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An identity-based strong designated verifier signature 
scheme provides restricted verifiability only for a verifier 
designated by a signer and proper privacy for the signer.  

In this paper, we show that strong designated verifier 
signature schemes do not satisfy the self-unverifiability 
requirement in the sense that not only exposure of the 
verifier’s secret key but also of the signer’s secret key 
enables an attacker to verify signatures, which should 
have been the exclusive right of the verifier. We also 
present a generic method to construct a strong identity-
based designated verifier signature scheme with self-
unverifiability from identity-based key encapsulation and 
identity-based key sharing schemes. We prove that a 
scheme constructed from our method achieves 
unforgeability, non-transferability, and self-unverifiability 
if the two underlying components are secure. To show the 
advantage of our method, we present an example that 
outputs short signatures and we analyze its performance. 
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I. Introduction 

Relaxing the non-repudiation property of a standard digital 
signature, Jakobsson and others [1] introduced a specific type 
of signature for signer ambiguity, called designated verifier 
signature (DVS). A DVS scheme allows only a designated 
verifier to confirm validity of a given signature. This limited 
verifiability can be achieved by a sharing of signing capability 
between a signer and a designated verifier; in other words, a 
signature can be generated by not only a signer but also a 
designated verifier. When a designated verifier receives a 
signature from a signer, if the verifier did not generate the 
signature, the verifier is able to confirm that the signature is 
originated from the signer. Though anybody can publicly 
verify the validity of a signature, one cannot confirm the exact 
generator of this signature because both the signer and the 
verifier have signing capability. Here, the validity means that a 
signature has been generated either by a signer or by a 
designated verifier. This security property is formally known as 
non-transferability or simulatability [2]. In this sense, the non-
transferability property provides signer ambiguity. An identity-
based extension of a DVS scheme, say identity-based DVS 
(IBDVS) scheme, has been proposed to enjoy the benefit that 
an arbitrary public string such as an email address or a phone 
number may be used as a user’s public key instead of requiring 
public key certificates [3]. IBDVS schemes have various 
cryptographic applications such as licensing software, auctions, 
and electronic voting. 

However, in most practical scenarios, a designated verifier 
does not artificially generate a (designated verifier) signature 
for non-transferability using a simulation algorithm. Based on 
this belief, an adversary capturing a signature first transmitted 
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from a party would imply that the signature originated from the 
sender, not a receiver, that is, a designated verifier. This helps 
the adversary to decide who made a signature and to collect 
critical information, such as the signer’s intention. To remedy 
the privacy problem, a notion of strongness for a DVS scheme 
has been introduced [1], [4]. Under this strongness notion, 
public verifiability on a DVS is no longer permitted. Instead, 
only a designated verifier can check the validity of a signature 
using his or her secret key. 

To enhance the privacy of an IBDVS, we allege that even the 
signer must not be able to verify the validity of its own 
signatures unless the signer saves signatures in its storage. By 
this property, even the adversary who has a signer’s secret key 
is not able to verify signatures. We call this privacy property 
self-unverifiability because even the signer itself cannot verify 
its own signatures, and the property will strictly separate 
capabilities of signing key and verifying key. This property is 
quite necessary because it is unfair to a verifier having the 
exclusive right to verify signatures when a signer mistakenly or 
intentionally loses its secret signing key to give the right to 
others who obtain the signing key. In reality, signers frequently 
lose their signing keys due to computer viruses, malicious 
software, misconfigurations of related systems, and lost/stolen 
portable devices. Therefore, without the self-unverifiability, a 
signer’s poor management of its keys might infringe upon the 
designated verifier’s exclusive right of verifiability.  

To enhance the privacy of the signer by providing self-
unverifiability, we propose a generic method that constructs 
strong IBDVS schemes with self-unverifiability as well as all 
the functionalities of IBDVS. We also prove the security of this 
method. Our design idea is to combine identity-based key 
encapsulation mechanism (IBKEM) and non-interactive 
identity-based key sharing (IBKS) schemes. In the generic 
method, we can flexibly and independently combine any pair 
of IBKEM and IBKS schemes irrespective of their underlying 
structures or hardness assumptions. For example, an integer 
factorization-based IBKEM and a pairing-based IBKS can be 
combined together. The IBKEM is used to achieve exclusive 
verifying capability, and the IBKS is used for signing. 
Accordingly, a designated verifier has two capabilities, 
decrypting (that is, verifying) and signing, and a signer has only 
the signing capability. In addition to flexibility, our scheme 
instantiated from the generic construction can output shorter 
signatures than that of existing schemes [5], without adding 
computational overhead. 

Various IBDVS schemes have been suggested to achieve 
strongness [5]-[7]. Several IBDVS schemes rely on a structure 
to hide a signature using a key that both a signer and a 
designated verifier (non-interactively) share [6], [8]-[10]. The 
key can be computed using a signer’s or verifier’s static long-

term secret key. Applying the notion of a keyed hash function 
to a DVS scheme, one of the schemes proposes a novel 
method to offer very short signatures [6]. However, these 
schemes fail to achieve self-unverifiability because they are 
based upon the static structure of an IBKS method.  

One of the promising applications is virus-free software 
distribution, where a software company will provide validity of 
signatures for corresponding software but only to clients who 
buy this service [1]. Pirated software cannot be validated 
correctly, even when a legal buyer of the software sends it with 
his/her validation key, because the validation key can be used 
for generating the signature for the software modified for some 
malicious purpose. 

