
ETRI Journal, Volume 34, Number 2, April 2012 © 2012 JuHee Ki et al. 235

An identity-based strong designated verifier signature
scheme provides restricted verifiability only for a verifier
designated by a signer and proper privacy for the signer.

In this paper, we show that strong designated verifier
signature schemes do not satisfy the self-unverifiability
requirement in the sense that not only exposure of the
verifier’s secret key but also of the signer’s secret key
enables an attacker to verify signatures, which should
have been the exclusive right of the verifier. We also
present a generic method to construct a strong identity-
based designated verifier signature scheme with self-
unverifiability from identity-based key encapsulation and
identity-based key sharing schemes. We prove that a
scheme constructed from our method achieves
unforgeability, non-transferability, and self-unverifiability
if the two underlying components are secure. To show the
advantage of our method, we present an example that
outputs short signatures and we analyze its performance.

Keywords: Identity-based designated verifier signature,
privacy, strongness, self-unverifiability.

Manuscript received Sept. 20, 2011; revised Dec. 2, 2011; accepted Dec. 15, 2011.
This work was supported by Next-Generation Information Computing Development

Program through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology in Korea (Grant No. 2011-0029925, Development of Data
Privacy Enhancing Technologies in Future Complex Computing Environments).

JuHee Ki (phone: +82 10 2719 6031, eye@keit.re.kr) is with the Information Security PD
Team, KEIT, Daejeon, Rep. of Korea.

Jung Yeon Hwang (videmot@etri.re.kr) and Beom-Hwan Chang (bchang@etri.re.kr) are
with the Cyber Security-Convergence Research Department, ETRI, Daejeon, Rep. of Korea.

DaeHun Nyang (nyang@inha.ac.kr) is with the Information Security Research Laboratory,
Inha University, Incheon, Rep. of Korea.

Dong Hoon Lee (donghlee@korea.ac.kr) and Jong-in Lim (jilim@korea.ac.kr) are with
CIST, Korea University, Seoul, Rep. of Korea.

http://dx.doi.org/10.4218/etrij.12.0111.0597

I. Introduction

Relaxing the non-repudiation property of a standard digital
signature, Jakobsson and others [1] introduced a specific type
of signature for signer ambiguity, called designated verifier
signature (DVS). A DVS scheme allows only a designated
verifier to confirm validity of a given signature. This limited
verifiability can be achieved by a sharing of signing capability
between a signer and a designated verifier; in other words, a
signature can be generated by not only a signer but also a
designated verifier. When a designated verifier receives a
signature from a signer, if the verifier did not generate the
signature, the verifier is able to confirm that the signature is
originated from the signer. Though anybody can publicly
verify the validity of a signature, one cannot confirm the exact
generator of this signature because both the signer and the
verifier have signing capability. Here, the validity means that a
signature has been generated either by a signer or by a
designated verifier. This security property is formally known as
non-transferability or simulatability [2]. In this sense, the non-
transferability property provides signer ambiguity. An identity-
based extension of a DVS scheme, say identity-based DVS
(IBDVS) scheme, has been proposed to enjoy the benefit that
an arbitrary public string such as an email address or a phone
number may be used as a user’s public key instead of requiring
public key certificates [3]. IBDVS schemes have various
cryptographic applications such as licensing software, auctions,
and electronic voting.

However, in most practical scenarios, a designated verifier
does not artificially generate a (designated verifier) signature
for non-transferability using a simulation algorithm. Based on
this belief, an adversary capturing a signature first transmitted

Constructing Strong Identity-Based Designated
Verifier Signatures with Self-Unverifiability

JuHee Ki, Jung Yeon Hwang, DaeHun Nyang, Beom-Hwan Chang,

Dong Hoon Lee, and Jong-in Lim

236 JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012

from a party would imply that the signature originated from the
sender, not a receiver, that is, a designated verifier. This helps
the adversary to decide who made a signature and to collect
critical information, such as the signer’s intention. To remedy
the privacy problem, a notion of strongness for a DVS scheme
has been introduced [1], [4]. Under this strongness notion,
public verifiability on a DVS is no longer permitted. Instead,
only a designated verifier can check the validity of a signature
using his or her secret key.

To enhance the privacy of an IBDVS, we allege that even the
signer must not be able to verify the validity of its own
signatures unless the signer saves signatures in its storage. By
this property, even the adversary who has a signer’s secret key
is not able to verify signatures. We call this privacy property
self-unverifiability because even the signer itself cannot verify
its own signatures, and the property will strictly separate
capabilities of signing key and verifying key. This property is
quite necessary because it is unfair to a verifier having the
exclusive right to verify signatures when a signer mistakenly or
intentionally loses its secret signing key to give the right to
others who obtain the signing key. In reality, signers frequently
lose their signing keys due to computer viruses, malicious
software, misconfigurations of related systems, and lost/stolen
portable devices. Therefore, without the self-unverifiability, a
signer’s poor management of its keys might infringe upon the
designated verifier’s exclusive right of verifiability.

To enhance the privacy of the signer by providing self-
unverifiability, we propose a generic method that constructs
strong IBDVS schemes with self-unverifiability as well as all
the functionalities of IBDVS. We also prove the security of this
method. Our design idea is to combine identity-based key
encapsulation mechanism (IBKEM) and non-interactive
identity-based key sharing (IBKS) schemes. In the generic
method, we can flexibly and independently combine any pair
of IBKEM and IBKS schemes irrespective of their underlying
structures or hardness assumptions. For example, an integer
factorization-based IBKEM and a pairing-based IBKS can be
combined together. The IBKEM is used to achieve exclusive
verifying capability, and the IBKS is used for signing.
Accordingly, a designated verifier has two capabilities,
decrypting (that is, verifying) and signing, and a signer has only
the signing capability. In addition to flexibility, our scheme
instantiated from the generic construction can output shorter
signatures than that of existing schemes [5], without adding
computational overhead.

Various IBDVS schemes have been suggested to achieve
strongness [5]-[7]. Several IBDVS schemes rely on a structure
to hide a signature using a key that both a signer and a
designated verifier (non-interactively) share [6], [8]-[10]. The
key can be computed using a signer’s or verifier’s static long-

term secret key. Applying the notion of a keyed hash function
to a DVS scheme, one of the schemes proposes a novel
method to offer very short signatures [6]. However, these
schemes fail to achieve self-unverifiability because they are
based upon the static structure of an IBKS method.

