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In this paper, we present the fabrication of 40 Gb/s 
traveling-wave electroabsorption modulator-integrated 
laser (TW-EML) modules. A selective area growth method 
is first employed in 40 Gb/s EML fabrication to 
simultaneously provide active layers for lasers and 
modulators. The 3 dB bandwidth of a TW-EML module is 
measured to be 34 GHz, which is wider than that of a 
lumped EML module. The 40 Gb/s non-return-to-zero eye 
diagram shows clear openings with an average output 
power of +0.5 dBm. 
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I. Introduction 

High speed electroabsorption modulator-integrated lasers 
(EMLs) have attracted much attention as a good solution for  
40 Gb/s optical transmission systems because of the beneficial 
properties of electroabsorption modulators (EAMs), such as 
small size, high modulation frequencies, and low driving 
voltage operations [1], [2]. Several integration processes, such 
as butt-coupling, selective area growth (SAG), and vertical 
mode coupling, were reported with the aim of process 
simplicity together with high device performance [1]-[3]. 
Recently, 40 Gb/s commercial EML modules utilizing a butt-
coupling integration method have been introduced in the 
market [1]. Although this approach allows independent 
optimization of the laser and modulator active layers, it seems 
difficult to get a reproducible joint geometry due to critical 
etching and regrowth steps. Even though there have been no 
reports on 40 Gb/s SAG-EML applications due to rather strict 
design margins for realizing lasers and 40 Gb/s EAMs at the 
same time, the successful adoption of SAG methods would 
drastically lower the fabrication cost due to simpler and more 
reproducible processing steps and help the rather expensive  
40 Gb/s EMLs penetrate into the market.   

In this paper, we present 40 Gb/s traveling-wave EML (TW-
EML) modules fabricated using an SAG method, which 
demonstrate a wide 3 dB bandwidth of over 40 GHz and a 
high extinction ratio of about 15 dB at a modulator bias voltage 
of –3 V. The TW-EML module shows a 3 dB bandwidth of  
34 GHz, which is wider than that for a lumped EML  

40 Gb/s Traveling-Wave Electroabsorption  
Modulator-Integrated DFB Lasers Fabricated Using 

Selective Area Growth 

 Yong-Hwan Kwon, Joong-Seon Choe, Jae-Sik Sim, Sung-Bock Kim, HoGyeong Yun, 
Kwang-Seong Choi, Byung-Seok Choi, and Eun-Soo Nam  



766  Yong-Hwan Kwon et al. ETRI Journal, Volume 31, Number 6, December 2009 

 

Fig. 1. SEM image of TW-EML. 
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module, and clear 40 Gb/s non-return-to-zero (NRZ) eye 
diagrams.  

II.  Device Structure and Fabrication 

An SEM image of the TW-EML is shown in Fig. 1. The 
DFB laser and EAM are 400 µm and 100 µm long, 
respectively. Different active regions of these devices, whose 
operating wavelengths are 1,550 nm and 1,500 nm, 
respectively, were obtained by an SAG method. The total 
intrinsic waveguide thickness of the EAM region was 
determined to be 0.25 µm including seven compressive-
strained 55 Å InGaAsP quantum wells (QWs) (λ = 1.6 µm,   
ε = –0.35%), tensile-strained 80 Å InGaAsP barriers (λ =   
1.2 µm, ε = 0.45%), and a separate confinement heterostructure 
(SCH). The small number of QWs for EAM was chosen to 
make a uniform E-field across each QW and to improve carrier 
sweeping out from the QW region [4]. Although the thicker 
SCH layer is favorable in view of RC-time limitation, a 
relatively thin SCH layer (about 750 Å each) for the EAMs 
was used based on experimental optimization conditions of 
DFB laser operations. The optimized DFB laser active regions 
were composed of seven compressive-strained 65 Å InGaAsP 
QWs (λ = 1.67 µm, ε = –0.48%), tensile-strained 95 Å 
InGaAsP barriers (λ = 1.25 µm, ε = 0.33%), and an SCH layer. 
The DFB laser and EAM were electrically isolated by an    
80 µm long isolation trench, and an isolation resistance of 
about 20 kΩ was acquired. The single　  reverse-mesa-ridge 
structure was adopted to ensure a small series resistance for the 
DFB laser and low capacitance for the EAM [5]. The widths of 
the mesa bottom were 2 µm and 1.5 µm for the DFB laser and 
the EAM, respectively. Polyimide was used to passivate the 
exposed interface and planarize the surface, which was 
followed by SiNx thin film deposition. The total thickness of 
the polyimide layer was 3.5 µm, and its width was 50 µm; thus,  

 

Fig. 2. Static extinction curve of TW-EML chips as a function of 
modulator bias voltage at a DFB laser current of 60 mA. 
In the inset, optical spectrum is shown. 
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it only covered the nonplanar regions around the reverse mesa. 
P-type and n-type contacts were both made on the top side of 
the semi-insulating InP substrate. A TW electrode was 
procured to overcome the RC-time limitation caused by the 
comparatively thin (0.25 µm) intrinsic waveguide thickness of 
the EAM. The TW electrode has both signal line and spacing 
widths of 4 µm on the reverse mesa, which were optimized in 
the FDTD simulations and confirmed through experiments. 
For a comparison study, a lumped electrode with a signal line 
width of 4 µm was also prepared using the same processing 
steps. Finally, TiO2/SiO2 layers were deposited as an anti-
reflection coating after the cleaving process.  