The remainder of this paper is organized as follows. In 
section II, we briefly review the strong IBDVS schemes in [6], 
[11] and show that these schemes have security vulnerability in 
terms of self-unverifiability. In section III, a formal security 
model is presented. In section IV, we propose a generic method 
of constructing an IBDVS scheme with self-unverifiability and 
prove the security of this method. Finally, in section V, we give 
concluding remarks.  

II. Vulnerabilities in IBDVS Schemes  

Using various cryptographic techniques, several IBDVS 
schemes have been suggested to achieve strongness in 
verifiability [5]-[7]. Some of them use a specific non-
interactive IBKS method between a signer and a designated 
verifier [6], [8]-[10], where a key is computed with either a 
signer’s or verifier’s static long-term secret key and used for a 
keyed hash function.  

We show that any IBDVS scheme that uses the specific 
structure does not have the self-unverifiability. To illustrate our 
idea, we briefly review the IBDVS scheme in [6]. The scheme 
is described as follows: 

- Setup. Let G and GT be additive and multiplicative groups, 
respectively. Let e: G×G→GT be a bilinear map, where G and 
GT have prime order q. Let P be a random generator of G, 
s(∈Z*

q) is chosen at random, and Ppub=sP. The algorithm 
selects two collision-resistant cryptographic hash functions, 
H0:{0, 1}*→G and H1:{0, 1}*→Z*

q. It outputs the master secret 
key, msk=s, and the public scheme parameters, params=(G, GT, 
q, e, P, Ppub, H0, H1). 

- KeyExtract. To extract a decryption key for identity 
ID∈{0, 1}*, return skID=sQID, where QID=H0(ID). 

- IDSign. To sign a message m∈{0, 1}* for a designated 
verifier Bob, Alice computes QIDB

=H0(IDB)∈G, k=e(QIDB
, 

skIDA
)∈GT, and σ=H1(m∥k). The signature on a message m is 

σ. 
- IDVerify. To verify the validity of a signature σ on a 
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message m, the designated verifier Bob computes QIDA
 

=H0(IDA), k=e(QIDA
, skIDB

) and tests if H1(m∥k)? σ holds. If 
the equality holds, then it outputs True; otherwise, it outputs 
False. 

To achieve the strong designated verifiability, the above 
IBDVS scheme takes a simple approach, which is to use a key 
(non-interactively) shared between a signer and a designated 
verifier to authenticate a message. This method can be viewed 
as a keyed hash function, that is, a standard MAC. 

Although the scheme yields a short signature, the static 
structure of the IBKS is vulnerable to exposure of the signer’s 
secret key. This can be easily checked as follows. Assume that 
an adversary F obtains a signer’s secret key, skIDA

. For a given 
signature σ on a message m, F can compute k'=e(QIDB

, skIDA
) 

=e(QIDB
, QIDA

)s and then check the validity of the signature by 
σ=H1(m∥k'). 

A similar weakness exists in the recent IBDVS schemes [9]-
[11]. As illustrated above, the weakness is mainly caused by a 
static structure of IBKS between a signer and a designated 
verifier. 

III. Security Model for an IBDVS Scheme  

In this section, we present a formal security model for an 
IBDVS scheme. In particular, we newly introduce a formal 
notion of self-unverifiability. 

1. Identity-Based Designated Verifier Signature Scheme 

An IBDVS scheme consists of the following algorithms. 
- Setup(1k). It takes as input a security parameter 1k, and then 

outputs the master secret key msk and its corresponding public 
parameters pp.  

- KeyExtract(msk, ID). It takes as inputs the master secret 
key msk and an identity ID, and then outputs a private signing 
key skID. 

- IDSign((skS, IDV), m). It takes as inputs a private signing 
key skS, the identity of a designated verifier IDV, and a message 
m, and then outputs a signature σ.   

- IDVrfy(σ, (IDS, skV, IDV), m). It takes as inputs a signature 
σ, the identities of a designated verifier and a signer (IDS, IDV), 
a private signing key skV, and a message m, and then outputs 1 
(Valid) or 0 (Invalid).  

2. Security Model 

We consider three secuirty properties for an IBDVS scheme: 
unforgeability, non-transferability, and self-unverifiability. As 
noted in the literature [12], unforgeability and non-
transferability correspond to “unforgeability” and “anonymity” 

for a ring signature with a ring of two members, respectively.  
Unforgeability. Informally, this notion means that any party 

who cannot access private keys of a signer and a designated 
verifier is not able to generate a signature. Next, we formally 
define the notion of unforgeability.  

An IBDVS scheme ∑ is said to be existentially unforgeable 
under chosen identity-message attacks (CIMA) if no 
probabilistic polynomial-time (PPT) adversary F has a non-
negligible advantage in the following game: For a security 
parameter k, a challenger C runs SetUp to obtain the master 
secret key msk and its corresponding public parameters pp; an 
adversary F gets the public parameters; and the adversary F is 
allowed to access to the following Sign, Extract, and IDVrfy 
oracles to make polynomially-many queries adaptively. Here, 
“adaptively” means that a query may depend on answers to the 
previous queries. 

- Sign. On a query <(IDS, IDV), m>, return σ←Sign(skS, IDV, 
m). 

- Extract. On a query <ID>, return skID←KeyExtract(msk, 
ID). 

