
d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 9 1 – S 9 5
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www. e lsev ier . com/ loca te / d i in
High-speed search using Tarari content processor in
digital forensics
Jooyoung Lee*, Sungkyong Un, Dowon Hong

Information Security Research Division, Electronics and Telecommunications Research Institute, Gajeong-dong,

Yuseong-gu, Daejeon, Republic of Korea
Keywords:

Digital forensics

High-speed searching tool

Hardware-based approach

Forensic analysis

Text string search

Tarari content processor
* Corresponding author.
E-mail addresses: joolee@etri.re.kr (J. Lee

1742-2876/$ – see front matter ª 2008 Digita
doi:10.1016/j.diin.2008.05.006
a b s t r a c t

Recently, ‘‘Speed’’ is one of the hot issues in digital forensics. Thanks to a recent advanced

technology, today we can get bigger hard drive disks at a lower price than previously. But

unfortunately, it means for forensic investigators that they need tremendous time and ef-

fort in the sequence of process of creating forensic images, searching into them and ana-

lyzing them. In order to solve this problem, some methods have been proposed to improve

performance of forensic tools. One of them getting attention is a hardware-based ap-

proach. However, such a way is limited in the field of evidence cloning or password crack-

ing while it is rarely used in searching and analysis of the digital evidence. In this paper, we

design and implement a high-speed search engine using a Tarari content processor. Fur-

thermore, we show feasibility of our approach by comparing its performance and features

to those of a popular forensic tool currently on the market.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
1. Introduction process of creating forensic images, searching into them and
Recently, ‘‘Speed’’ is one of the hot issues in digital forensics.

Advances in HDD technologies make the price of HDD to de-

crease to its lowest level while increasing its capacity to tera-

bytes. Now a 500 GB hard drive is popular costing about $0.45/

GB and you can get 1 TB hard drive with about $ 400 manufac-

tured by major companies, such as Seagate, Samsung, Hitachi,

and so on. Recently, Hitachi Global Storage Technologies an-

nounced that they have secured technology implementing ar-

eal density of 1 Tb/in2 and have a plan to commercialize 4 TB

HDD for desktop PC by 2011 (Hitachi, 2007; eetasia). Thanks to

such a recent advanced technology, today we get bigger hard

drive disks at a lower price than previously. As a result, it

will not be long before general personal computers are equip-

ped terabytes of hard drive and most enterprise systems have

even petabytes of RAID storage.

However, this trend means for forensic investigators that

they need tremendous time and effort in the sequence of
), skun@etri.re.kr (S. Un),
l Forensic Research Work
analyzing them. Currently searching tools in digital forensics

perform searching at the speed of about 20 MB/s. In this case,

it takes for investigators 14 h to search 1 TB of data. When

considering general legal process, they do not have enough

time to investigate evidences ranging from thousands of per-

son computers to e-mail servers and financial databases of

companies. In this point, we can know that ‘‘Size’’ is a serious

matter.

In order to overcome this ‘‘Size’’ problem, some methods

have been proposed to improve speed in the sequence of

each forensic process (Beebe and Clark, 2005; Sommer, 2004).

One way in the highlight is a hardware-based approach

(Wood, 2007). It has been mainly used in the field of evidence

cloning or password cracking aiming acceleration. However,

such an approach is limited in the field above mentioned

while it is rarely used in searching and analysis of the digital

evidence. In this paper, we propose a method using hardware

to speed up searching procedure in digital forensics and
dwhong@etri.re.kr (D. Hong).
shop. Published by Elsevier Ltd. All rights reserved.

mailto:joolee@etri.re.kr
mailto:skun@etri.re.kr
mailto:dwhong@etri.re.kr
http://www.elsevier.com/locate/diin
http://www.sciencedirect.com

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 9 1 – S 9 5S92
design a high-speed search engine with a Tarari content pro-

cessor. Finally in order to discuss feasibility of our hardware-

based approach, we compare its performance and advantages

to those of a popular forensic tool on the market – EnCase.
2. Related works

Currently, there have been commercialized hardware forensic

tools. Such tools are manufactured and sold in the form of

write blockers, disk copiers, data recoverers, external storage

systems, forensic systems integrated with various forensic

took kits, and field kits such as laptops, PDA seizure toolkits

and mobile phone seizure toolkits (http://www.digitalintelli-

gence.com/forensichardware.php).

