
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 512368, 10 pages
http://dx.doi.org/10.1155/2013/512368

Research Article
Spatial TinyDB: A Spatial Sensor Database System for
the USN Environment

Dong-Oh Kim,1 Lei Liu,2 In-Su Shin,3 Jeong-Joon Kim,3 and Ki-Joon Han3

1 Cloud Computing Research Department, Electronics and Telecommunications Research Institute, Daejeon 305-700, Republic of Korea
2Domestic Financial Department, China Banking Regulatory Commission Henan Office, 6 Cuizhu Street, High & New Technology
Industries Development Zone, Zhengzhou 450000, China

3Division of Computer Science & Engineering, Konkuk University, Seoul 143-701, Republic of Korea

Correspondence should be addressed to Jeong-Joon Kim; jjkim9@db.konkuk.ac.kr

Received 13 January 2013; Accepted 19 July 2013

Academic Editor: Lei Shu

Copyright © 2013 Dong-Oh Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the Ubiquitous Sensor Network (USN) environment, which generally uses spatial as well as aspatial sensor data, a sensor
database system to manage these data is essential. For this reason, sensor database systems such as TinyDB and Cougar are being
developed by researchers. However, as most of these systems do not support spatial data types and spatial operators for managing
spatial sensor data, they are not suitable for the USN environment. Therefore, in this paper, we design and implement Spatial
TinyDB which is a spatial sensor database system that extends TinyDB to support spatial data types and spatial operators for the
efficient management of spatial sensor data. In particular, Spatial TinyDB provides memory management and filtering functions
to reduce system overload caused by sensor data streams. Finally, we prove that Spatial TinyDB is superior by comparing its actual
performance, in terms of execution time, accuracy, and memory usage, with that of TinyDB.

1. Introduction

With the development of sensor technologies for sensing
various types of data (such as temperature, humidity, and
pressure) and with advances in wireless communication
technologies (resulting in technologies such as CDMA,WiFi,
and WiBro), there is increasing interest in, and research on,
the application of technologies related to ubiquitous sensor
networks (USNs) in areas such as ecosystem monitoring,
home automation, and car theft detection [1].

A USN is a communication network in which various
types of sensor nodes interconnected by means of wireless
communication schemes manage sensed data [2, 3]. A sensor
node consists of sensing, processing, storage, and commu-
nication modules. However, it has limited hardware and
software capacities. That is, it has limitations with regard to
its capacity to process sensed data, the space available to
store sensed data, the distance of data transmission, and the
amount of electric power available. In particular, the sensor
node consumes more power for data transmission than for
data processing.

A geosensor can obtain its location, either directly or
indirectly, via RFID readers, GPSs, CCTVs, and so forth, and
can generate various forms of related stream data [4].The use
of geosensors is increasing, particularly in the USN environ-
ment, as they are utilized in the provision of diverse services
related to u-GIS, u-LBS, u-Logistics, u-Transportation, u-
Medicine, u-Disaster Prevention, and so forth. In this sense,
geosensors are leading the ubiquitous age using both aspatial
and spatial data simultaneously. Accordingly, there is active
research into the efficient management of spatial sensor data
collected by geosensors in the USN environment [5].

Recently, various sensor database systems, including
TinyDB [6] and Cougar [7], have been developed for the
efficient management of sensor data in the USN environment
due to the fact that existing sensor database systems do not
support spatial data types and spatial operators. However,
these recently developed systems cannot efficiently manage
spatial sensor data from geosensors. In addition, SE TinyDB
[8]—a spatial extension of TinyDB—provides its own spatial
operators but cannot support the international standards
recommended by the Open Geospatial Consortium (OGC).

2 International Journal of Distributed Sensor Networks

In this paper, we design and implement Spatial TinyDB
which is a spatial sensor database system that provides var-
ious spatial data types and spatial operators for the efficient
management of spatial sensor data in the USN environment.
In particular, Spatial TinyDB extends TinyDB—an existing
sensor database system—to facilitate the efficient manage-
ment of spatial sensor data. It also conforms to the Simple
Feature Specification for SQL [9], a standard proposed by the
OGC, in extending spatial data types and spatial operators for
interoperability.

This paper is organized as follows. Following the intro-
duction given in Section 1, Section 2 analyzes related studies
on the TinyDB and SE TinyDB sensor database systems.
Section 3 describes the overall structure of Spatial TinyDB
and outlines each of the managers used in Spatial TinyDB.
Section 4 verifies the superiority of Spatial TinyDB by means
of performance evaluations. Finally, we give concluding
remarks in Section 5.