- IDVrfy. On a query <σ, (IDS, IDV), m>, return 
b←IDVrfy(σ, (IDS, skV, IDV), m). 

Finally, F outputs ((IDS, IDV), m', σ'). Assume that σ' on ((IDS, 
IDV), m') is valid, that is, 1←IDVrfy(σ', (IDS, IDV), m').  

F succeeds in the above game if the following two 
conditions hold; i) any of IDS and IDV has not been queried to 
Extract oracle and ii) the ((IDS, IDV), m') tuple is not the same 
as any of the tuples queried to Sign oracle. The event of the 
success is denoted by SucForg. The EUF-CIMA advantage of F 
for ∑ is defined by AdvF, ∑

EUF-CIMA(k)=Pr[SucForg].  
Non-transferability. Informally, non-transferability means 

that any third party except a signer and a designated verifier 
cannot identify the real generator of a DVS. An IBDVS 
scheme ∑ is said non-transferable if there exists no PPT 
adversary that has a non-negligible advantage to distinguish the 
distribution of signatures generated from real executions of the 
scheme (with a secret signing key) and that of signatures from 
the simulator Sim. Here, Sim takes as input ((IDS, skV), m), and 
then outputs a simulated signature. More specifically, we 
consider the following game: For a security parameter k, a 
challenger C runs SetUp to obtain the master secret key msk 
and its corresponding public parameters pp; an adversary F 
gets the public parameters; and the adversary F is given access 
to the following oracles to make polynomially-many queries 
adaptively. Here, “adaptively” means that a query may depend 
on answers to the previous queries.  

- Sign. On a query <(IDS, IDV), m>, return σ'←Sign(skS, IDV, 
m). 

- Extract. On a query <ID>, return skID←KeyExtract(msk, 
ID). 
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- IDVrfy. On a query <σ, (IDS, IDV), m>, return 
b←IDVrfy(σ, (IDS, skV, IDV), m). 

When F submits ((IDS, IDV), m) as a challenge, the 
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0, 
then return σ←Sign(skS, IDV, m); otherwise, return 
σ←Sim((IDS, skV), m). The signature σ is given to the 
adversary F. Finally, F outputs a guess bit b'.  

F succeeds in the above game if b=b'. The event of the 
success is denoted by SucNT. The advantage of F for ∑ is 
defined by AdvF, ∑

Non-Trans(k)=Pr[SucNT].  
Alternatively, we can define this notion using the 

“anonymity” for a ring signature with a ring of two members 
[12].  

Self-unverifiability. The notion of signature privacy means 
that the validity of a signature associated with a designated 
verifier should be confirmed only with the designated verifier’s 
secret key, where the adversary does not have an access to the 
signing key. This notion is also known as strongness in the 
literature [1], [4]. To enhance the signature privacy, we 
introduce a stronger notion called self-unverifiability that 
allows an adversary to access even a signing key. In other 
words, self-unverifiability captures that the validity of a 
signature associated with a designated verifier should be 
confirmed only with the designated verifier’s secret key, even 
when a signing key to be used to generate the signature is 
exposed in the future. As shown in section II, some IBDVS 
schemes achieve only signature privacy, not self-unverifiability. 
Next, we formally define this notion.  

For a security parameter k, a challenger C runs SetUp to 
obtain the master secret key msk and its corresponding public 
parameters pp. An adversary F gets the public parameters. The 
adversary F is given access to the following oracles to make 
polynomially-many queries adaptively. Here, “adaptively” 
means that a query may depend on answers to the previous 
queries.  

- Extract. On a query <ID>, return skID←KeyExtract(msk, 
ID). 

- Sign. On a query <(IDS, IDV), m>, return σ'←Sign(skS, IDV, 
m). 

- IDVrfy. On a query <σ, (IDS, IDV), m>, return b←IDVrfy 
(σ, (IDS, skV, IDV), m). 

When F submits ((IDS, IDV), m, m') as a challenge, the 
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0,  
then return σ←Sign(skS, IDV, m); otherwise, return 
σ←Sign(skS, IDV, m'). The signature σ is given to the adversary 
F. We assume that F is already aware of the private signing key 
skS by querying IDS to Extract oracle. Finally, F outputs a 
guess bit b'.   

F succeeds in the above game if (1) b=b', (2) IDV has never 
been queried to Extract oracle, and (3) neither (σ, (IDS, IDV), 

m) nor (σ, (IDS, IDV), m') have been queried to IDVrfy. The 
event of the success is denoted by SucFSP. The advantage of F 
for ∑ is defined by AdvF, ∑

FSP(k)=Pr[SucFSP]. 

IV. Our Generic Approach for Self-Unverifiability 

To overcome the problem presented in section II, we propose 
a generic method based on an IBKEM scheme and a non-
interactive two-party IBKS scheme. An IBKEM scheme is an 
identity-based variant of an ordinary KEM [13], [14]. 

1. Two Cryptographic Primitives 

Before describing our method in detail, we first review an 
IBKEM scheme [14] and a non-interactive two-party IBKS 
scheme that are used as the building blocks for our construction.   

An IBKEM scheme consists of four algorithms: KEM-
Setup, KEM-Ext, KEM-Enc, and KEM-Dec. 

- KEM-Setup. It takes as input a security parameter 1k, and 
then outputs a master secret key mskKEM and its corresponding 
public parameter ppKEM. KD is a plaintext space associated with 
ppKEM. 