One of the promising applications is virus-free software
distribution, where a software company will provide validity of
signatures for corresponding software but only to clients who
buy this service [1]. Pirated software cannot be validated
correctly, even when a legal buyer of the software sends it with
his/her validation key, because the validation key can be used
for generating the signature for the software modified for some
malicious purpose.

The remainder of this paper is organized as follows. In
section II, we briefly review the strong IBDVS schemes in [6],
[11] and show that these schemes have security vulnerability in
terms of self-unverifiability. In section III, a formal security
model is presented. In section IV, we propose a generic method
of constructing an IBDVS scheme with self-unverifiability and
prove the security of this method. Finally, in section V, we give
concluding remarks.

II. Vulnerabilities in IBDVS Schemes

Using various cryptographic techniques, several IBDVS
schemes have been suggested to achieve strongness in
verifiability [5]-[7]. Some of them use a specific non-
interactive IBKS method between a signer and a designated
verifier [6], [8]-[10], where a key is computed with either a
signer’s or verifier’s static long-term secret key and used for a
keyed hash function.

We show that any IBDVS scheme that uses the specific
structure does not have the self-unverifiability. To illustrate our
idea, we briefly review the IBDVS scheme in [6]. The scheme
is described as follows:

- Setup. Let G and GT be additive and multiplicative groups,
respectively. Let e: G×G→GT be a bilinear map, where G and
GT have prime order q. Let P be a random generator of G,
s(∈Z*

q) is chosen at random, and Ppub=sP. The algorithm
selects two collision-resistant cryptographic hash functions,
H0:{0, 1}*→G and H1:{0, 1}*→Z*

q. It outputs the master secret
key, msk=s, and the public scheme parameters, params=(G, GT,
q, e, P, Ppub, H0, H1).

- KeyExtract. To extract a decryption key for identity
ID∈{0, 1}*, return skID=sQID, where QID=H0(ID).

- IDSign. To sign a message m∈{0, 1}* for a designated
verifier Bob, Alice computes QIDB

=H0(IDB)∈G, k=e(QIDB
,

skIDA
)∈GT, and σ=H1(m∥k). The signature on a message m is

σ.
- IDVerify. To verify the validity of a signature σ on a

ETRI Journal, Volume 34, Number 2, April 2012 JuHee Ki et al. 237

message m, the designated verifier Bob computes QIDA

=H0(IDA), k=e(QIDA
, skIDB

) and tests if H1(m∥k)? σ holds. If
the equality holds, then it outputs True; otherwise, it outputs
False.

To achieve the strong designated verifiability, the above
IBDVS scheme takes a simple approach, which is to use a key
(non-interactively) shared between a signer and a designated
verifier to authenticate a message. This method can be viewed
as a keyed hash function, that is, a standard MAC.

Although the scheme yields a short signature, the static
structure of the IBKS is vulnerable to exposure of the signer’s
secret key. This can be easily checked as follows. Assume that
an adversary F obtains a signer’s secret key, skIDA

. For a given
signature σ on a message m, F can compute k'=e(QIDB

, skIDA
)

=e(QIDB
, QIDA

)s and then check the validity of the signature by
σ=H1(m∥k').

A similar weakness exists in the recent IBDVS schemes [9]-
[11]. As illustrated above, the weakness is mainly caused by a
static structure of IBKS between a signer and a designated
verifier.

III. Security Model for an IBDVS Scheme

In this section, we present a formal security model for an
IBDVS scheme. In particular, we newly introduce a formal
notion of self-unverifiability.

1. Identity-Based Designated Verifier Signature Scheme

An IBDVS scheme consists of the following algorithms.
- Setup(1k). It takes as input a security parameter 1k, and then

outputs the master secret key msk and its corresponding public
parameters pp.

- KeyExtract(msk, ID). It takes as inputs the master secret
key msk and an identity ID, and then outputs a private signing
key skID.

- IDSign((skS, IDV), m). It takes as inputs a private signing
key skS, the identity of a designated verifier IDV, and a message
m, and then outputs a signature σ.

- IDVrfy(σ, (IDS, skV, IDV), m). It takes as inputs a signature
σ, the identities of a designated verifier and a signer (IDS, IDV),
a private signing key skV, and a message m, and then outputs 1
(Valid) or 0 (Invalid).

2. Security Model

We consider three secuirty properties for an IBDVS scheme:
unforgeability, non-transferability, and self-unverifiability. As
noted in the literature [12], unforgeability and non-
transferability correspond to “unforgeability” and “anonymity”

for a ring signature with a ring of two members, respectively.
Unforgeability. Informally, this notion means that any party

who cannot access private keys of a signer and a designated
verifier is not able to generate a signature. Next, we formally
define the notion of unforgeability.

An IBDVS scheme ∑ is said to be existentially unforgeable
under chosen identity-message attacks (CIMA) if no
probabilistic polynomial-time (PPT) adversary F has a non-
negligible advantage in the following game: For a security
parameter k, a challenger C runs SetUp to obtain the master
secret key msk and its corresponding public parameters pp; an
adversary F gets the public parameters; and the adversary F is
allowed to access to the following Sign, Extract, and IDVrfy
oracles to make polynomially-many queries adaptively. Here,
“adaptively” means that a query may depend on answers to the
previous queries.

- Sign. On a query <(IDS, IDV), m>, return σ←Sign(skS, IDV,
m).

- Extract. On a query <ID>, return skID←KeyExtract(msk,
ID).

- IDVrfy. On a query <σ, (IDS, IDV), m>, return
b←IDVrfy(σ, (IDS, skV, IDV), m).

Finally, F outputs ((IDS, IDV), m', σ'). Assume that σ' on ((IDS,
IDV), m') is valid, that is, 1←IDVrfy(σ', (IDS, IDV), m').

F succeeds in the above game if the following two
conditions hold; i) any of IDS and IDV has not been queried to
Extract oracle and ii) the ((IDS, IDV), m') tuple is not the same
as any of the tuples queried to Sign oracle. The event of the
success is denoted by SucForg. The EUF-CIMA advantage of F
for ∑ is defined by AdvF, ∑

EUF-CIMA(k)=Pr[SucForg].
Non-transferability. Informally, non-transferability means

that any third party except a signer and a designated verifier
cannot identify the real generator of a DVS. An IBDVS
scheme ∑ is said non-transferable if there exists no PPT
adversary that has a non-negligible advantage to distinguish the
distribution of signatures generated from real executions of the
scheme (with a secret signing key) and that of signatures from
the simulator Sim. Here, Sim takes as input ((IDS, skV), m), and
then outputs a simulated signature. More specifically, we
consider the following game: For a security parameter k, a
challenger C runs SetUp to obtain the master secret key msk
and its corresponding public parameters pp; an adversary F
gets the public parameters; and the adversary F is given access
to the following oracles to make polynomially-many queries
adaptively. Here, “adaptively” means that a query may depend
on answers to the previous queries.