2. Related Works

In this section we analyze TinyDB (used in the implementa-
tion of Spatial TinyDB proposed in this paper) and look at SE
TinyDB—a spatial extension of TinyDB.

2.1. TinyDB. TinyDB [6, 10] is a query processing system
used in TinyOS to extract information from wireless sensor
networks. TinyOS [11]—an open source system developed at
the University of California Berkeley using nesC language—
is the most widely used representative sensor operating
system. It modularizes the system into component units
and each component is connected to other components
through function calls known as interfaces.Thus, application
developers can develop applications using components as
libraries and connect the components through interfaces.

The characteristics of TinyDB are as follows. First, it
provides a metadata catalog for describing the types of
sensors in a sensor network. Second, it supports a query
language that easily describes the data desired by users.
Third, it can form a network by itself for query processing.
Fourth, it can process multiple queries for multiple sensor
nodes simultaneously. Fifth, a TinyDB sensor network can
be extended by simply downloading a standard TinyDB code
onto a new node and resetting the node.

Query processing in TinyDB is as follows. First, an input
query from the server PC is transmitted to the network as
an optimized query. The node that receives the transmitted
query then acquires data from its neighboring nodes based
on a routing tree and executes aggregate operations within
the network. Finally, the result is returned to the server PC.

In order to enable users to extract the data desiredwithout
doing any programming, TinyDB provides a simple interface
that is similar to SQL. Table 1 shows the query statement
format supporting the SQL-like interface and a typical query
example that can be used in TinyDB.

As shown in Table 1, clauses SELECT, WHERE, GROUP
BY, and HAVING in the query statement format are similar

Table 1: Query statement format and query example.

Query statement
format

SELECT select-list ⟨FROM sensors⟩
WHERE where-clause
⟨GROUP BY gb-list⟩⟨HAVING having-list⟩
⟨TRIGGER ACTION command-name
⟨(param)⟩⟩ ⟨EPOCH DURATION⟩

Query example
SELECT AVG (temp)
FROM sensors
WHERE temp > 100

Table 2: Data types and operators.

Data types Operators
int8, int16, int32, uint8, uint16,
uint32, string

SUM, AVERAGE, MIN, MAX,
COUNT

Table 3: Spatial operators in SE TinyDB.

Operators Explanation
DISTANCE DISTANCE [ID, 𝑋, 𝑌]

INBOX INBOX [𝑋min, 𝑌min, 𝑋max, 𝑌max]

BEYONDBOUNDARY
BEYONDBOUNDARY
[𝑋min, 𝑌min, 𝑋max, 𝑌max,CMD (par)]

to those of standard SQL. TRIGGER ACTION executes trig-
gered actions such as SOUND and LED when the conditions
of the WHERE statement are satisfied. EPOCH DURATION
is used to set the time interval between epochs, inmillisecond
(ms).The example query inTable 1 gets themean temperature
of sensor nodes whose temperatures exceed 100∘C. Table 2
lists the data types and operators supported by TinyDB.

As can be deduced from Table 2, TinyDB does not
support spatial data types and spatial operators. As a result,
it has difficulty in managing spatial data efficiently.

2.2. SE TinyDB. SE TinyDB [8] was designed and developed
to process both spatial and aspatial queries in sensor nodes.
SE TinyDB extends traditional TinyDB by adding the spatial
operators DISTANCE, INBOX, and BEYONDBOUNDARY.
Table 3 lists the spatial operators used to extend TinyDB to
develop SE TinyDB.

In Table 3, the DISTANCE operator returns the coor-
dinate distance between sensor nodes, while the INBOX
operator returns the location of the sensor nodes within
a specified rectangle. The BEYONDBOUNDARY operator
returns the location of sensor nodes outside a specified
rectangle.

Table 4 gives examples of spatial queries that use the
spatial operators in SE TinyDB.

In Table 4, Example 1 returns the ID (nodeid), tempera-
ture (temp), and location coordinates (lat, lon) of those sensor
nodes less than 200 units away from a specified point (Point
(500, 500)). Example 2 returns the ID (nodeid), temperature
(temp), and location coordinates (lat, lon) of those sensor
nodes located within a specified rectangle (0, 0, 500, 500).
Finally, Example 3 returns the ID (nodeid), temperature

International Journal of Distributed Sensor Networks 3

Table 4: Examples of spatial query in SE TinyDB.