- KEM-Ext. It takes as inputs the master secret key mskKEM 
and an identity ID, and then outputs a secret key skKEM,ID. 

- KEM-Enc. It is a PPT algorithm that on inputs of ppKEM 
and an identity ID outputs a random ‘one-time’ key kD∈KD 

and its ciphertext θ. 
- KEM-Dec. It is a deterministic algorithm that on inputs of 

a private key skKEM,ID and a ciphertext θ outputs a key kD. 
Basically, it is required that an IBKEM scheme should 

satisfy the correctness, that is, for given (mskKEM, ppKEM) 
←KEM-Setup(1k), for any identity ID, skKEM,ID←KEM-
Ext(mskKEM, ID), and (kD, θ)←KEM-Enc(ppKEM, ID), we have 
kD←KEM-Dec(skKEM,ID, θ). We say that an IBKEM scheme 
IBKEM is semantically-secure if no PPT adversary can gain a 
non-negligible advantage to guess a bit b for given kb, θ, where 
(kD, θ)←KEM-Enc(ppKEM, ID), b is a randomly selected bit, 
and if b=0, then kb=kD; otherwise, if b=1, kb is a random 
number. Here, we assume that ID is chosen by an adversary. 

Many identity-based encryption schemes can be represented 
in the IBKEM/DEM framework [14]. As an example for an 
IBKEM scheme, we can consider the Boneh-Franklin KEM 
[15], where KEM-Enc is defined by (kD=e(QID, Ppub)r, θ=rP)← 
KEM-Enc(ppKEM, ID) for random r∈Z*

q. 
A (non-interactive) two-party IBKS scheme consists of three 

algorithms: KS-Setup, KS-Ext, and sKS. 
- KS-Setup. It takes as input a security parameter 1k and 

then outputs a master secret key mskKS and its corresponding 
public parameter ppKS. 

- KS-Ext. It takes as inputs the master secret key mskKS and 
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an identity ID and then outputs a secret key skKS,ID. 
- sKS. It is a deterministic algorithm that takes as inputs a 

user US’s secret key skKS,IDS
 and a user UV’s public identity IDV 

and then outputs a key TK. The algorithm has symmetry of 
computation for the participants. That is, given the user UV’s 
secret key skKS,IDV

 and the user US’s public identity IDS, it 
outputs the same key TK. That is, TK=sKS(IDV, skKS,IDS

) 
=sKS(IDS, skKS,IDV

). 
Basically, it is required that an IBKS scheme should   

satisfy the correctness; that is, for any IDV and IDS, 
skKS,IDS

←KS-Ext(IDS), skKS,IDV
←KS-Ext(IDV), we have 

TK=sKS(IDV, skKS,IDS
)=sKS(IDS, skKS,IDV

).  
We say that an IBKS scheme IBKS is key-indistinguishable 

if no PPT adversary can gain a non-negligible advantage in the 
following experiment with a simulator S: Initially, S sets up 
system parameters for IBKS and gives the resulting public 
parameters to the adversary F. Also, a secret key is properly 
defined for each user. Next, S simulates an attack environment 
for the IBKS scheme by providing Execute and Reveal 
queries. The adversary F can get transcripts of an honest 
execution of IBKS or a common key computed from an 
execution of IBKS according to queries. When F issues Test 
query for a pair of two identities, (ID1, ID2), S returns a value 
Kb after selecting a random bit b∈{0, 1}, where K0 is a key 
generated from an honest execution of IBKS with (ID1, ID2) 
and K1 is a random number selected from a key space.   

In contrast to normal IBKS schemes [16], the above IBKS 
scheme does not require any communication between two 
participants for sharing a key. As an example for a non-
interactive IBKS scheme, we can consider the two-party IBKS 
scheme in [16], [17], which is essentially the same as that in the 
previous section in that a shared key in the IBKS is defined by 
e(QIDV

, skKS,IDS
)=e(QIDV

, QIDS
)s=e(skKS,IDV

, QIDS
). 

2. Construction 

We present a generic way to construct an IBDVS scheme 
with self-unverifiability as follows: Assume that an IBKEM 
scheme IBKEM=(KEM-Setup, KEM-Ext, KEM-Enc, KEM-
Dec) and a non-interactive two-party IBKS scheme 
IBKS=(KS-Setup, KS-Ext, sKS) are given. Let H:{0, 1}*→  
{0, 1} λ be a cryptographic hash function. 

- Setup. It takes as input a security parameter 1k and then 
performs the setup algorithms for IBKEM and IBKS, 
respectively, that is, (mskKEM, ppKEM)←KEM-Setup(1k) and 
(mskKS, ppKS)←KS-Setup(1k). The master secret key is 
msk=(mskKEM, mskKS), and its corresponding public parameter 
is pp=(ppKEM, ppKS). 

- KeyExtract. It takes as input an identity ID and then 
performs the key extract algorithms for IBKEM and IBKS,  

that is, skKEM,ID←KEM-Ext(mskKEM, ID) and skKS,ID←KS-
Ext(mskKS, ID). A secret key for the identity ID is 
skID=(skKEM,ID, skKS,ID). 

- IDSign. It is a PPT algorithm that takes as inputs a message 
m∈{0, 1}*, verifier’s identity IDV, and signer’s secret key skIDS

 
and then first computes TK←sKS(IDV, skKS,IDS

). It also 
computes (kD, θ)←KEM-Enc(IDV), η←H(kD, TK), and 
τ←H(η∥θ∥m). The signature on a message m is σ←(θ, τ).  