Some of the most popular tools currently on the market

and their features are listed in Table 1. HardCopy II and

Shadow 2 of Voom technology are hardware-based imaging

tools which are connected with a SATA adapter to a hard

disk and they embed a write blocker. HardCopy II makes

a copy of an ATA drive at speeds up to 5.5 GB/min (Voom tech-

nology). Tableau says that working in conjunction with PRTK

(Password Recovery Toolkit) software from AccessData, its

TACC1441 delivers accelerated password attacks for algo-

rithms of WinRar, PGP and Winzip by a factor of 6–30 times

compared to the unaccelerated processors (Tableau). Omni-

Clone and Sonix of AnyTech LLC make a clone of a SATA drive

at peek rate of 3.5 GB/min (Logicube). Besides, several kinds of

hardware tools have been developed though they aim for cre-

ating a forensic image or accelerating password recovery.

For forensic search tools, it is one of the important features

to present all the matching results without missing when an

investigator gives a query. To meet this requirement, the
Table 1 – Hardware forensic tools on the market and their mai

Forensic tool M

HardCopyII

Vo

Shadow 2

Instant Recall

TACC1441

Ta

T35e

OmniClone Sonix An
forensic searching needs more time than traditional searching

because it has to perform bitwise operations on the whole disk

in the physical level. However, it is known that there are few

products for accelerating forensic searching and analysis.

Roussev and Richard (2004) proposed a design based on dis-

tributed processing and an open protocol. Their results show

that the approach using multiple machines performs faster

than tool of FTK. But, their approach is little practical although

it introduces possibilities to use distributed processing in dig-

ital forensics.

To accelerate search time, an index-based search method is

provided by commercial forensic tools but it also takes long

time to construct an index database before performing the

search though it returns a result in a short time. Such points

make stream-based disk forensics as a hard problem (http://

www.forensicswiki.org/index.php?title¼Open_Research_Topics).

But we are assured that the hardware-based searching pre-

sented in this paper is an attractive approach to overcome

this problem.
3. Programming model

In this section , we determine a programming model to utilize

a Tarari board most effectively and design a search engine.

The Tarari board allows a user to develop applications that ex-

ploit Tarari RegEx agent which provides an arbitrary content

identification and characterization (Tarari, 2006). It enables

applications to analyze fixed or variable patterns in the

streams or volumes at speeds up to 1 Gb/s. Therefore, it is

mainly used in the field of Intrusion detection and prevention,

Anti-SPAM, Content filtering, MIME parsing, XML parsing,

Anti-virus, Real-time message routing, Protocol emulation/
n features

anufacture Feature

om technology

H/W based imaging tool with

writing protect

Second generation

instant recovery tool

bleau

Accelerating password recovery

Write blocker

yTech LLC Hard drive duplication system

http://www.digitalintelligence.com/forensichardware.php
http://www.digitalintelligence.com/forensichardware.php
http://www.forensicswiki.org/index.php%3Ftitle%3DOpen_Research_Topics
http://www.forensicswiki.org/index.php%3Ftitle%3DOpen_Research_Topics
http://www.forensicswiki.org/index.php%3Ftitle%3DOpen_Research_Topics

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 9 1 – S 9 5 S93
modeling, and so on. For all that, sophisticated design for each

application is necessary for getting best performance of the

Tarari board.

In this paper, we apply it to performing a digital forensic

search with a bitstream of evidence image as a Tarari bit-

stream and with query keywords as Tarari regular expres-

sions. The searching process summarizes initialization,

compilation and loading of a regular expression, and scan.

In the initialization step, a content processor initializes inter-

nal variables and communication parameters between an ap-

plication and Tarari RegEx agents and tunes values for

optimized performance. We’ll tune parameters enabling mul-

tiple agents in this step.

By decoupling compilation of regular expressions from

scanning, Tarari content processor allows the application to

work with very large set of regular expressions which can

take several minutes to compile while avoiding having to

compile them every time they are used. This feature is useful

for the forensic searching. For example, we can write regular

expression sets for mobile phone numbers in Korea as 01

[0–9] *– *[0–9] [0–9] [0–9] [0–9]* *– *[0–9] [0–9] [0–9] [0–9] and for

personal registration numbers as [0–9] [0–9][0–1] [0–9][0–3]

[0–9] *– *[1–4] [0–9] [0–9] [0–9] [0–9] [0–9] [0–9]. They have several

asterisks and it means that it may take more time to compile

those expression sets to binary images due to their complex-

ity. So in order to save time, we’re able to precompile those

expressions and load them to the agents before scanning.

