 
FPGA Place & Route tool was confirmed by burning the 
design data onto an actual FPGA chip. To estimate the power 
consumption of the field operation units and the HECC 
coprocessors, we used a switching-activity-based power 
estimation technique. The power estimation technique is 
described in the following section.  

V. Results and Analysis  

In this section, we present the implementation results and the 
analysis of these results with respect to performance, hardware 
complexity, and power consumption1).                                                                

1) Note that some of the results for the HECC coprocessor over affine coordinates are 
presented in [12]. In that paper, we only presented the performance results for HECC 
coprocessors in GF(289) over affine coordinates, which have parallel binary and binary-method-
based scalar multiplications. 
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1. Performance of the HECC Coprocessors 

As shown in Tables 7 and 8, we implemented 5 different 
HECC coprocessors for the cases of underlying fields GF(289) 
and GF(2113). The group orders for GF(289) and GF(2113) are 
2178 and 2226, respectively. In Table 7, which shows the results 
for our HECC coprocessors over affine coordinates, we note 
that type 1 is better than types 2 and 3 in terms of the area-time 
product (ATP). Furthermore, as seen in the last four rows of 
Tables 7 and 8, the comb scalar multiplication method is better 
than the parallel binary or binary scalar multiplication methods 
[13]. 

We can confirm that the comb method with a 4-bit window  
 

Table 7. Performance of HECC coprocessors over affine coordinates.

Field 
size 

Scalar 
mult. Type 

Size 
(slices) 

Freq. 
(MHz) 

Time
(ms) 

ATP

Parallel 
binary 1 9,950 62.90 0.436 2.530

Binary 2 7,096 50.08 0.791 3.277
GF 
(289) 

Binary 3 4,995 50.54 1.020 2.973
Parallel 
binary 1 11,361 59.07 0.722 4.786

Binary 2 8,934 42.43 1.459 7.605
GF 

(2113) 
Binary 3 6,436 43.47 1.767 6.638

Comb 2 7,255 45.98 0.290 1.226GF 
(289) Comb 3 5,328 55.53 0.322 1.000

Comb 2 8,998 45.83 0.458 2.407GF 
(2113) Comb 3 6,753 55.49 0.482 1.898

Table 8. Performance of HECC coprocessors over projective 
coordinates. 

Field 
size 

Scalar 
mult.  

Type 
Size 

(slices) 
Freq. 

(MHz) 
Time
(ms) 

ATP

Parallel 
binary 1 12,133 36.51 0.531 4.285

Binary 2 8,693 27.07 0.986 5.699
GF 
(289) 

Binary 3 5,605 48.10 0.684 2.549
Parallel 
binary 1 15,850 31.55 0.924 9.735

Binary 2 11,251 25.74 1.568 11.728
GF 

(2113) 
Binary 3 7,105 42.77 1.128 5.329

Comb 2 9,454 33.50 0.282 1.772GF 
(289) Comb 3 6,421 50.55 0.234 1.000

Comb 2 11,872 27.32 0.522 4.121GF 
(2113) Comb 3 7,821 46.98 0.369 1.917

 

is faster than a simple binary scalar multiplication method. In 
Tables 7 and 8, the ATP term refers to the normalized ATP. That 
is, the ATP value of the type-3 HECC coprocessor over 
GF(289), which is the lowest, is used to normalize the 
performance of the other HECC coprocessors.  

Type-1 HECC coprocessors implement the group addition 
and doubling operation units separately and, therefore, allow 
for faster scalar multiplication operations than the other two 
types (types 2 and 3). However, the hardware complexity of  
the type-1 coprocessor is higher. 

Table 8 shows the implementation results for the HECC 
coprocessors over projective coordinates. Contrary to the results 
shown in Table 7, from the point of view of the ATP, the type-3 
coprocessor exhibits better performance than the other two types 
(types 1 and 2), which use parallel binary or binary scalar 
multiplication methods. Furthermore, type 1 is better than type 2. 
When we compare Tables 7 and 8, we observe that the operating 
frequency of the projective-coordinate-based HECC 
coprocessors is lower than that of the affine-coordinate-based 
coprocessors. The reason for this is that the larger number of field 
multiplications in the explicit formulae in the projective 
coordinate case results in increased hardware complexity in the 
interconnect network as compared to that in the affine case. As in 
the affine case, the type-3 coprocessor with the comb method 
exhibits the best performance because of its fast scalar 
multiplication method and reduced hardware complexity (fast 
operating frequency). Also, the type-2 coprocessor with the 
binary method exhibits the worst performance.  