Example 1
SELECT nodeid, temp, lat, lon
FROM sensors
WHERE DISTANCE [nodeid, 500, 500] < 200

Example 2
SELECT nodeid, temp, lat, lon
FROM sensors
WHERE INBOX [0, 0, 500, 500]

Example 3
SELECT nodeid, temp, lat, lon
FROM sensors
WHERE BEYONDBOUNDARY [0, 0, 500, 500]

(temp), and location coordinates (lat, lon) of those sensor
nodes located outside a specified rectangle (0, 0, 500, 500).

The three spatial operators shown in Table 3 were
incorporated into SE TinyDB to facilitate the processing of
queries on a specific area or moving trajectory. However,
SE TinyDB does not support various spatial data types and
spatial operators related to the Simple Feature Specification
for SQL, the standard recommended by the OGC.

3. Spatial TinyDB

In this section, we explain the overall structure of Spatial
TinyDB and look at the various managers comprising it.

3.1. System Structure. The proposed Spatial TinyDB extends
TinyDB to facilitate the efficient management of spatial
sensor data inUSN environments. Figure 1 depicts the overall
structure of Spatial TinyDB.

As depicted in Figure 1, Spatial TinyDB consists of a
spatial data manager, a spatial query processing manager, a
spatial data stream manager, a spatial interface manager, and
a spatial data communication manager. In Figure 1, the light-
blue boxes signify the extended TinyDB components, while
the pink boxes signify newly added components.

The spatial data manager manages spatial data types in
conformance with the OGC standards and converts spatial
attribute information into spatial schema. The spatial query
processing manager provides spatial relation operators and
spatial analysis operators in line with the OGC standards. In
addition, it provides spatial trajectory operators for process-
ing the moving trajectories of sensor nodes. The spatial data
stream manager provides memory sharing functions among
spatial queries in processing spatial queries and filtering func-
tions for reducing input load. The spatial interface manager
receives spatial queries, parses them, and then displays the
final results. Finally, the spatial data communicationmanager
manages communication and sessions between the server PC
and sensor nodes in a wireless sensor network and between
sensor nodes.

3.2. Spatial Data Manager. In this subsection, we look at the
spatial data typemanagementmodule and the spatial schema
conversion module forming the spatial data manager.

Table 5: Spatial data types and examples.

Spatial data types Examples
Point POINT (10 10)

LineString LINESTRING (10 10, 20 20, 30 40)

Polygon POLYGON (10 10, 10 20, 20 20, 20 15, 10 10)

PolyhedralSurface
POLYHEDRALSURFACE ((10 10, 10 20, 20
20, 20 10, 10 10), (20 10, 40 20, 20 20, 20 10))

MultiPoint MULTIPOINT (10 10, 20 20)

MultiLineString
MULTILINESTRING ((10 10, 20 20), (15 15,
30 15))

MultiPolygon
MULTIPOLYGON ((10 10, 10 20, 20 20, 20
15, 10 10), (60 60, 70 70, 80 60, 60 60))

3.2.1. Spatial Data Type Management Module. The spatial
data typemanagementmodule provides the spatial data types
recommended in the “Simple Features Specification for SQL”
Standard Specifications [9] of the OGC in order to support
spatial queries. Table 5 shows spatial data types and examples
supported in the spatial data type management module.

As shown in Table 5, the spatial data type management
module supports seven spatial data types: Point, LineString,
Polygon, PolyhedralSurface, MultiPoint, MultiLineString,
and MultiPolygon.

3.2.2. Spatial Schema ConversionModule. The spatial schema
conversion module converts spatial attribute information
sent by the spatial data communication manager into spatial
schema according to spatial schema mapping rules. Figure 2
illustrates the spatial schema conversion process.

As depicted in Figure 2, the spatial schema conversion
module converts the spatial attribute information Location,
Lines, and Boundary into Point, LineString, and Polygon,
respectively, according to spatial schema mapping rules.

3.3. Spatial Query Processing Manager. In this subsection,
we look at the spatial relation operator module, the spatial
analysis operator module, and the spatial trajectory operator
module forming the spatial query processing manager.