When loading binary images to the agents, Tarari provides

two methods. One is an automatic load balancing model con-

trolled by the content processor and the other is an agent

addressing model. In the agent addressing model, it may be

expected improved performance by implementing a priority

load balancing scheme since the application can load each

agent individually with the same or different sets of

expressions.
(a) Case 1 (b) Cas
Initialize
getHWConfiguration
read in rexFile
compileAndSave
loadImageToAgent
initializeThread
for # of agent per board {

read in dataFile
scanNonBlock

}
do {

if (jobCompleted) {
if (available agent) {

 scanNonBlockToAgent
}

}
else {

read in DataFile to buf
}

} while(there is activeJob)
for total job finished {

getResults
printResults
freeJob

}
freeJobList
deinitializeThread
shutdown

Initialize
getHWConfiguration
read in rexFile
compileAndSave
loadImageToAgent
initializeThread
for # of agent per boa

read in dataFile
scanNonBlock

}
do {

if (jobCompleted)
if (available ag

 scanNonBlo
}
getResults
printResults

 freeJob
}
else {

read in DataFi
}

} while(there is active
freeJobList
deinitializeThread
Shutdown

Fig. 1 – Three different pseudo algorithms propos
After scanning process, we can get an output which is a bi-

nary file containing only the numerical values in a hexadeci-

mal format. The values are the starting pointer and end

pointer of a pattern, indicating relative addresses to the begin-

ning of an input stream. Tarari board supports a single

threaded model and a multi-threaded model for the scanning

process. It give us another room for speeding up this process

since the scan operations are overlapped with job I/O and

the Tarari agents can be kept fully utilized by spawning mul-

tiple threads.

Using Tarari board, we take several tuning factors into con-

sideration. First of all, we select a programming model consid-

ering by load balancing methods and the number of threads.

Besides, we take account of the number of agents, size of input

data to be processed per a round, a point of time to read in the

data and so on. In this paper, we design three algorithms for

high-speed searching and choose a best case through some

tests. Fig. 1 shows three pseudo algorithms we designed.

All algorithms have a similar flow. First step is to initialize

the Tarari RegEx agent and tuning parameter values. In this

step, we set the parameter to support the agent addressing

mode to control the agents directly. Next, a file which contains

keywords or regular expressions is read in and compiled into

a Tarari image. The keywords and regular expressions in the

file are what the investigators want to search for and are

obtained from users through a graphic user interface module.

The compiled image is loaded on the agents. Scanning se-

quences by Tarari agents begin with thread initialization to

obtain a thread handle that is needed by the scanning func-

tions. To prepare a document for scanning, an evidence image

is read into buffers. Scanning function submits the job to the

Tarari RegEx agent hardware, and returns a unique job ID to

be used later as a handle to reference the job and its results.

To get results, the application iteratively retrieves the docu-

ment state for each completed job, then accesses the scan
e 2 (c) Case 3

rd {

 {
ent) {
ckToAgent

le to buf

Job)

Initialize
getHWConfiguration
read in rexFile
compileAndSave
loadImageToAgent
initializeThread
for total job {

read in dataFile
scanNonBlock

}
while(!JobListCompleted) {

If (jobCompleted) {
getResults
printResults
freeJob

}
}
freeJobList
deinitializeThread
shutdown

ed for the search using Tarari RegEx agents.

Table 2 – System setup for experiment

Platform Description

CPU Intel Xeon 5149 2.33 GHz

Memory 1 GB DDR2 667 MHz ECC

Disk 500 GB 7.2K rpm SATA

Interface PCI-X slot

Pattern matching board Tarari Grand

Prix 3113

OS Linux Fedora

Core 6

Compiler gcc

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 9 1 – S 9 5S94
results by calling a completescan function with the job ID. After

that, the application releases resources consumed by the job.

The main difference among three algorithms is a point of

time to read documents into buffers and to get scanning re-

sults. In the first algorithm, an application executes file I/O

while polling if the agents finished their works. With similar-

ity to the first algorithm, the second algorithm has difference

in a postprocessing routine which gets results and prints

them. Therefore, it can omit a ‘‘for’’ statement routine since

the postprocessing routine comes into a ‘‘do-while’’ state-

ment. In the final algorithm, the application reads in all data

to buffers and submits total jobs to the agents. After that,

the application executes the postprocess when the agents

complete their jobs. In Section 4, we make a test on perfor-

mance of three algorithms and implement a search engine

with the best case. And then, we discuss feasibility of our pro-

posal by presenting a performance measurement of the

search engine.
Table 3 – Experimental measurements of three cases

Agents Case1 Case2 Case3

1 6.898 6.643 1.460

2 3.814 3.570 1.080

3 2.602 2.368 1.084

4 2.158 1.929 1.086

These are the average search time (s) for a string in 150 MB stream

data.
4. Performance measurement

The first experiment in this section is to measure the perfor-

mance of three algorithms presented in Section 3. Platform re-

quirements are listed in Table 2. In this test, we use a Tarari

3113 model on Linux Fedora Core 6.