- Sign. On a query <(IDS, IDV), m>, return σ'←Sign(skS, IDV,
m).

- Extract. On a query <ID>, return skID←KeyExtract(msk,
ID).

238 JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012

- IDVrfy. On a query <σ, (IDS, IDV), m>, return
b←IDVrfy(σ, (IDS, skV, IDV), m).

When F submits ((IDS, IDV), m) as a challenge, the
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0,
then return σ←Sign(skS, IDV, m); otherwise, return
σ←Sim((IDS, skV), m). The signature σ is given to the
adversary F. Finally, F outputs a guess bit b'.

F succeeds in the above game if b=b'. The event of the
success is denoted by SucNT. The advantage of F for ∑ is
defined by AdvF, ∑

Non-Trans(k)=Pr[SucNT].
Alternatively, we can define this notion using the

“anonymity” for a ring signature with a ring of two members
[12].

Self-unverifiability. The notion of signature privacy means
that the validity of a signature associated with a designated
verifier should be confirmed only with the designated verifier’s
secret key, where the adversary does not have an access to the
signing key. This notion is also known as strongness in the
literature [1], [4]. To enhance the signature privacy, we
introduce a stronger notion called self-unverifiability that
allows an adversary to access even a signing key. In other
words, self-unverifiability captures that the validity of a
signature associated with a designated verifier should be
confirmed only with the designated verifier’s secret key, even
when a signing key to be used to generate the signature is
exposed in the future. As shown in section II, some IBDVS
schemes achieve only signature privacy, not self-unverifiability.
Next, we formally define this notion.

For a security parameter k, a challenger C runs SetUp to
obtain the master secret key msk and its corresponding public
parameters pp. An adversary F gets the public parameters. The
adversary F is given access to the following oracles to make
polynomially-many queries adaptively. Here, “adaptively”
means that a query may depend on answers to the previous
queries.

- Extract. On a query <ID>, return skID←KeyExtract(msk,
ID).

- Sign. On a query <(IDS, IDV), m>, return σ'←Sign(skS, IDV,
m).

- IDVrfy. On a query <σ, (IDS, IDV), m>, return b←IDVrfy
(σ, (IDS, skV, IDV), m).

When F submits ((IDS, IDV), m, m') as a challenge, the
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0,
then return σ←Sign(skS, IDV, m); otherwise, return
σ←Sign(skS, IDV, m'). The signature σ is given to the adversary
F. We assume that F is already aware of the private signing key
skS by querying IDS to Extract oracle. Finally, F outputs a
guess bit b'.

F succeeds in the above game if (1) b=b', (2) IDV has never
been queried to Extract oracle, and (3) neither (σ, (IDS, IDV),

m) nor (σ, (IDS, IDV), m') have been queried to IDVrfy. The
event of the success is denoted by SucFSP. The advantage of F
for ∑ is defined by AdvF, ∑

FSP(k)=Pr[SucFSP].

IV. Our Generic Approach for Self-Unverifiability

To overcome the problem presented in section II, we propose
a generic method based on an IBKEM scheme and a non-
interactive two-party IBKS scheme. An IBKEM scheme is an
identity-based variant of an ordinary KEM [13], [14].

1. Two Cryptographic Primitives

Before describing our method in detail, we first review an
IBKEM scheme [14] and a non-interactive two-party IBKS
scheme that are used as the building blocks for our construction.

An IBKEM scheme consists of four algorithms: KEM-
Setup, KEM-Ext, KEM-Enc, and KEM-Dec.

- KEM-Setup. It takes as input a security parameter 1k, and
then outputs a master secret key mskKEM and its corresponding
public parameter ppKEM. KD is a plaintext space associated with
ppKEM.

- KEM-Ext. It takes as inputs the master secret key mskKEM
and an identity ID, and then outputs a secret key skKEM,ID.

- KEM-Enc. It is a PPT algorithm that on inputs of ppKEM
and an identity ID outputs a random ‘one-time’ key kD∈KD

and its ciphertext θ.
- KEM-Dec. It is a deterministic algorithm that on inputs of

a private key skKEM,ID and a ciphertext θ outputs a key kD.
Basically, it is required that an IBKEM scheme should

satisfy the correctness, that is, for given (mskKEM, ppKEM)
←KEM-Setup(1k), for any identity ID, skKEM,ID←KEM-
Ext(mskKEM, ID), and (kD, θ)←KEM-Enc(ppKEM, ID), we have
kD←KEM-Dec(skKEM,ID, θ). We say that an IBKEM scheme
IBKEM is semantically-secure if no PPT adversary can gain a
non-negligible advantage to guess a bit b for given kb, θ, where
(kD, θ)←KEM-Enc(ppKEM, ID), b is a randomly selected bit,
and if b=0, then kb=kD; otherwise, if b=1, kb is a random
number. Here, we assume that ID is chosen by an adversary.

Many identity-based encryption schemes can be represented
in the IBKEM/DEM framework [14]. As an example for an
IBKEM scheme, we can consider the Boneh-Franklin KEM
[15], where KEM-Enc is defined by (kD=e(QID, Ppub)r, θ=rP)←
KEM-Enc(ppKEM, ID) for random r∈Z*

q.
A (non-interactive) two-party IBKS scheme consists of three

algorithms: KS-Setup, KS-Ext, and sKS.
- KS-Setup. It takes as input a security parameter 1k and

then outputs a master secret key mskKS and its corresponding
public parameter ppKS.