2. Power Consumption Characteristics of the HECC 
Coprocessors  

In this section, we compare the power consumption 
characteristics of the HECC coprocessors and their basic 
components such as multiplication and inversion logic. Though 
we could estimate the power consumption of the HECC 
coprocessors on FPGAs by using a proper tool such as Xilinx’s 
XPower Analyzer [16], we decided to estimate the power 
consumption characteristics of the HECC coprocessors on the 
ASIC level because power consumption estimates at the ASIC 
level are known to be more accurate than those at the FPGA 
level [17]. At the FPGA level, we cannot neglect the power 
consumption factors introduced by pads and routing layers. 
Hence, we have chosen the power estimation method at the 
ASIC level to understand more accurately the power 
consumption characteristics of the hardware architecture.  

To estimate the power consumption, we first extracted the 
forward switching activity interchange format (SAIF) file from 
the VHDL code for our HECC coprocessor by using a logic-
level simulation tool. This forward SAIF annotation file 
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provides the input and output port information as well as 
hierarchical information for the design. Second, we compiled 
and simulated our HECC coprocessors using the forward-
annotation file and various test vectors as inputs. During this 
step, we could obtain the most important information for logic-
level power estimation—the switching activity of the circuit. 
Finally, we simulated and estimated the power consumption 
with our design after synthesis with this back-annotation 
information.  

To make our estimation of the power consumption as 
accurate as possible, we used an accurately modeled 0.25-µm 
CMOS technology file provided by a chip fabrication service 
provider. Furthermore, we verified that this power estimation 
technique affords the estimated results within 10% to 20% of 
the power analysis results obtained with SPICE.  

In our design, we focused on applying architectural level 
techniques for power consumption reduction to the primitive 
operation logic of the HECC coprocessor (multiplier and 
inversion logic). We also estimated and analyzed the power 
characteristics of different architectures for HECC coprocessors. 
Our approach was motivated by the fact that several researchers 
have demonstrated that architectural level design decisions can 
have a significant impact on the power consumption of general 
circuits [18]. In general, the power consumption of a certain 
circuit is proportional to its operating frequency, as shown in the 
following equation: PD=CV2f,  where PD is the level of dynamic 
power consumption, C is the capacitance of the circuit, V is the 
applied voltage, and f is the operating frequency. Hence, in this 
work, we have used the normalized power (the power 
consumption on a per-MHz basis) as a metric to understand the 
characteristics of the multiplication unit. The normalized power 
consumption values are shown in Table 9.  

The 4-bit digit sized (D = 4) multiplier consumes the least 
 

Table 9. Power consumption of the multiplication block (2.5 V, 
0.25-µm CMOS process, normalized power (mW/MHz),
and normalized energy (mJ/MHz)). 

Digit size 1 4 8 16 32 45 89
Normalized 

power in 
GF(289) 

0.134 0.042 0.064 0.129 0.322 1.21 1.087

Normalized 
energy 11.909 0.962 0.766 0.772 0.966 2.420 1.087

Digit size 1 4 8 16 32 57 113
Normalized 

power in 
GF(2113) 

0.17 0.032 0.068 0.173 0.454 2.302 1.976

Normalized 
energy 19.211 0.917 1.026 1.383 1.816 4.604 1.976

 

 

Fig. 4. Power consumption of the multiplication units of the 
HECC coprocessors versus the digit size (2.5 V, 0.25-µm 
CMOS process). 
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power, and the 8- and 16-bit digit sized multipliers consume 
less power than the bit-serial (D = 1) multiplier. From the point 
of view of energy consumption, which is the time integral of 
the power consumption, the bit-serial multiplier is worse than 
even the largest multipliers (fully parallel multipliers), such as 
89- and 113-bit multipliers. This is because most of the power 
consumption results from the switching activity of the circuit, 
and the bit-serial multiplier requires shift and add operations 
during every clock cycle. The digit-serial multiplier multiplies 
the multiplicand with the digit size D in parallel, as shown in 
the following equations [14]. 