This test measures how long it takes for each algorithm to

search a pattern stored in the evidence of 150 MB. As changing

the number of agents, we take a measure of time. In this test,

we use a Korean term “홍길동” as the pattern. The experi-

mental results are shown in Table 3 and Fig. 2. These are the

average values of 100 trials. Among three algorithms, the third

case with 4 agents has best performance, 138 MB/s and the

first algorithm with 1 agent is worst case, 22 MB/s.

When increasing the number of agents from 1 to 2, we

make improvements of 35% in the case 1. But we find that it

takes more time of 2–4 ms for the search using more than 2

agents though it has little practical meaning. In case 1 and 2,

whenever increasing the number of agent, we make improve-

ments of 80, 50, and 20%, respectively.

As a result of this test, we implement a search engine using

the case 3 algorithm with 4 agents. The search engine is inte-

grated with a graphical user interface on Windows system for

convenience in forensic investigation. When an investigator

queries a keyword, the GUI module forwards it to the search

engine on Linux over TCP/IP and then, the search engine exe-

cutes the search process and returns results to the GUI

module.

We install the GUI module on a system which has Micro-

soft Windows XP Professional Service Pack 2(SP2) OS and Intel

Core�2, 2.4 GHz, 3 GB DDR2 DRAM. Also, for comparison of

performance, EnCase Forensic Version 6 which is one of the

popular forensic tools is installed on the same system. The

second experiment is to find all occurrences of the simple

phrase “홍길동” in Korean for a single keyword, ‘‘forensics’’,

and “암호기술연구팀” in Korean for multiple keywords, and

a more complicated regular expression:

½0� 9�½0� 9�½0� 9�½0� 9�½0� 9�½0� 9� � � � ½0� 9�½0� 9�½0� 9�
½0� 9�½0� 9�½0� 9�½0� 9�
which matches all strings containing Korean resident regis-

tration number, with six digit sequences and seven digit se-

quences which have a dash (–) between them. We use a 1 GB

forensic image which is made with dd command of Linux.

The test results are shown in Table 4.

The number in the parenthesis indicates the hit number of

keywords. In case of multiple keywords and regular expres-

sion, EnCase finds fewer patterns than we do. We assume

that it is caused by the fact that EnCase could not extract texts

in a structured format by a domestic word processor, Hangul.

The structure of Hangul document is so unique that we use an

individual approach to handle Hangul document. We find all

Hangul documents in a target evidence image and use a spe-

cial filter to extract plain texts from the documents before

scanning. We achieve 100.84 MB/s for a singles keyword using

the hardware-based search engine and it is 5 times faster than

the speed of a forensic tool on the market. Especially, the

search based on Hardware has similar performance for a regu-

lar expression with the case of single keyword because it does

not require additional time to process the regular expression.

As to digital forensics, it is one of the important requisites

of the search tool to present all matched results from the

given query keyword. The bitstream search using the Tarari

board enables the investigator to find patterns in deleted files

and hidden files, for example data in an alternative data

stream in NTFS. Considering these kinds of advantages, we

assure that our proposed method is very useful in forensic

analysis of a massive volume of data.
5. Conclusions and future works

Requirement for high tech tools against high tech crimes has

been increasing steadily. In order to meet such a requirement,

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4

Case1

Case2

Case3

Fig. 2 – Performance graph of three algorithm cases. The

case 3 shows the best performance and the case 1 and 2

show similar shapes.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 9 1 – S 9 5 S95
a lot of forensic tools based on hardware have been developed

and commercialized. But unfortunately, applying this ap-

proach to the field of the forensic search and analysis is rarely

to be found. In this paper, we have proposed a forensic search-

ing method using hardware as a solution to those trends and

requirements. Additionally, as making a measurement of the

performance and comparing it to that of a commercialized fo-

rensic tool, we proved the feasibility of this approach. Our re-

sults showed that search using a Tarari board can be

performed over 5 times faster than tools currently on the mar-

ket. We had same results with even a set of regular expres-

sion. Furthermore, it is a practical approach and we have

used it as a search component of HSFS (High Speed Forensic

System) which has been developed to accelerate speed in dig-

ital forensics investigation.