- KS-Ext. It takes as inputs the master secret key mskKS and

ETRI Journal, Volume 34, Number 2, April 2012 JuHee Ki et al. 239

an identity ID and then outputs a secret key skKS,ID.
- sKS. It is a deterministic algorithm that takes as inputs a

user US’s secret key skKS,IDS
 and a user UV’s public identity IDV

and then outputs a key TK. The algorithm has symmetry of
computation for the participants. That is, given the user UV’s
secret key skKS,IDV

 and the user US’s public identity IDS, it
outputs the same key TK. That is, TK=sKS(IDV, skKS,IDS

)
=sKS(IDS, skKS,IDV

).
Basically, it is required that an IBKS scheme should

satisfy the correctness; that is, for any IDV and IDS,
skKS,IDS

←KS-Ext(IDS), skKS,IDV
←KS-Ext(IDV), we have

TK=sKS(IDV, skKS,IDS
)=sKS(IDS, skKS,IDV

).
We say that an IBKS scheme IBKS is key-indistinguishable

if no PPT adversary can gain a non-negligible advantage in the
following experiment with a simulator S: Initially, S sets up
system parameters for IBKS and gives the resulting public
parameters to the adversary F. Also, a secret key is properly
defined for each user. Next, S simulates an attack environment
for the IBKS scheme by providing Execute and Reveal
queries. The adversary F can get transcripts of an honest
execution of IBKS or a common key computed from an
execution of IBKS according to queries. When F issues Test
query for a pair of two identities, (ID1, ID2), S returns a value
Kb after selecting a random bit b∈{0, 1}, where K0 is a key
generated from an honest execution of IBKS with (ID1, ID2)
and K1 is a random number selected from a key space.

In contrast to normal IBKS schemes [16], the above IBKS
scheme does not require any communication between two
participants for sharing a key. As an example for a non-
interactive IBKS scheme, we can consider the two-party IBKS
scheme in [16], [17], which is essentially the same as that in the
previous section in that a shared key in the IBKS is defined by
e(QIDV

, skKS,IDS
)=e(QIDV

, QIDS
)s=e(skKS,IDV

, QIDS
).

2. Construction

We present a generic way to construct an IBDVS scheme
with self-unverifiability as follows: Assume that an IBKEM
scheme IBKEM=(KEM-Setup, KEM-Ext, KEM-Enc, KEM-
Dec) and a non-interactive two-party IBKS scheme
IBKS=(KS-Setup, KS-Ext, sKS) are given. Let H:{0, 1}*→
{0, 1} λ be a cryptographic hash function.

- Setup. It takes as input a security parameter 1k and then
performs the setup algorithms for IBKEM and IBKS,
respectively, that is, (mskKEM, ppKEM)←KEM-Setup(1k) and
(mskKS, ppKS)←KS-Setup(1k). The master secret key is
msk=(mskKEM, mskKS), and its corresponding public parameter
is pp=(ppKEM, ppKS).

- KeyExtract. It takes as input an identity ID and then
performs the key extract algorithms for IBKEM and IBKS,

that is, skKEM,ID←KEM-Ext(mskKEM, ID) and skKS,ID←KS-
Ext(mskKS, ID). A secret key for the identity ID is
skID=(skKEM,ID, skKS,ID).

- IDSign. It is a PPT algorithm that takes as inputs a message
m∈{0, 1}*, verifier’s identity IDV, and signer’s secret key skIDS

and then first computes TK←sKS(IDV, skKS,IDS

). It also
computes (kD, θ)←KEM-Enc(IDV), η←H(kD, TK), and
τ←H(η∥θ∥m). The signature on a message m is σ←(θ, τ).

- IDVerify. It takes as inputs a signature σ←(θ, τ), message
m, and verifier’s secret key skIDV

=(skKEM,IDV
, skKS,IDV

) and then
computes TK'←sKS(IDS, skKS,IDV

), k'D←KEM-Dec(ppKEM,
skKEM,IDV

, θ), and η'←H(k'D, TK'). It tests if H(η'∥θ∥m)? τ
holds. If the equality holds, then it outputs Valid; otherwise, it
outputs Invalid.

In the above construction, the use of the keys, kD and TK, are
intended to provide two security properties. The key kD is used
to achieve the self-unverifiability, which means that exposure
of a signer’s secret key does not compromise a MAC key η,
which is used in generation of a signature. Obviously, it will be
intractable to compute the key η=H(kD, TK) because it will be
intractable to compute kD without knowledge of skIDV

 if the
semantic security of a given IBKEM is guaranteed. The key
TK is used to achieve unforgeability against outside attackers
except a signer and a designated verifier.

In Fig. 1, we show a schematic diagram for our generic
construction of an IBDVS from an IBKEM scheme and a non-
interactive two-party IBKS scheme.

Remark 1. We note that our generic approach intrinsically
provides delegatability [18], which can be used for delegating
signing capability. In other words, if a long static key TK
shared between a sender and a receiver is given to a delegate,
he or she can make a signature on behalf of the signer.

Fig. 1. Generic construction of IBDVS.

IBDVS

Setup(1k) → (msk, pp)

msk=(mskKEM, mskKS)

pp=(ppKEM, ppKS)

KeyExtract(msk, ID) →skID

skID=(skKEM,ID, skKS,ID)

IBKEM

Setup

KEM-Ext(mskKEM, ID)
IDSign(m, IDV, skIDS) → σ

σ =(θ, τ)

KEM-Enc(IDV)

KEM-Dec(skKEM,IDV, θ)

Setup

IBKS

H=(η, θ, m)
H(kD, TK)

sKS-Ext(mskKS, ID)

sKS(IDV, skIDS)

sKS(IDV, skIDS)

IDVrfy(σ, m, skIDV) → 0 or 1

H(kD, TK)
Check if H=(η, θ, m)? τ =

240 JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012

3. Security

We prove that the IBDVS scheme constructed above
achieves existential-unforgeability, non-transferability, and self-
unverifiability.

Theorem 1. If a given IBKS scheme is key-
indistinguishable, then the above IBDVS scheme is
existentially unforgeable in the random oracle model.

Proof. We show that we can build an efficient distinguisher
D attacking the key-indistinguishability of the underlying IBKS
scheme by using a PPT forger F attacking the IBDVS scheme
constructed from the generic method.

Assume that the distinguisher D is given a public parameter
ppKS. Also, assume that qE and qS are the numbers of Extract
and Sign queries that an adversary can make to Extract and
Sign oracles, respectively. D first picks α and β uniformly from
{1,…, qE+qS} for two target identities that F will output as a
final forgery. Let ID1

* and ID2
* denote the α-th and β-th new

identities that are queried to either the Extract or Sign oracle,
respectively. D issues Test query for a pair of two identities
(ID1

*, ID2
*), and then gets back a challenge value Kb, where K0

is a key generated from an honest execution of the given IBKS
scheme with (ID1, ID2) and K1 is a random number selected
from a key space. The goal of the distinguisher D correctly
guesses the bit b by running F as a sub-algorithm.