Assume a digit size of D bits. Let d denote the total number 
of digits with / .d m D= ⎡ ⎤⎢ ⎥ Let 1

0

m j
jj

A a α−

=
= ∑ and 

1

0
,d Di

ii
B Bα−

=
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1

0
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0

, 0 2
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Then, 1

0
mod ( ) mod ( )d Di

ii
C A B p x A B p xα−

=
= = ∑i i . 

From this equation, we can see that the total number of clock 
cycles required to perform the multiplication is d, and D bits 
are computed in parallel. The energy consumption levels of the 
8-bit multiplier over GF(289) and that of the 4-bit multiplier 
over GF(2113) are the lowest.  

Based on this fact, we observe that the digit-serial multiplier 
is efficient in terms of its energy consumption. Moreover, we 
can select the digit size based on other factors such as the 
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Table 10. Power consumption of the inversion block (2.5 V, 0.25-µm 
CMOS process, normalized power (mW/MHz), and 
normalized energy (mJ/MHz)). 

Unrolling level 1 2 3 4 
Normalized power in 

GF(289) 0.055 0.052 0.064 0.129 

Clock cycles 178 120 103 97 

Normalized energy 9.790 6.240 6.592 12.513

Unrolling level 1 2 3 4 
Normalized Power in 

GF(2113) 0.063 0.064 0.086 0.082 

Clock cycles 226 152 131 123 

Normalized energy 14.238 9.728 11.266 10.086

 

 

Fig. 5. Power consumption of the inversion block of the HECC
coprocessors versus the unrolling level (2.5 V, 0.25-µm
CMOS process). 
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performance and hardware size.  

Table 10 shows the power consumption characteristics of the 
inversion logic. The inversion logic with unrolling level 1 
consumes less power than others. However, from the 
viewpoint of the energy consumption, the inversion logic with 
unrolling level 1 consumes more energy than the others on 
GF(2113). Therefore, the inversion logic with unrolling level 4 
seems to be the best choice for GF(2113), and level 3 seems to 
be the best for GF(289). 

After considering the power consumption characteristics of 
the multipliers, we have chosen the 16-bit multiplier over 
GF(289) and the 32-bit multiplier over GF(2113) for the HECC 
coprocessors. In addition, for inversion, we have chosen the 
logic with unrolling level 4. Table 11 shows the power 
consumption characteristics of the HECC coprocessors in 

Table 11. Power consumption of the HECC coprocessors (2.5 V, 
0.25-µm CMOS process). 

Field
size

Types*
Dynamic

power @ 50
MHz (mW)

Leakage 
power 
(uW) 

Normalized 
power 

(mW/MHz) 

Clock 
cycles

Normalized 
energy 

(J/MHz)
A1 37.56 6.8 0.751 27,410 20.5 

A2 27.25 4.99 0.545 39,630 21.6 
GF
(289)

A3 19.80 5.55 0.396 51,550 20.4 

A1 43.33 9.55 0.867 42,640 36.9 

A2 31.52 6.31 0.631 61,890 39.0 
GF

(2113)
A3 24.23 7.01 0.485 76,830 37.2 

P1 120.73 10.1 2.415 19,390 46.8 

P2 92.84 6.59 1.857 26,690 49.5 
GF
(289)

P3 98.50 24.36 1.970 32,900 64.8 

P1 159.75 13.10 3.195 29,140 93.1 

P2 116.58 8.37 2.332 40,350 94.0 
GF

(2113)
P3 117.59 30.78 2.352 48,240 113.4 

 * A: Affine coordinate type (A1 denotes affine coordinate type 1), 
P: Projective coordinate type 

affine and projective coordinates. The type-1 affine- and 
projective-coordinate-based HECC coprocessors with a field 
size of 89 bits consume 0.751 mW and 2.415 mW of 
normalized power, respectively. We note that the affine-
coordinate-based HECC coprocessors consume less power 
than the projective-coordinate-based HECC coprocessors 
because the latter have the same number of multiplication and 
inversion logic units as affine coprocessors. Also, they require a 
larger interconnection network than the affine cases (see Table 
6). As a result, they consume more energy than affine-
coordinate-based coprocessors despite their faster operations.  