III. Device Characteristics 

The threshold current of the TW-EML was 18 mA, and the 
fiber-coupled optical output was 5 dBm at a laser current of  
60 mA and a modulator bias voltage of 0 V at 25oC. As shown 
in the inset of Fig. 2, a high side-mode-suppression ratio of   
45 dB was obtained at a 60 mA laser current level [6]. Figure 2 
shows a static extinction ratio of over 15 dB at an applied 
modulator bias voltage of –3 V, which shows a high extinction 
per volt for this small number of QWs [4].  

For high-speed measurement over 40 GHz, we employed an 
Anritsu 87300C 65 GHz vector network analyzer (VNA) and a 
calibrated optical receiver. A ground-signal-ground coplanar-
type probe from GGB Industries Inc. was used for on-chip 
measurements [7], [8]. The microwave and E/O modulation 
frequency responses of the TW-EML chips under 50 Ω  



ETRI Journal, Volume 31, Number 6, December 2009 Yong-Hwan Kwon et al.  767 

 

Fig. 3. (a) Transmission and reflection characteristics and (b) E/O
modulation characteristics of TW-EML chips. Solid line
represents simulated E/O responses derived from lumped
EAM equivalent circuit model for comparison. 
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termination are shown in Figs. 3(a) and (b), respectively. On-
chip E/O and S21 measurements for the lumped EML chips 
were not accessible in our study; therefore, an E/O response 
simulation for lumped EML chips was performed as a 
comparison. The S21 and E/O 3 dB bandwidths for the TW-
EML chips were measured to be 45 GHz and about 40 GHz, 
respectively. That of S11 remained below –10 dB up to 50 
GHz. The fluctuations in E/O response data above 40 GHz 
seen in Fig. 3(b) were attributed to the combined effect of the 
sharp increase in the noise level of the VNA and the decrease 
in the optical receiver gain in this high-frequency region. The 
E/O response for the lumped EML was simulated using an 
equivalent circuit model for a lumped EAM, as shown in Fig. 4, 
and was compared with TW-EML data as in Fig. 3(b) [9]. 
Measured values of 20 Ω and 0.1 pF were used for series 
resistor rs and capacitor Cm of the EAM, and a matching 
resistance of 50 Ω was used as a shunt resistor Rp. This 
comparison study could indicate the probable increase in the 
E/O bandwidth of a TW electrode in comparison with a  

 

Fig. 4. Equivalent circuit model for lumped EAM. 
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Fig. 5. (a) E/O frequency response and (b) S11 characteristics of 
TW-EML and lumped EML modules. 
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lumped electrode, even though the epistructures and device 
structures are shared. 

We fabricated EML modules consisting of EML chips, a 
ceramic submount, a two-lens system for optical alignment, a 
thermoelectric cooler, and a monitor-photodiode [10], [11]. For 
comparison, modules with EML chips with lumped electrodes 
were also prepared. Figure 5 shows the E/O response and 
electrical return loss S11 of the TW-EML and lumped EML 
modules, respectively. In comparison with the chip 
characteristics, the microwave characteristics were degraded 
due to packaging-induced parasitics and transmission line 
losses on the ceramic submount. S11 was observed to be  
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Fig. 6. 40 Gb/s NRZ eye diagram. 
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less than –10 dB in the frequency range up to 28 GHz and 16 
GHz for the TW modules and lumped modules, respectively. 
The larger electrical return loss with the lumped electrode was 
attributed to the signal electrode structure which has two open-
ended terminations. In addition to the smaller S11, the TW 
effect mitigating the RC-time-limitation could account for the 
wider E/O 3 dB bandwidth of 34 GHz for the TW-EML 
modules, which was wide enough for 40 Gb/s applications. A 
40 Gb/s NRZ eye measurement result for the TW-EML 
module is shown in Fig. 6. The DFB-LD current and EAM 
bias were set to 60 mA and –1.5 V, respectively, and a 
modulator driver with 3.0 V output voltage was used. NRZ eye 
diagrams with clear eye openings and a relatively high output 
power of +0.5 dBm were obtained. Little overshoot 
phenomena was observed and could be partially attributed to 
the insufficient anti-reflection coating. It can be enhanced by 
improving the coating process and/or the adoption of an InP 
window layer in the front facet [7]. 

VI. Conclusion 

We developed 40 Gb/s TW-EMLs by a simplified process 
adopting an SAG method and a single reverse-mesa-ridge 
structure. The 3 dB bandwidth of the E/O frequency responses 
of TW-EML chips reached over 40 GHz, and a high extinction 
ratio of over 15 dB was obtained at an EAM bias of –3 V. The 
TW-EML module showed superior characteristics of an E/O   
3 dB bandwidth of 34 GHz and a low electrical return loss S11 
of < –10 dB up to 28 GHz, in comparison with a lumped EML 
module. 
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