3.3.1. Spatial Relation Operator Module. The spatial relation
operator module provides the spatial relation operators
recommended in “Simple Features Specification for SQL”
Standard Specifications [9] of the OGC, in order to support
spatial query processing in the server PC and sensor nodes.
Table 6 shows the spatial relation operators provided in the
spatial relation operator module.

As can be seen in Table 6, the spatial relation operator
module supports eight spatial relation operators: Equals,
Disjoint, Touches, Within, Overlaps, Crosses, Intersects, and
Contains. A spatial relation operator receives two spatial
objects, Geometry A and Geometry B, as the input and
returns True or False as the output.

4 International Journal of Distributed Sensor Networks

Spatial data

Wireless sensor
network network

Wireless sensor

Spatial data type Spatial schema
conversion

Spatial data manager

Spatial query processing manager

Spatial relation operator
module

management module

module module module
module

module module

Spatial analysis operator
module

Spatial trajectory
operator module

Spatial sensor network

Tiny OS

Server PC/sensor node

Memory
management Filtering module

Spatial data stream manager

Spatial interface manager

Spatial
query input

Spatial SQL
parser

Display

Spatial data communication
manager

Spatial data
transmit/receive

Session management

Extended component
Added component

module

Figure 1: Structure of Spatial TinyDB.

3.3.2. Spatial Analysis Operator Module. The spatial analysis
operator module provides the spatial analysis operators
recommended in the “Simple Features Specification for SQL”
Standard Specifications [9] of the OGC, in order to process
spatial queries in the server PC and sensor nodes. Table 7 lists
the spatial analysis operators provided in the spatial analysis
operator module.

As shown in Table 7, the spatial analysis operator module
supports six spatial analysis operators: Distance, Intersection,
Difference, Union, Buffer, and ConvexHull. Each spatial
analysis operator receives two spatial objects, Geometry A
andGeometry B, as the input and returns a new spatial object
as the output.

3.3.3. Spatial Trajectory Operator Module. The spatial trajec-
tory operatormodule provides spatial trajectory operators for
processing the moving trajectories of sensor nodes [12–14].

Table 8 lists the spatial trajectory operators provided in the
spatial trajectory operator module.

As listed in Table 8, the spatial trajectory operatormodule
supports five spatial trajectory operators: Enter, Insides,
Leaves, Meets, and Passes. A spatial trajectory operator
receives two spatial objects, Geometry A and Geometry B, as
the input and returns True or False as the output.

3.4. Spatial Data StreamManager. In this subsection, we look
at thememorymanagementmodule and the filteringmodule
comprising the spatial data stream manager.

3.4.1. Memory Management Module. The memory manage-
ment module provides data sharing functions among various
spatial queries executed in Spatial TinyDB in order to reduce
the system load caused by spatial data streams [5, 15].

International Journal of Distributed Sensor Networks 5

Attribute1 Attribute2 Attribute3

Location Lines Boundary

Point LineString Polygon

Spatial schema module Mapping
rule

Int16X1 Int16Y1,

Int16X2 Int16Y2,

Int16X3 Int16Y3,
. . .

Int16Xn Int16Yn

Int16X1 Int16Y1,

Int16X2 Int16Y2,

Int16X3 Int16Y3,
. . .

Int16X1 Int16Y1

X3 Y3, . . ., Xn Yn) X3 Y3, . . ., X1 Y1)
Point (X, Y) Polygon (X1 Y1, X2 Y2,

Int16X, Int16Y

LineString (X1 Y1, X2 Y2,

Figure 2: Spatial schema conversion process.

Table 6: Spatial relation operators.

Spatial relation operators Explanation
Equals (Geometry A,
Geometry B)

Return whether or not Object A is
equal to Object B

Disjoint (Geometry A,
Geometry B)

Return whether or not Object A is
apart from Object B

Touches (Geometry A,
Geometry B)

Return whether or not the
boundary of Object A meets the
boundary of Object B

Within (Geometry A,
Geometry B)

Return whether or not Object A is
included in Object B

Overlaps (Geometry A,
Geometry B)

Return whether or not Object A
and Object B overlap each other

Crosses (Geometry A,
Geometry B)

Return whether or not Object A
crosses Object B

Intersects (Geometry A,
Geometry B)

Return whether or not Object A
intersects Object B

Contains (Geometry A,
Geometry B)

Return whether or not Object A
contains Object B

When Spatial TinyDB executes two or more spatial
queries simultaneously, the spatial queries share onememory
area instead of having their own respective memory areas. In
the shared memory, a reference counter is set for each data
tuple. If a spatial query processes a data tuple, the reference
counter corresponding to the data tuple is reduced by 1, and
if the reference counter becomes 0, the corresponding data
tuple is deleted from the memory.