The distinguisher D provides F with a simulation
environment for the unforgeability game as follows: Let FG⇒π
denote the event that an adversary F outputs a forgery π in this
unforgeability game; assume that an adversary F makes qS, qE,
and qV queries to the Sign, Extract, and IDVrfy oracles,
respectively; and we also assume that hash queries are never
repeated.

The challenger D first runs the SetUp algorithm of IBKEM
to generate the master secret key mskKEM and its corresponding
public parameters ppKEM. Define pp=(ppKEM, ppKS) and then
give pp to the adversary F. The challenger answers F’s oracle
queries as follows:

- Hash. On a query <M>, pick h uniformly at random from
{0, 1}λ, and return h.

- Extract. On a query <ID>, proceed as follows:
 (a) If ID=ID1

* or ID2
*, then abort the simulation.

 (b) Else if, return skID=(skKEM,ID, skKS,ID) by running
KEM-Ext, that is, skKEM,ID←KEM-Ext(mskKEM, ID) and
querying to the ExtractKS oracle for KS-Ext, that is,
skKS,ID←Extract KS(ID), where the ExtractKS(ID) is the oracle
to extract a secret key corresponding ID for KS-Ext of the
IBKS scheme.

- Sign. On a query <(IDS, IDV), m>, proceed as follows:
(a) If IDS=ID1

* and IDV=ID2
*, then compute (kD, θ)←KEM-

Enc(IDV) and (η, τ) by querying <kD, TK> and <η, θ, m> to

the hash oracle H, that is, η←H(kD, TK) and τ←H(η, θ, m),
where TK is the challenge that is given to D for IBKS in
advance. Finally, return σ←(θ, τ).

(b) Else if IDS≠ID1
* and IDV≠ID2

*, then compute TK←
sKS(IDV, skKS,IDS

) and (kD, θ)←KEM-Enc(IDV) and also (η, τ)
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that
is, η←H(kD, TK) and τ←H(η, θ, m), respectively. Finally,
return σ←(θ, τ).

(c) Else if (IDS≠ID1
*∧IDV=ID2

*) or (IDS=ID1
*∧IDV≠ID2

*),
then compute TK by computing TK=sKS(IDV, skKS,IDS

) or
sKS(IDS, skKS,IDV

). Note that we have TK=sKS(IDS, skKS,IDV
)

=sKS(IDV, skKS,IDS
) by the correctness of the given IBKS

scheme. Then, compute (kD, θ)←KEM-Enc(IDV) and also (η,
τ) by querying <kD, TK> and <η, θ, m> to the hash oracle H,
that is, η←H(kD, TK) and τ←H(η, θ, m), respectively. Finally,
return σ←(θ, τ).

- IDVrfy. On a query <σ, (IDS, IDV), m>, proceed as
follows:

(a) If IDS=ID1
* and IDV=ID2

*, then check the validity of the
given query by using the pre-images of σ=(θ, τ) and return b.

(b) Else if IDS≠ID1
* and IDV≠ID2

*, then return the result of
the IDVrfy, that is, b←IDVrfy(σ, (IDS, skV, IDV), m).

(c) Else if (IDS≠ID1
*∧IDV=ID2

*) or (IDS=ID1
*∧IDV≠ID2

*),
then according to the third condition in the above signing
oracle, check the validity of the given query and then return b.

Finally, F outputs π=((IDS, IDV), m', σ') and then D outputs
b←IDVrfy(σ', (IDS, IDV), m'). Let Abort denote the event
that an abortion occurs in the above game and ∼Abort
the negation of Abort. We have Pr[FG⇒π]=Pr[FG⇒π
∧(∼Abort∨Abort)]=Pr[FG⇒π∧∼Abort]+Pr[FG⇒π∧Abort]
=Pr[FG⇒π|∼Abort]·Pr[∼Abort]+Pr[FG⇒π∧Abort]. The first,
second, and third equalities hold by the equivalent expansion.

We have Pr[FG⇒π∧Abort]=0 because Abort means that
the simulation is aborted and so the forger could not output
IDS=ID1

* and IDV=ID2
* for a final forgery. Note that Abort

does not occur if α and β are correctly guessed because the
remaining parameters are identically distributed, and there will
be no meaningful relation among random hash outputs and
signatures except the given challenge key TK. The probability
of the correct guess is Pr[∼Abort]≤2/qE(qE–1). If the given
challenge TK is correct, that is, TK=sKS(IDV, skKS,IDS

), then the
presented simulation is perfect. This means that forging on the
target identities was successful and the resulting forgery was
valid at least with the advantage of the forger. However, if TK
was a random key, then the forger would get a negligible
advantage in forging on the target identities. Let εIBKS be the
(maximum) advantage of D attacking the IBKS with respect to
key-indistinguishability. Thus, we have Pr[FG⇒π|∼Abort]=εIBKS.
So, we have Pr[FG⇒π]=Pr[FG⇒π|∼Abort]·Pr[∼Abort]≤

ETRI Journal, Volume 34, Number 2, April 2012 JuHee Ki et al. 241

εIBKS·2/qE(qE–1). Hence, if εIBKS is negligible, then Pr[FG⇒π] is
negligible. □

Theorem 2. If a given IBKS scheme is correct, then the
above IBDVS scheme is non-transferable.

Proof. We show that there exists a simulator Sim such that
no PPT adversary has a non-negligible advantage in
distinguishing the distribution of signatures generated from real
executions of the constructed IBDVS scheme with a signing
key and that from the simulator Sim with a designated
verifier’s secret key. Define Sim by

(θ, τ)←Sim(IDS, skIDV
, m),

where for a message m∈{0, 1}*, TK←sKS(IDS, skKS,IDV
),

(kD, θ)←KEM-Enc(ppKEM, IDV), η←H(kD, TK), and
τ←H(η, θ, m). By the correctness property of the given two-
party IBKS scheme, we have that TK=sKS(IDS, skKS,IDV

)
=sKS(IDV, skKS,IDS

). So, the distribution of TK is identical in
both Sim and IDSign algorithms. In addition, since the
simulator uses the same KEM-Enc as in IDSign, the
distribution of (kD, θ) is also identical in the Sim and IDSign
algorithms. Therefore, η←H(kD, TK) and τ←H(η, θ, m) are
identically distributed in the Sim and IDSign algorithms. □

Theorem 3. If a given IBKEM scheme is semantically
secure, then the above IBDVS scheme achieves self-
unverifiability in the random oracle model.