- IDVerify. It takes as inputs a signature σ←(θ, τ), message 
m, and verifier’s secret key skIDV

=(skKEM,IDV
, skKS,IDV

) and then 
computes TK'←sKS(IDS, skKS,IDV

), k'D←KEM-Dec(ppKEM, 
skKEM,IDV

, θ), and η'←H(k'D, TK'). It tests if H(η'∥θ∥m)? τ 
holds. If the equality holds, then it outputs Valid; otherwise, it 
outputs Invalid. 

In the above construction, the use of the keys, kD and TK, are 
intended to provide two security properties. The key kD is used 
to achieve the self-unverifiability, which means that exposure 
of a signer’s secret key does not compromise a MAC key η, 
which is used in generation of a signature. Obviously, it will be 
intractable to compute the key η=H(kD, TK) because it will be 
intractable to compute kD without knowledge of skIDV

 if the 
semantic security of a given IBKEM is guaranteed. The key 
TK is used to achieve unforgeability against outside attackers 
except a signer and a designated verifier. 

In Fig. 1, we show a schematic diagram for our generic 
construction of an IBDVS from an IBKEM scheme and a non-
interactive two-party IBKS scheme.  

Remark 1. We note that our generic approach intrinsically 
provides delegatability [18], which can be used for delegating 
signing capability. In other words, if a long static key TK 
shared between a sender and a receiver is given to a delegate, 
he or she can make a signature on behalf of the signer. 
 

 

Fig. 1. Generic construction of IBDVS. 

IBDVS 

Setup(1k) → (msk, pp) 

msk=(mskKEM, mskKS) 

pp=(ppKEM, ppKS) 

KeyExtract(msk, ID) →skID 

skID=(skKEM,ID, skKS,ID) 

IBKEM

Setup

KEM-Ext(mskKEM, ID)
IDSign(m, IDV, skIDS) → σ 

σ =(θ, τ) 

KEM-Enc(IDV)

KEM-Dec(skKEM,IDV, θ)

Setup

IBKS

H=(η, θ, m) 
H(kD, TK) 

sKS-Ext(mskKS, ID)

sKS(IDV, skIDS)

sKS(IDV, skIDS)

IDVrfy(σ, m, skIDV) → 0 or 1 

H(kD, TK) 
Check if H=(η, θ, m)? τ = 
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3. Security  

We prove that the IBDVS scheme constructed above 
achieves existential-unforgeability, non-transferability, and self-
unverifiability.  

Theorem 1. If a given IBKS scheme is key-
indistinguishable, then the above IBDVS scheme is 
existentially unforgeable in the random oracle model. 

Proof. We show that we can build an efficient distinguisher 
D attacking the key-indistinguishability of the underlying IBKS 
scheme by using a PPT forger F attacking the IBDVS scheme 
constructed from the generic method.  

Assume that the distinguisher D is given a public parameter 
ppKS. Also, assume that qE and qS are the numbers of Extract 
and Sign queries that an adversary can make to Extract and 
Sign oracles, respectively. D first picks α and β uniformly from 
{1,…, qE+qS} for two target identities that F will output as a 
final forgery. Let ID1

* and ID2
* denote the α-th and β-th new 

identities that are queried to either the Extract or Sign oracle, 
respectively. D issues Test query for a pair of two identities 
(ID1

*, ID2
*), and then gets back a challenge value Kb, where K0 

is a key generated from an honest execution of the given IBKS 
scheme with (ID1, ID2) and K1 is a random number selected 
from a key space. The goal of the distinguisher D correctly 
guesses the bit b by running F as a sub-algorithm.  

The distinguisher D provides F with a simulation 
environment for the unforgeability game as follows: Let FG⇒π 
denote the event that an adversary F outputs a forgery π in this 
unforgeability game; assume that an adversary F makes qS, qE, 
and qV queries to the Sign, Extract, and IDVrfy oracles, 
respectively; and we also assume that hash queries are never 
repeated.  

The challenger D first runs the SetUp algorithm of IBKEM 
to generate the master secret key mskKEM and its corresponding 
public parameters ppKEM. Define pp=(ppKEM, ppKS) and then 
give pp to the adversary F. The challenger answers F’s oracle 
queries as follows:  

- Hash. On a query <M>, pick h uniformly at random from 
{0, 1}λ, and return h. 

- Extract. On a query <ID>, proceed as follows: 
    (a) If ID=ID1

* or ID2
*, then abort the simulation. 

    (b) Else if, return skID=(skKEM,ID, skKS,ID) by running 
KEM-Ext, that is, skKEM,ID←KEM-Ext(mskKEM, ID) and 
querying to the ExtractKS oracle for KS-Ext, that is, 
skKS,ID←Extract KS(ID), where the ExtractKS(ID) is the oracle 
to extract a secret key corresponding ID for KS-Ext of the 
IBKS scheme. 

- Sign. On a query <(IDS, IDV), m>, proceed as follows: 
(a) If IDS=ID1

* and IDV=ID2
*, then compute (kD, θ)←KEM-

Enc(IDV) and (η, τ) by querying <kD, TK> and <η, θ, m> to 

the hash oracle H, that is, η←H(kD, TK) and τ←H(η, θ, m), 
where TK is the challenge that is given to D for IBKS in 
advance. Finally, return σ←(θ, τ). 