For example, if Spatial Query 1 saves a specific tuple in
the depository and Spatial Query 2 and Spatial Query 3 share
the tuple, the tuple’s reference counter becomes 3. If Spatial

Table 7: Spatial analysis operators.

Spatial analysis operators Explanation
Distance (Geometry A,
Geometry B)

Return the distance between
Object A and Object B

Intersection (Geometry A,
Geometry B)

Return the intersection of Object
A and Object B

Difference (Geometry A,
Geometry B)

Return the difference between
Object A and Object B

Union (Geometry A,
Geometry B)

Return the union of Object A
and Object B

Buffer (Geometry A, Double
L)

Return a spatial object whose
boundary is larger by L from the
boundary of Object A

ConvexHull (Geometry A)
Return the smallest convex
polygon that can contain Object
A

Query 1 processes the tuple, the tuple is not deleted from the
depository, but its reference counter is reduced by 1. If both
Spatial Query 2 and Spatial Query 3 process the tuple, the
reference counter becomes 0 and the corresponding tuple is
deleted.

3.4.2. Filtering Module. The filtering module provides filter-
ing functions that solve the overload problem by reducing
the volume of the input data stream, while minimizing loss
of accuracy [16]. It carries out filtering of the input data
stream using filtering conditions such as difference in the
distance of location coordinates, time range at specific times,
and IDs of sensor nodes. It then delivers only the filtered
data stream to the spatial query processing manager. Figure 3

6 International Journal of Distributed Sensor Networks

Table 8: Spatial trajectory operators.

Spatial trajectory operators Explanation
Enter (Geometry A,
Geometry B)

Return whether or not Object A
enters Object B from outside

Insides (Geometry A,
Geometry B)

Return whether or not Object A
stays inside Object B

Leaves (Geometry A,
Geometry B)

Return whether or not Object A
goes out of Object B from inside

Meets (Geometry A,
Geometry B)

Return whether or not Object A
only touches the boundary of
Object B

Passes (Geometry A,
Geometry B)

Return whether or not Object A
enters Object B from outside and
then goes out of Object B from
inside

gives an example of spatial data filtering in accordance with
a filtering condition that consists of IDs of sensor nodes and
the difference in the distance of location coordinates.

As illustrated in Figure 3, if “ID is from 1 to 5 and the
difference in the distance of location coordinates is less than
100” is the filtering condition, the sensor node filters out the
input data streamwith IDs from 1 to 5 and with the difference
in distance less than 100 between the previous location and
the current location of the same object, and it delivers only the
filtered data stream to the spatial query processing manager.

3.5. Spatial Interface Manager. In this subsection, we explain
the spatial query input module, the spatial SQL parser
module, and the display module forming the spatial interface
manager.

3.5.1. Spatial Query Input Module. The spatial query input
module receives spatial queries from the user and delivers
them to the spatial SQL parsermodule. In addition, it chooses
between text and graphic modes in displaying the results of
a spatial query and receives the parameters (execution cycle,
query ID, query condition, etc.) of a spatial query.

In Spatial TinyDB, the format of the spatial query state-
ments is the same as that used in TinyDB. However, it can
also use spatial relation operators, spatial analysis operators,
and spatial trajectory operators, in addition to spatial data
types, when building a spatial query. Table 9 shows spatial
query examples that are impossible in TinyDB but possible
in Spatial TinyDB.

In Spatial TinyDB, various spatial queries can be built
by using spatial data types, spatial relation operators, spa-
tial analysis operators, and spatial trajectory operators, as
depicted in Table 9.

3.5.2. Spatial SQL Parser Module. The spatial SQL parser
module parses a spatial SQL statement received from the
spatial query inputmodule (by executing lexical and syntactic
analyses) and tests the validity of the spatial SQL statement
based on parsed information. It also does error processing
when a spatial SQL statement is incorrect. In addition, for
a spatial query for which spatial SQL parsing has been

Table 9: Spatial query examples.