Proof. We show that an IBDVS scheme constructed from the
generic method presented above achieves self-unverifiability,
that is, any PPT adversary gets a negligible advantage in the
game for self-unverifiability, which is defined in section III.2.
Using the so-called game-playing technique [19], we prove this
theorem by considering a sequence of games. The first game is
defined for the original self-unverifiability model, and the
second game is defined as a modification of the first game,
where a random key kr instead of kD computed in KEM-Enc is
used to generate a signature for testing an adversary. For
convenience, we denote by G0 and G1 the first and the second
game in the random oracle, respectively. To complete the proof,
we will show that any PPT adversary gets a negligible
advantage in the second game, and G0 and G1 are identical
except a negligible distribution. Let FG⇒bCG denote the
event that an adversary F outputs a correct bit b in game
G∈{G0, G1}. In the games, we assume that an adversary
makes qS, qE, and qV queries to the Sign, Extract, and IDVrfy
oracles, respectively. We also assume that hash queries are
never repeated.
 The game G0 is the original unforgeability game, which is
defined in section III.2 with our specific IBDVS scheme. Next,
we define the game more concretely. A challenger C runs the
SetUp algorithm, that is, the Setup algorithms for IBKEM and
IBKS to generate the master secret key msk=(mskKEM, mskKS)

and its corresponding public parameters pp=(ppKEM, ppKS), and
then give pp to an adversary F. The challenger answers F’s
oracle queries as follows:

- Hash. On a query <M>, pick h uniformly at random from
{0, 1}λ, and return h.

- Extract. On a query <ID>, return skID←KeyExtract(msk,
ID), that is, skID=(skKEM,ID, skKS,ID) where skKEM,ID←KEM-
Ext(mskKEM, ID) and skKS,ID←KEM-Ext(mskKS, ID).

- Sign. On a query <(IDS, IDV), m>, compute TK←sKS(IDV,
skKS,IDS

). It also computes (kD, θ)←KEM-Enc(IDV) and (η, τ)
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that
is, η←H(kD, TK) and τ←H(η, θ, m). Finally, return σ←(θ, τ).

- IDVrfy. On a query <σ, (IDS, IDV), m>, return b←IDVrfy
(σ, (IDS, skV, IDV), m).

When F submits ((IDS, IDV), m, m') as a challenge, the
challenger C picks a bit b∈{0, 1} uniformly at random. If b=0,
then return σ←Sign(skS, IDV, m). Else if b=1, choose a random
message m' and then return σ←Sign(skS, IDV, m'). The
signature σ is given to the adversary F. We assume that F is
already aware of the private signing key skS by querying IDS to
Extract oracle. Finally, F outputs a guess bit b'.

The game G1 is modified from the original game G0
regarding the Sign and Extract oracle queries. The
modification is described as follows:

- Extract. On a query <ID>, return skID←KeyExtract(msk,
ID).

- Sign. On a query <(IDS, IDV), m>, compute TK←sKS(IDV,
skKS,IDS

). It also computes (kD, θ)←KEM-Enc(IDV) and (η, τ)
by querying <kD, TK> and <η, θ, m> to the hash oracle H, that
is, η←H(kD, TK) and τ←H(η, θ, m). Finally, return σ←(θ, τ).

When F submits ((IDS, IDV), m, m') as a challenge, a bit b is
chosen uniformly at random from {0, 1}. If b=0, then proceed
as follows: Compute TK←sKS(IDV, skKS,IDS

) and (kD, θ)
←KEM-Enc(IDV). Pick a random key kR, let kD=kR, and
compute (η, τ) by querying <kD, TK> and <η, θ, m> to the hash
oracle H, that is, η←H(kD, TK) and τ←H(η, θ, m). Then, return
σ=(θ, τ). Else if b=1, choose a random message m' and then
return σ←Sign(skS, IDV, m'). The signature σ is given to the
adversary F. We assume that F is already aware of the private
signing key skS by querying IDS to Extract oracle. Finally, F
outputs a guess bit b'.

We show that an adversary has a negligible advantage in
distinguishing G0 and G1. Game G0 defines kD as the first
component of sKS(IDV, skKS,IDS

), while game G1 defines it as
a random key. Note that the other parameters of the two games
are identically distributed. By assumption, the underlying
IBKEM is semantically-secure. Let εIBKEM be the (maximum)
advantage of an adversary attacking the IBKEM with respect to
the semantic-security. We have Pr[FG0⇒bCG]–Pr[FG1⇒bCG]

242 JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012

≤εIBKEM.
Next, we show that an adversary F succeeds, that is, guesses

correctly the challenge bit b in the game G1 with negligible
probability. A signature is defined as a hash output in the game
G1. In the presented simulation of the random hash function H,
it is easy to see that the hash outputs are distributed uniformly
at random. Furthermore, the random key kD is completely
unknown from the viewpoint of the adversary by construction.
There is no meaningful relation among hash outputs and so
signatures. So, the adversary is able to guess the random key
with probability 1/γ, where γ is the size of the key space
associated with the IBKEM. Typically, for security, γ should be
sufficiently large, and so 1/γ is negligible.

Therefore, summing up the above results, we have
Pr[FG0⇒bCG] = (Pr[FG0⇒bCG]–Pr[FG1⇒bCG])+Pr[FG1⇒bCG]≤
εIBKEM+1/γ, that is, an adversary has a negligible advantage in
the self-unverifiability game. □

4. Instance

To illustrate that our method is effective, we present an
example that uses the Boneh-Franklin IBKEM scheme with
symmetric bilinear maps [15] and the non-interactive IBKS
scheme [17]. The example is described as follows:

- Setup. Let G be an additive group and GT a multiplicative
group. Let e: G×G→GT be a symmetric bilinear map, where G
and GT have prime order q. P is a random generator of G. The
algorithm selects s∈Z*

q at random and computes Ppub←sP∈G.
It also selects two collision-resistant cryptographic hash
functions, H0:{0, 1}*→G and H:{0, 1}*→{0, 1}λ. The algorithm
outputs the master secret key, msk=s, and its corresponding
public parameters, params=(G, GT , q, e, P, Ppub, H0, H).

- KeyExtract. For given identity ID, it computes QID

=H0(ID)∈G and skID=skKEM,ID=skKS,ID←sQID.
- IDSign. For given a message m∈{0, 1}*, verifier’s identity

IDV, and signer’s secret key skIDS
=sH0(IDS), it computes

QIDV
←H0(IDV)∈G and TK←e(skIDS

, QIDV
)∈GT. It selects

r∈Z*
q and computes θ←rP∈G and kd←e (rPpub, QIDV

)∈GT. It
computes η←H(kd∥TK) and τ←H(η∥θ∥m). The signature on
a message m is σ=(θ, τ).