However, the bitstream-based disk forensic including our

method brings about misanalysis or over-analysis since it

searches whole disks including not only data area for files,

but also system area and unallocated area. It is possible for

a general purpose search engine to increase precision ratio

while lowering recall rate but forensic investigators want all

matched results. Therefore, for forensic analysis, it would be

better to present relatively fittest information to the investiga-

tor’s intention in the front parts of the result list. It is expected

to minimize the time for the investigator to perform filtering

unnecessary data and it can contribute to improve the task ef-

ficiency. Beebe and Clark (2007) and Lee (2008) previously have

shown fundamental research results on this issue.
Table 4 – Test results for a single keyword, multiple
keywords, and a regular expression

Single
keyword

Multiple
keywords

Regular
expression

Proposed 100.84 (18) 97.03 (823) 102.58 (70)

EnCase 20.14 (18) 17.41 (711) 17.12 (0)

These show that the speed (MB/s (Hit)) of proposed method is faster

over 5 times than that of EnCase.
In order to solve this problem, we have a plan to study on

effective presentation methods and integrate them into our

search engine. But measuring the satisfaction degree of the in-

vestigators is considerably difficult since it is very subjective.

Therefore, the continuous research on an evaluation method

for effectiveness and satisfaction is also planning to be

proceeded.
r e f e r e n c e s

Beebe N, Clark J. Dealing with terabyte data sets in digital
investigations. In: IFIP international conference on digital
forensics. Advances in digital forensics; Feb 13–16, 2005.

Beebe NL, Clark JG. Digital forensic text string searching:
Improving information retrieval effectiveness by thematically
clustering search results. Digital Investigation 2007;4S:S49–54.

eetasia. HDD makers explore ways to up areal density. Available
from: http://www.eetasia.com/ART_8800470011_499486_NT_
702e0281.HTM.

Hitachi. Available from: http://www.hitachi.com/New/cnews/
071015a.html; 2007.

Lee Jooyoung. Proposal for the efficient searching and
presentation of search result in digital forensics. In:
Proceedings of workshop on digital forensics; Mar, 2008.

Logicube. Available from: http://www.logicube.com/products/hd_
duplication/omniclone10xi.asp.

Roussev V, Richard G III. Breaking the performance wall: the cases
for distributed digital forensics. In: Proceedings of the digital
forensics research workshop; 2004. p. 1–16.

Sommer P. The challenges of large computer evidence cases.
Digital Investigation 2004;1:16–7.

Tableau. Available from: http://www.tableau.com/index.
php?pageid¼products&;model¼TACC1441.

Tarari. Regular expression agent content processor API guide; 2006.
Voom technology. Available from: http://www.voomtech.com/

hc2.html.
Wood S. Computer forensics: high-tech tools for a high-tech

problem. In: Conference on IT-incident management & IT-
forensics; Sep 11–13, 2007.

Jooyoung Lee is a Senior Member of Engineering Staff in Elec-

tronics and Telecommunications Research Institute. She re-

ceived M.Sc. degree in computer science from Yonsei

University, Korea. She joined ETRI in 2000 and participated

in a secure Web Service platform development project and

an RFID security technology development project. Her re-

search interests are forensic analysis, artificial intelligence,

and data mining.

SungKyong Un is a Principal Member of Engineering Staff in

Electronics and Telecommunications Research Institute. He

holds M.Sc. degree in computer science from Pohang Institute

of Science and Technology, Korea. He joined ETRI since 1993

and participated in Satellite Communication, Operating Sys-

tem Security, Conditional Access System and Security Router

development projects.

Dowon Hong received the BS, MS, and PhD degree in mathe-

matics from Korea University in 1994, 1996, and 2000. He joined

ETRI in 2000 and has worked as a senior engineer in the Cryp-

tography Research Team. His research interests are in digital

forensics analysis, computer security and cryptography.

http://www.eetasia.com/ART_8800470011_499486_NT_702e0281.HTM
http://www.eetasia.com/ART_8800470011_499486_NT_702e0281.HTM
http://www.hitachi.com/New/cnews/071015a.html
http://www.hitachi.com/New/cnews/071015a.html
http://www.logicube.com/products/hd_duplication/omniclone10xi.asp
http://www.logicube.com/products/hd_duplication/omniclone10xi.asp
http://www.tableau.com/index.php%3Fpageid=products&;model=TACC1441
http://www.tableau.com/index.php%3Fpageid=products&;model=TACC1441
http://www.tableau.com/index.php%3Fpageid=products&;model=TACC1441
http://www.tableau.com/index.php%3Fpageid=products&;model=TACC1441
http://www.voomtech.com/hc2.html
http://www.voomtech.com/hc2.html

	High-speed search using Tarari content processor in digital forensics
	Introduction
	Related works
	Programming model
	Performance measurement
	Conclusions and future works
	References