Query types Examples

Spatial relation
operators

SELECT nodeid, temp, loc
FROM sensors
WHERE Contains (polygon (0 0, 40 0, 40
40, 0 40, 0 0), loc)

Spatial analysis
operators

SELECT nodeid, temp, loc
FROM sensors
WHERE Contains (Intersection (Polygon (0
0, 0 40, 40 40, 40 0, 0 0), Polygon (30 30, 30
70, 70 70, 70 30, 30 30), loc)

Spatial trajectory
operators

SELECT nodeid, temp, loc
FROM sensors
WHERE Passes (loc, Polygon (0 0, 0 40, 40
40, 40 0, 0 0))

completed normally, the module creates spatial attribute and
spatial operator information and delivers them to the spatial
data communication manager.

3.5.3. DisplayModule. Thedisplaymodule displays the status
of query execution, final query results, and so forth, on the
screen of the server PC. In particular, the module displays
final query results received from the spatial query processing
manager in two modes—text and graphic. In addition, it
can display spatial SQL query statements received from the
spatial SQL parser module and error messages for errors
occurring while a spatial query is being executed. Further, the
display module allows the user to reset the query execution
cycle during the execution of a spatial query and to control
operations such as pausing and restarting a spatial query.

3.6. Spatial Data Communication Manager. In this subsec-
tion, we look at the session management module and the
spatial data transmit/receive module forming the spatial data
communication manager.

3.6.1. SessionManagement Module. The sessionmanagement
module creates, maintains, and deletes sessions between the
server PC and the sensor nodes and between the sensor nodes
within a wireless sensor network. A session is created when a
new spatial query is started and if an existing spatial query is
finished, the corresponding session is deleted for the flexible
management of sessions. In addition, the module resets the
effective duration of a session when the query execution cycle
is set.

3.6.2. Spatial Data Transmit/ReceiveModule. The spatial data
transmit/receivemodule transmits and receives data between
the server PC and the sensor nodes and between the sensor
nodes within a wireless sensor network. The spatial data
transmit/receive module on the server PC sends spatial
attribute and spatial operator information received from the
spatial interface manager to each sensor node in the wireless
sensor network and again sends the final results of a spatial
query received from thewireless sensor network to the spatial
interface manager. The spatial data transmit/receive module

International Journal of Distributed Sensor Networks 7

Filtering condition: ID from 1 to 5 and distance difference less than 100

because distance difference is
less than 100

ID Time Location

0, “2008/02/12, 12:00:01”

“2008/02/12, 12:00:01”

“2008/02/12, 12:00:01”

“2008/02/12, 12:00:02”

“2008/02/12, 12:00:02”

“2008/02/12, 12:00:02”

“Point (583 286)”

1, “Point (177 115)”

2, “Point (593 535)”

0, “Point (783 316)”

1, “Point (250 350)”

2, “Point (600 575)”

Sensor node (ID = 2) is filtered

Figure 3: Example of spatial data filtering.

Root

Level 1

Level 2

Level 3

Level 4

Level 5

Start of End of
epochepoch

Sensing, processing, and
stand-by communication

Collect/receive

Transmit Communication and
stand-by processor

Tree
depth

Time

Figure 4: Spatial data transmit/receive process.

on a sensor node sends spatial data received from other
sensor nodes to the query processingmanager and also sends
spatial data sensed by the node to other sensor nodes.

In particular, when spatial data that is to be transmitted
exceed the size limit, the module divides the spatial data
into smaller pieces before sending. Further, when spatial
data sending fails, the module resends the data automat-
ically. Furthermore, the module uses efficient spatial data
transmit/receivemethods suitable for the limited resources of
sensor nodes. Figure 4 shows the spatial data transmit/receive
process.

As illustrated in Figure 4, sensor nodes stay mainly in the
waiting mode in order to conserve power. In addition, when
a sensor node has completed operations such as data sensing,
transmitting, and receiving within a certain amount of time,
it is switched to the waiting mode automatically.

4. Performance Evaluation

In this section, we analyze the results of performance eval-
uation on the execution time, accuracy, and memory use

Table 10: Parameter values and query examples for performance
evaluation.

Parameters Values
Spatial query
execution cycle 256ms

Size limit of data 25 Byte
The number of sensor
nodes 1000, 2000, 3000, 4000

The number of spatial
queries 120

Filtering conditions Distance difference less than 100
TinyDB Spatial TinyDB

Query examples

SELECT nodeid,
temp, 𝑥, 𝑦
FROM sensors
WHERE temp > 40
AND 𝑥 > 0 AND
𝑥 < 400 AND
𝑦 > 0 AND
𝑦 < 400

SELECT nodeid,
temp, Loc
FROM sensors
WHERE temp > 40
AND Contains
(Polygon (0 0, 0 400,
400 400, 400 0, 0 0),
Loc)

of Spatial TinyDB proposed in this paper and TinyDB.
Especially, the performance of Spatial TinyDB is evaluated
both with and without spatial data filtering.