- IDVerify. For a given signature σ=(θ, τ), message m, and
verifier’s secret key skIDV

, it computes QIDS
←H0(IDS),

TK'←e(QIDS
, skIDV

), k'D←e(θ, skIDV
), and η '←H(k'D∥TK'). It

tests if H(η'∥θ∥m) ? τ holds. If the equality holds, then it
outputs Valid; otherwise, it outputs Invalid.

Figure 2 shows a concrete instance from our generic
construction method using Boneh-Franklin’s IBKEM [15] and
the non-interactive two-party IBKS scheme of [17].

As shown in [17], the non-interactive IBKS is semantically-
secure under the hardness of the decisional bilinear Diffie-

Fig. 2. Example from our generic method.

IBDVS: Example

IBKEM IBKS

Setup Setup

KEM-Ext sKS-Ext

KEM-Enc
sKS

KEM-Dec

Setup(1k)→(msk, pp)

msk=s
pp=(e, G, GT, q, P, Ppub, H0, H)

KeyExtract(msk, ID) →skID

skID=sH0(ID)

sKS

IDSign(m, IDV, skIDS) → σ

σ=(θ=rP, τ=H(H(kD, TK), θ, m))

kD=e(rPpub, H0(IDV))
TK=e(skIDS, H0(IDV))

IDVrfy(σ, m, skIDV) → 0 or 1

η=H(kD, TK)
TK=e(H0(IDS),skIDV)
kD=e(θ, skIDV)

Check if H(η, θ, m)?τ =

Table 1. Performance comparison.

 Self-
unverifiability

Signature
size (bits) Sign Verify

[6] X 160 1P 1P

[5] O 1,024 2P + 2EG 1P+1EG

[22] O 1,536 1P + 3EG 1P+1EG

Our generic
scheme

O 672 2P + 2EG 2P

Hellman (DBDH) problem, which is one to distinguish
whether t=abc or not, for given (P, aP, bP, cP, e(P, P) t), where
e: G×G→GT is a bilinear map, P is a random generator of G,
and a, b, c∈Z*

q. So, the above scheme achieves unforgeability
by theorem 1. In addition, as shown in [15], [20], Boneh-
Franklin’s IBKEM is semantically-secure under the hardness
of the computational bilinear Diffie-Hellman (CBDH) problem,
which is one to compute t=abc or not, for given (P, aP, bP, cP),
and so the DBDH problem. This implies our instance satisfies
self-unverifiability by theorem 3.

Remark 2. A simple combination between two-party
identity-based authenticated key agreement schemes [16] and a
keyed hash function would not achieve the self-unverifiability
of an IBDVS scheme. There is a difference between the
security models of our IBDVS scheme and the simple
combination scheme. An adversary breaking the self-
unverifiability is not allowed to access a designated verifier’s

ETRI Journal, Volume 34, Number 2, April 2012 JuHee Ki et al. 243

secret key in the security model of our IBDVS scheme but can
access the secret key in that of the simple combination scheme.
In addition, in contrast to key agreement schemes that typically
permit interactive communication between participants, a
standard IBDVS scheme should be constructed by one-way
transmission from a signer.

5. Comparative Analysis

In this subsection, we compare our scheme in section IV.4
with recent IBDVS schemes in terms of signature length and
amount of computation. In this analysis, the hash function H is
assumed to output a 160-bit value, that is, λ=160. Our strong
IBDVS scheme yields a short signature of which length is
almost half of that of the recent strong IBDVS scheme [5]. The
DVS scheme of [5] uses a symmetric bilinear pairing map as
our scheme. Thus, when 80-bit security level is considered, the
512-bit representation for an element of G and the 1,024-bit
representation for an element of GT should be required for the
symmetric bilinear map [14], [16], [21]. Since a signature of
[5] consists of an element in GT, the bit-length of [5] is 1,024
bits while the bit-length of our signature is 672 bits because our
signature consists of an element in G and a hash output. [6]
does not support self-unverifiability and so is vulnerable to the
signer key compromise.

In Table 1, P and EG represents a pairing computation and a
scalar multiplication of the group G, respectively. As shown in
Table 1, the computation overhead of our scheme is the same
as that of [5]. Finally, when more efficient IBKEM and IBKS
are developed, we can simply replace them to obtain more
efficient IBDVS with self-unverifiability.

V. Conclusion

We first showed that several recent strong IBDVS schemes
do not achieve the self-unverifiability, that is, exposure of a
signer’s secret keys infringes the designated verifier’s exclusive
right of verifiability. To overcome the problem, we proposed a
generic method to construct IBDVS schemes with the self-
unverifiability by combining an identity-based key
encapsulation mechanism and a non-interactive identity-based
key sharing scheme. Our method instantiates an IBDVS
scheme that provides self-unverifiability with short signatures.

In the future, we intend to investigate the construction of an
efficient IBDVS with non-delegatability [23] or with more
rigorous security notions [24].

References

[1] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated Verifier

Proofs and Their Applications,” Proc. Eurocrypt, LNCS 1070,
1996, pp.142-154.

[2] F. Laguillaumie and D. Vergnaud, “Designated Verifiers
Signature: Anonymity and Efficient Construction from Any
Bilinear Map,” Proc. SCN, LNCS 3352, 2004, pp.107-121.

[3] A. Shamir, “Identity-Based Cryptosystems and Signature
Schemes,” Proc. Crypto, LNCS 196, 1984, pp.47-53.

[4] S. Saeednia, S. Kramer, and O. Markovitch, “An Efficient Strong
Designated Verifier Signature Scheme,” Proc. ICISC, LNCS
2869, 2003, pp. 40-54.

[5] J. Lee, J.K. Chang, and D.H. Lee, “Forgery Attacks on Kang et
al.’s Identity-Based Strong Designated Verifier Signature Scheme
and Its Improvement with Security Proof,” Comput. Electrical
Eng., vol. 35, 2009, pp. 49-53.

[6] X. Huang et al., “Short Designated Verifier Signature Scheme and
Its Identity-Based Variant,” Int. J. Network Security, vol. 6, no. 1,
2008, pp. 82-93.

[7] P.K. Kancharla, S. Gummadidala, and A. Sxaena, “Identity-Based
Strong Designated Verifier Signature Scheme,” Informatica, vol.
18, no. 2, 2007, pp. 239-252.