Comparing the three types of HECC coprocessors for the 
affine case, we find that type 1 (A1) is faster than the others 
(A2 and A3) but consumes more power. This is because the A2 
and A3 coprocessors share their underlying field arithmetic 
logic units to reduce both the power consumption and 
hardware complexity.  

The A3 coprocessor consumes less power than the A2 
coprocessor. This is because the A3 coprocessor uses memory 
for its storage elements and a bus for its interconnection 
network. The use of a bus makes its operation slower but 
reduces its power consumption. It is interesting to note that the 
A2 coprocessor consumes more energy than the A1 and A3 
coprocessors. The energy consumption factor is due to its 
slower operation and the high power consumption 
characteristics of its interconnection network.  

Unlike the affine-coordinate-based HECC coprocessors, the 
P2 (the type-2 projective-coordinate-based HECC) coprocessor 



374   Howon Kim et al. ETRI Journal, Volume 30, Number 3, June 2008 

consumes less power than the P1 and P3 ones. In the case of 
projective-coordinate-based HECC coprocessors, the number 
of bus transaction operations is greater than that in the cases of 
the affine-coordinate-based coprocessors. Therefore, the P2 
coprocessor consumes less power than the P3 coprocessor 
despite the high complexity of its interconnection network. In 
performance metrics, it is natural that the P1 coprocessor is 
faster than the others because of its parallel execution of scalar 
multiplication. In energy consumption, the P1 coprocessor is 
the least demanding. The P1 coprocessor’s faster completion of 
scalar multiplication operations makes it consume less energy 
than the others. Thus, from these data and [19], the power 
consumption of the HECC coprocessors is less than 3.0 
mW/MHz except in the case of P1 on GF(2113). Hence, we can 
say that our HECC coprocessors can be used in resource-
constrained environments such as in smart cards2). 

3. Performance Comparisons  

In this section, we compare our HECC coprocessors with 
those of previous works and ECC coprocessors. We have 
chosen to use the same methodology and the same FPGA chip 
model as in previous work to allow a fair comparison. The 
performance comparison results are shown in Table 12. To 
ensure a fair comparison, we have also omitted our results for 
comb-method-based coprocessors despite their higher 
performance compared with those using the binary method. 
The HECC and ECC crypto-coprocessors are compared use a 
binary or parallel binary method for their scalar multiplications, 
except for Elias’ crypto-coprocessor. 

Analyzing the ATP values for our designs, we observe that 
the type-3 HECC coprocessor over projective coordinates is 
the best; therefore, this value is normalized to 1. The second 
most efficient coprocessor in terms of the ATP is the type-1 
coprocessor over affine coordinates, which is the best-
performing (low TTC value) device among our coprocessors. 

Our HECC coprocessors perform between 6 and 140 times 
better than previously reported HECC coprocessors. In terms 
of the ATP, our 226-bit type-3 coprocessor over projective 
coordinates performs 6 times better than Elias’ device with a 
226-bit key. Comparing the results for the affine- and 
projective-coordinate-based coprocessors, we can state that 
neither outperforms the other. This data suggests that from a 
practical viewpoint, projective coordinates have both positive 
and negative aspects. Our projective-coordinate-based HECC 
coprocessor uses field inversion logic to convert its computed 
scalar multiplication results into affine coordinates. Omitting  
                                                               

2) In [19], the authors state that the typical power consumption of a 13.56-MHz contactless 
smart card is about 30 mW when operated at around 10 MHz (3.0 mW/MHz). This is on the 
order of the power consumption of our HECC coprocessors. 

Table 12. Performance comparison with ECC and HECC 
coprocessors. 

Type
Coord
type

Scalar 
mult. 