4.1. Performance Evaluation Environment. The proposed
Spatial TinyDB was implemented using TinyOS 1.1.15 under
Cygwin 2.5.7 as the operating system, and the development
tools were nesC 1.2.8 and g++ 3.4.3 provided in TinyOS. In
addition, the Java GUI was based on the MicrosoftWindows
XP Professional environment, and JAVA 1.4 was used as the
development tool.

For the performance evaluation, we set parameters such
as spatial query execution cycle, size limit of data in each
transmission, number of sensor nodes, number of spatial
queries executed simultaneously, and filtering condition.
Table 10 lists the parameters and values set for the perfor-
mance evaluation, along with the example queries used in the
performance evaluation.

8 International Journal of Distributed Sensor Networks

0

100

200

300

400

500

1000 2000 3000 4000
The number of sensor nodes

No filtering

TinyDB
Spatial TinyDB

Ti
m

e (
m

s)

(a)

TinyDB
Spatial TinyDB

0

100

200

300

400

500

1000 2000 3000 4000

Ti
m

e (
m

s)

The number of sensor nodes

Filtering

(b)

Figure 5: Measured results of the execution time.

4.2. Execution Time. Figure 5 graphically illustrates the mea-
sured results of the execution time of Spatial TinyDB and
TinyDB versus the number of sensor nodes.

As illustrated in Figure 5(a) (no filtering used), Spatial
TinyDB executed approximately 12% faster than TinyDB
on average. This resulted from the fact that our Spatial
TinyDB processes spatial queries faster because it supports
spatial operators. When filtering was used (Figure 5(b)), the
execution time of Spatial TinyDB was 21% faster than that
of TinyDB on average. This resulted from the fact that the
system load was reduced as input data were filtered before
execution in Spatial TinyDB.

4.3. Accuracy. Figure 6 shows the measured results of the
accuracy of Spatial TinyDB and TinyDB versus the number
of sensor nodes.

As depicted in Figure 6(a) (no filtering used), Spatial
TinyDB showed the same accuracy as TinyDB since there
was no loss of input data in either of the two cases.
In Figure 6(b), however, when filtering was used, Spatial
TinyDB was approximately 7% less accurate than TinyDB on
average. This resulted from the fact that input data filtering
causes loss of some data in Spatial TinyDB.

4.4. Memory Usage. Figure 7 shows the measured results of
the memory usage in Spatial TinyDB and TinyDB versus the
number of sensor nodes.

As illustrated in Figure 7(a) (no filtering used), Spatial
TinyDB showedmemory usage of approximately 6% less than
TinyDB on average. This resulted from the fact that memory
is shared by multiple spatial queries in Spatial TinyDB. In
addition, in Figure 7(b), when filtering was used, Spatial

TinyDB showed memory usage approximately 11% less than
that of TinyDB on average. This resulted from the fact that
the spatial data stream manager reduced the volume of the
input data stream not only through memory sharing but also
through input data filtering.

5. Conclusions

In this paper, we propose Spatial TinyDB which is a spatial
sensor database system that extends TinyDB to facilitate
the efficient management of spatial sensor data in USN
environments.The proposed Spatial TinyDB supports spatial
data types, spatial relation operators, spatial analysis opera-
tors, and spatial trajectory operators that are in compliance
with international standards. In addition, Spatial TinyDB
provides memorymanagement functions to facilitate sharing
of necessary data among various spatial queries, and filtering
functions to solve the overload problem by reducing the
volume of the input data stream while minimizing loss of
accuracy.

The results of performance evaluations indicate that
Spatial TinyDB is superior to TinyDB in terms of execution
time and memory use but shows slightly lower performance
than TinyDB in terms of accuracy when filtering is used.

Acknowledgments

This work (Grants no. C0027296) was supported by Busi-
ness for Cooperative R&D between Industry, Academy, and
Research Institute funded Korea Small andMedium Business
Administration in 2012.