(b) Else if IDS≠ID1
* and IDV≠ID2

*, then compute TK← 
sKS(IDV, skKS,IDS

) and (kD, θ)←KEM-Enc(IDV) and also (η, τ) 
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that 
is, η←H(kD, TK) and τ←H(η, θ, m), respectively. Finally, 
return σ←(θ, τ). 

(c) Else if (IDS≠ID1
*∧IDV=ID2

*) or (IDS=ID1
*∧IDV≠ID2

*), 
then compute TK by computing TK=sKS(IDV, skKS,IDS

) or 
sKS(IDS, skKS,IDV

). Note that we have TK=sKS(IDS, skKS,IDV
) 

=sKS(IDV, skKS,IDS
) by the correctness of the given IBKS 

scheme. Then, compute (kD, θ)←KEM-Enc(IDV) and also (η, 
τ) by querying <kD, TK> and <η, θ, m> to the hash oracle H, 
that is, η←H(kD, TK) and τ←H(η, θ, m), respectively. Finally, 
return σ←(θ, τ). 

- IDVrfy. On a query <σ, (IDS, IDV), m>, proceed as 
follows: 

(a) If IDS=ID1
* and IDV=ID2

*, then check the validity of the 
given query by using the pre-images of σ=(θ, τ) and return b. 

(b) Else if IDS≠ID1
* and IDV≠ID2

*, then return the result of 
the IDVrfy, that is, b←IDVrfy(σ, (IDS, skV, IDV), m). 

(c) Else if (IDS≠ID1
*∧IDV=ID2

*) or (IDS=ID1
*∧IDV≠ID2

*), 
then according to the third condition in the above signing 
oracle, check the validity of the given query and then return b.  

Finally, F outputs π=((IDS, IDV), m', σ') and then D outputs 
b←IDVrfy(σ', (IDS, IDV), m'). Let Abort denote the event  
that an abortion occurs in the above game and ∼Abort    
the negation of Abort. We have Pr[FG⇒π]=Pr[FG⇒π 
∧(∼Abort∨Abort)]=Pr[FG⇒π∧∼Abort]+Pr[FG⇒π∧Abort] 
=Pr[FG⇒π|∼Abort]·Pr[∼Abort]+Pr[FG⇒π∧Abort]. The first, 
second, and third equalities hold by the equivalent expansion.  

We have Pr[FG⇒π∧Abort]=0 because Abort means that 
the simulation is aborted and so the forger could not output 
IDS=ID1

* and IDV=ID2
* for a final forgery. Note that Abort 

does not occur if α and β are correctly guessed because the 
remaining parameters are identically distributed, and there will 
be no meaningful relation among random hash outputs and 
signatures except the given challenge key TK. The probability 
of the correct guess is Pr[∼Abort]≤2/qE(qE–1). If the given 
challenge TK is correct, that is, TK=sKS(IDV, skKS,IDS

), then the 
presented simulation is perfect. This means that forging on the 
target identities was successful and the resulting forgery was 
valid at least with the advantage of the forger. However, if TK 
was a random key, then the forger would get a negligible 
advantage in forging on the target identities. Let εIBKS be the 
(maximum) advantage of D attacking the IBKS with respect to 
key-indistinguishability. Thus, we have Pr[FG⇒π|∼Abort]=εIBKS. 
So, we have Pr[FG⇒π]=Pr[FG⇒π|∼Abort]·Pr[∼Abort]≤ 
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εIBKS·2/qE(qE–1). Hence, if εIBKS is negligible, then Pr[FG⇒π] is 
negligible.                                        □ 

Theorem 2. If a given IBKS scheme is correct, then the 
above IBDVS scheme is non-transferable. 

Proof. We show that there exists a simulator Sim such that 
no PPT adversary has a non-negligible advantage in 
distinguishing the distribution of signatures generated from real 
executions of the constructed IBDVS scheme with a signing 
key and that from the simulator Sim with a designated 
verifier’s secret key. Define Sim by  

(θ, τ)←Sim(IDS, skIDV
, m), 

where for a message m∈{0, 1}*, TK←sKS(IDS, skKS,IDV
),  

(kD, θ)←KEM-Enc(ppKEM, IDV), η←H(kD, TK), and   
τ←H(η, θ, m). By the correctness property of the given two-
party IBKS scheme, we have that TK=sKS(IDS, skKS,IDV

) 
=sKS(IDV, skKS,IDS

). So, the distribution of TK is identical in 
both Sim and IDSign algorithms. In addition, since the 
simulator uses the same KEM-Enc as in IDSign, the 
distribution of (kD, θ) is also identical in the Sim and IDSign 
algorithms. Therefore, η←H(kD, TK) and τ←H(η, θ, m) are 
identically distributed in the Sim and IDSign algorithms.   □ 

Theorem 3. If a given IBKEM scheme is semantically 
secure, then the above IBDVS scheme achieves self-
unverifiability in the random oracle model. 