Key 
size 

# of 
slices 

Freq 
(MHz) 

TTC
(ms)

ATP

22,000 - 10.0 57.39Cla03
[20] 

Proj
Parallel
binary

166 bits 
60,000 - 9.0 140.85

21,550 45.6 7.39 41.54Elias
[11] 

Proj NAF 226 bits 
25,271 45.3 2.03 13.38

Type 1
Parallel 
binary 9,950 62.90 0.436 1.13

Type 2 Binary 7,096 50.08 0.791 1.47

Type 3 Binary

178 bits 

4,995 50.54 1.020 1.33

Type 1
Parallel 
binary 11,361 59.07 0.722 2.14

Type 2 Binary 8,934 42.43 1.459 3.40

Type 3

Affine

Binary

226 bits 

6,436 43.47 1.767 2.97

Type 1
Parallel 
binary 12,133 36.5 0.531 1.68

Type 2 Binary 8,693 27.1 0.986 2.24

Type 3 Binary

178 bits 

5,605 48.1 0.684 1.00

Type 1
Parallel 
binary 15,850 31.5 0.924 3.82

Type 2 Binary 11,251 25.7 1.568 4.60

Type 3

Proj

Binary

226 bits 

7,105 42.8 1.128 2.09

Orlando et al. [21] 167 bits 1,501 76.7 0.210 - 
ECC

Gura et al. [22] 163 bits 11,845 66.4 0.143 0.44

 

the inversion logic in a projective-coordinate-based 
coprocessor is not practical because performing such a 
conversion using software results in considerably more 
overhead for a given system.  

Table 12 shows that our devices are about 5 times faster than 
previous hardware implementations and at least 13 times better in 
terms of the ATP (when compared with Elias’ results). This higher 
performance can be the result of the hardware design features, 
such as loop unrolling, optimized scheduling, parallel execution 
of arithmetic operations, and trade-off design of the digit-serial 
multiplier. In Table 12, we can see that the ATP performance of 
the ECC coprocessors is 2.2 times better than that of the HECC 
coprocessors. Though HECC still requires an upgrade to 
outperform ECC, HECC can be considered a candidate public-
key crypto-system for practical application environments.  

VI. Conclusion 

In this paper, we have implemented three different HECC 
coprocessors in affine and projective coordinates and analyzed 
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their performance, hardware complexity, and power 
consumption. Among our HECC coprocessors, the type-1 
HECC coprocessor over affine coordinates with a field size of 
GF(289) executes its scalar multiplication operation within 
0.436 ms. This is about 5 times faster and 13 times better than 
previous results in terms of the area and time products. Also, 
the power consumptions of our HECC coprocessors are less 
than 30 mW, which is known as the typical power 
consumption value of a contactless smart card. Moreover, the 
implemented HECC coprocessors are scalable because their 
field operation units are scalable.  

Based on computational and experimental results with 
FPGA implementations, we conclude that our HECC 
coprocessor achieves higher performance than those of 
previous works due to  

- its efficient explicit formulae; 
- its high-performance inversion logic;  
- the high operating frequency of the multiplier design despite 

its large digit size; 
- its reduced interconnect network latency achieved through 

the use of a buffer allocation mechanism and an efficient 
arithmetic unit design; 

- its parallel execution of field and group operations; 
- and its pipelined execution of field operations and data 

movement between register files. 

Therefore, our HECC coprocessor is suitable for high-
performance applications, such as public-key crypto-server 
systems. It is also suitable for resource-constrained 
environments, such as PDAs and smart cards, because of its 
high performance and moderate power consumption. 
Comparisons with an ECC coprocessor show that our HECC 
coprocessor performs comparably.  

Secure implementation of cryptographic algorithms is 
another important issue in addition to the speed, area, and 
power consumption. Especially in small devices such as smart 
cards, it is necessary to have an implementation that is immune 
to side-channel attacks, such as timing analysis and power 
analysis attacks [23], [24]. While we have concentrated on 
efficiency in this paper, the implementation of secure HECC 
operations would be an interesting research direction. Finally, 
since the publication of [12], there have been some advances in 
the research on HEC algorithms, including Lange and 
Stevens’s faster doubling formulas [25]. Hence, it would be 
another interesting possibility to upgrade our HECC 
coprocessor into one equipped with these latest algorithms. 
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