International Journal of Distributed Sensor Networks 9

TinyDB
Spatial TinyDB

0

20

40

60

80

100

1000 2000 3000 4000
The number of sensor nodes

No filtering
Ac

cu
ra

cy
 (%

)

(a)

TinyDB
Spatial TinyDB

0

20

40

60

80

100

1000 2000 3000 4000

Ac
cu

ra
cy

 (%
)

The number of sensor nodes

Filtering

(b)

Figure 6: Measured results of the accuracy.

0

256

512

768

1024

1280

1536

1792

2048

1000 2000 3000 4000
The number of sensor nodes

No filtering

TinyDB
Spatial TinyDB

U
se

d
m

em
or

y
(B

yt
e)

(a)

TinyDB
Spatial TinyDB

0

256

512

768

1024

1280

1536

1792

2048

1000 2000 3000 4000

U
se

d
m

em
or

y
(B

yt
e)

The number of sensor nodes

Filtering

(b)

Figure 7: Measured results of the memory usage.

References

[1] M. Inoue, “A model and system architecture for ubiquitous
sensor network businesses,” inProceedings of the ITU-TKaleido-
scope Academic Conference on Innovations for Digital Inclusion,
pp. 1–8, September 2009.

[2] P. Andreou, D. Zeinalipour-Yazti, A. Pamboris, P. K. Chrysan-
this, and G. Samaras, “Optimized query routing trees for
wireless sensor networks,” Information Systems, vol. 36, no. 2,
pp. 267–291, 2011.

[3] E. Taslidere, F. S. Cohen, and F. K. Reisman, “Wireless sen-
sor networks-a hands-on modular experiments platform for
enhanced pedagogical learning,” IEEE Transactions on Educa-
tion, vol. 54, no. 1, pp. 24–33, 2011.

[4] S. Nittel, A. Labrinidis, and A. Stefanidis, “Introduction to
advances in geosensor networks,” in GeoSensor Networks, pp.
1–6, 2008.

[5] J. Park, K. Kim, S. Ahn, and B. Hong, “Continuous query
processing on combined data stream: sensor, location and

10 International Journal of Distributed Sensor Networks

identification,” inProceedings of the 7th International Conference
on Information Technology, pp. 518–522, April 2010.

[6] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no.
1, pp. 122–173, 2005.

[7] Y. Yao and J. Gehrke, “The cougar approach to in-network query
processing in sensor networks,” SIGMOD Record, vol. 31, no. 3,
pp. 9–18, 2002.

[8] P. D. Felice, M. Lanni, and L. Pomante, “Design and evaluation
of a spatial extension of TinyDB for wireless sensor networks,”
International Journal of Computers and Their Applications
Manuscript, vol. 17, pp. 172–193, 2010.

[9] Open Geospatial Consortium, OpenGIS Implementation Spec-
ification for Geographic Information-Simple Feature Access-
Part 1: Common Architecture, Version 1.2.1, 2010.

[10] P. Levis and H. Wei, “TinyDB: design, code and implementa-
tion,” 2006, http://csl.stanford.edu/∼pal/pubs/tinyos-program-
ming.pdf.

[11] P. Levis, S. Madden, J. Polastre et al., “TinyOS: an operating
system forwireless sensor networks,” inAmbient Intelligence, pp.
115–148, 2005.

[12] M. Erwig andM. Schneider, “Developments in spatio-temporal
query languages,” in Proceedings of the 10th International Work-
shop on Database and Expert Systems Applications, pp. 441–449,
1999.

[13] J. H. Lee, K. H. An, and J. H. Park, “Design of query language
for location-based services,” in Web and Wireless Geographical
Information Systems, vol. 3833 of Lecture Notes in Computer
Science, pp. 11–18, 2005.

[14] D. Pfoser, C. S. Jensen, andY.Theodoridis, “Novel approaches in
query processing for moving objects,” in Proceedings of the 26th
International Conference onVery LargeData Bases, pp. 395–406,
2000.

[15] K. Križanović, Z. Galić, and M. Baranović, “Spatio-temporal
data streams: an approach to managing moving objects,” in
Proceedings of the 33rd International Convention on Information
and Communication Technology, Electronics and Microelectron-
ics (MIPRO ’10), pp. 744–749, May 2010.

[16] D. Maier, P. A. Tucker, and M. Garofalakis, “Filtering, punc-
tuation, windows and synopses,” in Stream Data Management,
chapter 3, pp. 35–58, 2005.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