Proof. We show that an IBDVS scheme constructed from the 
generic method presented above achieves self-unverifiability, 
that is, any PPT adversary gets a negligible advantage in the 
game for self-unverifiability, which is defined in section III.2. 
Using the so-called game-playing technique [19], we prove this 
theorem by considering a sequence of games. The first game is 
defined for the original self-unverifiability model, and the 
second game is defined as a modification of the first game, 
where a random key kr instead of kD computed in KEM-Enc is 
used to generate a signature for testing an adversary. For 
convenience, we denote by G0 and G1 the first and the second 
game in the random oracle, respectively. To complete the proof, 
we will show that any PPT adversary gets a negligible 
advantage in the second game, and G0 and G1 are identical 
except a negligible distribution. Let FG⇒bCG denote the   
event that an adversary F outputs a correct bit b in game    
G∈{G0, G1}. In the games, we assume that an adversary 
makes qS, qE, and qV queries to the Sign, Extract, and IDVrfy 
oracles, respectively. We also assume that hash queries are 
never repeated. 
 The game G0 is the original unforgeability game, which is 
defined in section III.2 with our specific IBDVS scheme. Next, 
we define the game more concretely. A challenger C runs the 
SetUp algorithm, that is, the Setup algorithms for IBKEM and 
IBKS to generate the master secret key msk=(mskKEM, mskKS) 

and its corresponding public parameters pp=(ppKEM, ppKS), and 
then give pp to an adversary F. The challenger answers F’s 
oracle queries as follows:  

- Hash. On a query <M>, pick h uniformly at random from 
{0, 1}λ, and return h. 

- Extract. On a query <ID>, return skID←KeyExtract(msk, 
ID), that is, skID=(skKEM,ID, skKS,ID) where skKEM,ID←KEM-
Ext(mskKEM, ID) and skKS,ID←KEM-Ext(mskKS, ID). 

- Sign. On a query <(IDS, IDV), m>, compute TK←sKS(IDV, 
skKS,IDS

). It also computes (kD, θ)←KEM-Enc(IDV) and (η, τ) 
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that 
is, η←H(kD, TK) and τ←H(η, θ, m). Finally, return σ←(θ, τ). 

- IDVrfy. On a query <σ, (IDS, IDV), m>, return b←IDVrfy 
(σ, (IDS, skV, IDV), m).  

When F submits ((IDS, IDV), m, m') as a challenge, the 
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0, 
then return σ←Sign(skS, IDV, m). Else if b=1, choose a random 
message m' and then return σ←Sign(skS, IDV, m'). The 
signature σ is given to the adversary F. We assume that F is 
already aware of the private signing key skS by querying IDS to 
Extract oracle. Finally, F outputs a guess bit b'. 

The game G1 is modified from the original game G0 
regarding the Sign and Extract oracle queries. The 
modification is described as follows:  

- Extract. On a query <ID>, return skID←KeyExtract(msk, 
ID).  

- Sign. On a query <(IDS, IDV), m>, compute TK←sKS(IDV, 
skKS,IDS

). It also computes (kD, θ)←KEM-Enc(IDV) and (η, τ) 
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that 
is, η←H(kD, TK) and τ←H(η, θ, m). Finally, return σ←(θ, τ). 

When F submits ((IDS, IDV), m, m') as a challenge, a bit b is 
chosen uniformly at random from {0, 1}. If b=0, then proceed 
as follows: Compute TK←sKS(IDV, skKS,IDS

) and (kD, θ) 
←KEM-Enc(IDV). Pick a random key kR, let kD=kR, and 
compute (η, τ) by querying <kD, TK> and <η, θ, m> to the hash 
oracle H, that is, η←H(kD, TK) and τ←H(η, θ, m). Then, return 
σ=(θ, τ). Else if b=1, choose a random message m' and then 
return σ←Sign(skS, IDV, m'). The signature σ is given to the 
adversary F. We assume that F is already aware of the private 
signing key skS by querying IDS to Extract oracle. Finally, F 
outputs a guess bit b'. 

We show that an adversary has a negligible advantage in 
distinguishing G0 and G1. Game G0 defines kD as the first 
component of sKS(IDV, skKS,IDS

), while game G1 defines it as 
a random key. Note that the other parameters of the two games 
are identically distributed. By assumption, the underlying 
IBKEM is semantically-secure. Let εIBKEM be the (maximum) 
advantage of an adversary attacking the IBKEM with respect to 
the semantic-security. We have Pr[FG0⇒bCG]–Pr[FG1⇒bCG] 



242   JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012 

≤εIBKEM.  
Next, we show that an adversary F succeeds, that is, guesses 

correctly the challenge bit b in the game G1 with negligible 
probability. A signature is defined as a hash output in the game 
G1. In the presented simulation of the random hash function H, 
it is easy to see that the hash outputs are distributed uniformly 
at random. Furthermore, the random key kD is completely 
unknown from the viewpoint of the adversary by construction. 
There is no meaningful relation among hash outputs and so 
signatures. So, the adversary is able to guess the random key 
with probability 1/γ, where γ is the size of the key space 
associated with the IBKEM. Typically, for security, γ should be 
sufficiently large, and so 1/γ is negligible.   

Therefore, summing up the above results, we have 
Pr[FG0⇒bCG] = (Pr[FG0⇒bCG]–Pr[FG1⇒bCG])+Pr[FG1⇒bCG]≤ 
εIBKEM+1/γ, that is, an adversary has a negligible advantage in 
the self-unverifiability game.                         □ 

4. Instance 

To illustrate that our method is effective, we present an 
example that uses the Boneh-Franklin IBKEM scheme with 
symmetric bilinear maps [15] and the non-interactive IBKS 
scheme [17]. The example is described as follows: 

- Setup. Let G be an additive group and GT a multiplicative 
group. Let e: G×G→GT be a symmetric bilinear map, where G 
and GT have prime order q. P is a random generator of G. The 
algorithm selects s∈Z*

q at random and computes Ppub←sP∈G. 
It also selects two collision-resistant cryptographic hash 
functions, H0:{0, 1}*→G and H:{0, 1}*→{0, 1}λ. The algorithm 
outputs the master secret key, msk=s, and its corresponding 
public parameters, params=(G, GT , q, e, P, Ppub, H0, H). 