[8] X. Huang et al., “Short (Identity-Based) Strong Designated
Verifier Signature Schemes,” Proc. ISPEC, LNCS 3903, 2006,
pp. 214-225.

[9] W. Susilo, F. Zhang, and Y. Mu, “Identity-Based Strong
Designated Verifier Signature Schemes,” Proc. ACISP, LNCS
3108, 2004, pp. 313-324.

[10] J. Zhang and J. Mao, “A Novel ID-Based Designated Verifier
Signature Scheme,” Info. Sci., vol. 178, 2008, pp. 733-766.

[11] B. Kang, C. Boyd, and E. Dawson, “A Novel Identity-Based
Strong Designated Verifier Signature Scheme,” J. Syst. Software,
vol. 178, 2008, pp. 733-766.

[12] A. Bender, J. Katz, and R. Morselli, “Ring Signatures: Stronger
Definitions, and Constructions without Random Oracles,” Proc.
TCC, 2007, pp.60-79.

[13] M. Abe, R. Gennaro, and K. Kurosawa, “Tag-KEM/DEM: A
New Framework for Hybrid Encryption,” J. Cryptology, vol. 21,
no. 1, 2008, pp. 97-130.

[14] X. Boyen, “A Tapestry of Identity-Based Encryption: Practical
Frameworks Compared,” Int. J. Applied Cryptography, vol. 1, no.
1, 2008, pp. 3-21.

[15] D. Boneh and M. Franklin, “Identity-Based Encryption from the
Weil Pairing,” SIAM J. Comput., vol. 32, no. 3, 2003, pp. 586-
615.

[16] L. Chen, Z. Cheng, and N.P. Smart, “Identity-Based Key
Agreement Protocols from Pairings,” Int. J. Information Security,
vol. 6, no. 4, 2007, pp. 213-241.

[17] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosystems Based on
Pairing,” Symp. Cryptography Info. Security, Japan, 2000.

[18] Q. Huang et al., “Efficient Strong Designated Verifier Signature
Schemes without Random Oracles or Delegatability,” Cryptology

244 JuHee Ki et al. ETRI Journal, Volume 34, Number 2, April 2012

ePrint Archive: Report 2009/518, 2009.
[19] M. Bellare and P. Rogaway, “Code-Based Game-Playing Proofs

and the Security of Triple Encryption,” Proc. Eurocrypt, LNCS
4004, 2006, pp. 409-426.

[20] D. Boneh and M. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Crypto, LNCS 2139, pp. 213-229, Springer-
Verlag, 2001.

[21] S. Galbraith, K. Paterson, and N. Smart, “Pairings for
Cryptographers,” Discrete Applied Mathematics, vol. 156, no. 16,
2008, pp. 3113-3121.

[22] S. Sun et al., “A New Efficient ID-Based Strong Designated
Verifier Signature Scheme,” Proc. 3rd Int. Symp. Info. Sci. Eng.,
2010, pp. 137-141.

[23] Q. Huang et al., “Efficient Strong Designated Verifier Signature
Schemes without Random Oracle or with Non-delegatability,”
Int. J. Info. Security, vol. 10, no. 6, 2011, pp. 373-385.

[24] K. Yoneyama, M. Ushida, and K. Ohta, “Rigorous Security
Requirements for Designated Verifier Signatures,” Inscrypt,
LNCS 6584, 2011, pp. 318-335.

JuHee Ki received the BS in mathematics from
the University of Seoul and the MS in
information security from Korea University,
Rep. of Korea, in 2001 and 2003, respectively.
Since 2003, she has been a researcher of Korea
Evaluation Institute of Industrial Technology
(KEIT), Rep. of Korea. Her main research

interests include cryptography, broadcast encryption, digital signatures,
privacy-enhancing cryptography, identity-based cryptography,
attribute-based cryptography, and their applications.

Jung Yeon Hwang received the BS in
mathematics from Korea University, the MS
and PhD in information security from Korea
University, Seoul, in 1999, 2003, and 2006,
respectively. He was a post-doctoral researcher
at Korea University from 2006 to 2009. Since
2009, he has been a senior member of

engineering staff of ETRI, Rep. of Korea. Dr. Hwang’s research
interests include cryptography, broadcast encryption, digital signatures,
identity-based cryptography, privacy-enhancing cryptography,
attribute-based cryptography, and their applications.

DaeHun Nyang received the BEng in
electronic engineering from Korea Advanced
Institute of Science and Technology in 1994,
and the MS and PhD in computer science from
Yonsei University, Rep. of Korea, in 1996 and
2000, respectively. From 2000 to 2003, he was
a senior member of the engineering staff at

ETRI, Rep. of Korea. Since 2003, he has been an associate professor in
the Computer Information Engineering Department of Inha University,
Rep. of Korea, where he is also the founding director of the
Information Security Research Laboratory. He is a member of the
board of directors and editorial board of Korean Institute of
Information Security and Cryptology. Dr. Nyang’s research interests
include cryptography and information security, privacy, usable security,
biometrics and their applications to authentication, and public key
cryptography.

Beom-Hwan Chang received his BS, MS, and
PhD from Sungkyunkwan University, Rep. of
Korea, in 1997, 1999, and 2003, respectively.
Since 2003, he has been a senior researcher with
the software research laboratory, ETRI, Daejeon,
Rep. of Korea. His research interests include
network security, programmable network,

situation awareness, and security visualization.

Dong Hoon Lee received the BS from the
Department of Economics at Korea University,
Seoul, in 1985, and the MS and PhD in
computer science from the University of
Oklahoma, Norman, in 1988 and 1992,
respectively. Currently, he is a professor and the
vice director of the Graduate School of

Information Security at Korea University. His main research interests
include the design and analysis of cryptographic protocols in key
agreement, encryption, signature, embedded device security, and
privacy-enhancing technology.

Jong-in Lim received the BS, MS, and PhD in
the Department of Mathematics, Korea
University, Seoul, in 1980, 1982, and 1986.
Currently, he is a professor and dean of the
Graduate School of Information Security, Korea
University. Also, he is a former President of the
Korea Institute of Information Security and

Cryptography. His main research interests include information security
policy, cyber warfare, convergence security, privacy, and cryptography.

	I. Introduction
	II. Vulnerabilities in IBDVS Schemes
	III. Security Model for an IBDVS Scheme
	IV. Our Generic Approach for Self-Unverifiability
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