- KeyExtract. For given identity ID, it computes QID 

=H0(ID)∈G and skID=skKEM,ID=skKS,ID←sQID. 
- IDSign. For given a message m∈{0, 1}*, verifier’s identity 

IDV, and signer’s secret key skIDS
=sH0(IDS), it computes 

QIDV
←H0(IDV)∈G and TK←e(skIDS

, QIDV
)∈GT. It selects 

r∈Z*
q and computes θ←rP∈G and kd←e (rPpub, QIDV

)∈GT. It 
computes η←H(kd∥TK) and τ←H(η∥θ∥m). The signature on 
a message m is σ=(θ, τ). 

- IDVerify. For a given signature σ=(θ, τ), message m, and 
verifier’s secret key skIDV

, it computes QIDS
←H0(IDS), 

TK'←e(QIDS
, skIDV

), k'D←e(θ, skIDV
), and η '←H(k'D∥TK'). It 

tests if H(η'∥θ∥m) ? τ holds. If the equality holds, then it 
outputs Valid; otherwise, it outputs Invalid. 

Figure 2 shows a concrete instance from our generic 
construction method using Boneh-Franklin’s IBKEM [15] and 
the non-interactive two-party IBKS scheme of [17]. 

As shown in [17], the non-interactive IBKS is semantically- 
secure under the hardness of the decisional bilinear Diffie- 

 

Fig. 2. Example from our generic method. 
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Table 1. Performance comparison. 

 Self-
unverifiability

Signature  
size (bits) Sign Verify 

[6] X 160 1P 1P 

[5] O 1,024 2P + 2EG 1P+1EG

[22] O 1,536 1P + 3EG 1P+1EG

Our generic 
scheme 

O 672 2P + 2EG 2P 

 

Hellman (DBDH) problem, which is one to distinguish 
whether t=abc or not, for given (P, aP, bP, cP, e(P, P) t), where 
e: G×G→GT is a bilinear map, P is a random generator of G, 
and a, b, c∈Z*

q. So, the above scheme achieves unforgeability 
by theorem 1. In addition, as shown in [15], [20], Boneh-
Franklin’s IBKEM is semantically-secure under the hardness 
of the computational bilinear Diffie-Hellman (CBDH) problem, 
which is one to compute t=abc or not, for given (P, aP, bP, cP),  
and so the DBDH problem. This implies our instance satisfies 
self-unverifiability by theorem 3. 

Remark 2. A simple combination between two-party 
identity-based authenticated key agreement schemes [16] and a 
keyed hash function would not achieve the self-unverifiability 
of an IBDVS scheme. There is a difference between the 
security models of our IBDVS scheme and the simple 
combination scheme. An adversary breaking the self-
unverifiability is not allowed to access a designated verifier’s 
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secret key in the security model of our IBDVS scheme but can 
access the secret key in that of the simple combination scheme. 
In addition, in contrast to key agreement schemes that typically 
permit interactive communication between participants, a 
standard IBDVS scheme should be constructed by one-way 
transmission from a signer. 

5. Comparative Analysis 

In this subsection, we compare our scheme in section IV.4 
with recent IBDVS schemes in terms of signature length and 
amount of computation. In this analysis, the hash function H is 
assumed to output a 160-bit value, that is, λ=160. Our strong 
IBDVS scheme yields a short signature of which length is 
almost half of that of the recent strong IBDVS scheme [5]. The 
DVS scheme of [5] uses a symmetric bilinear pairing map as 
our scheme. Thus, when 80-bit security level is considered, the 
512-bit representation for an element of G and the 1,024-bit 
representation for an element of GT should be required for the 
symmetric bilinear map [14], [16], [21]. Since a signature of 
[5] consists of an element in GT, the bit-length of [5] is 1,024 
bits while the bit-length of our signature is 672 bits because our 
signature consists of an element in G and a hash output. [6] 
does not support self-unverifiability and so is vulnerable to the 
signer key compromise. 

In Table 1, P and EG represents a pairing computation and a 
scalar multiplication of the group G, respectively. As shown in 
Table 1, the computation overhead of our scheme is the same 
as that of [5]. Finally, when more efficient IBKEM and IBKS 
are developed, we can simply replace them to obtain more 
efficient IBDVS with self-unverifiability. 

V. Conclusion 

We first showed that several recent strong IBDVS schemes 
do not achieve the self-unverifiability, that is, exposure of a 
signer’s secret keys infringes the designated verifier’s exclusive 
right of verifiability. To overcome the problem, we proposed a 
generic method to construct IBDVS schemes with the self-
unverifiability by combining an identity-based key 
encapsulation mechanism and a non-interactive identity-based 
key sharing scheme. Our method instantiates an IBDVS 
scheme that provides self-unverifiability with short signatures.  

In the future, we intend to investigate the construction of an 
efficient IBDVS with non-delegatability [23] or with more 
rigorous security notions [24].  
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