
784 Sukho Lee et al. © 2009 ETRI Journal, Volume 31, Number 6, December 2009

We present a full HD (1080p) H.264/AVC High Profile
hardware encoder based on fast motion estimation (ME).
Most processing cycles are occupied with ME and use
external memory access to fetch samples, which degrades
the performance of the encoder. A novel approach to fast
ME which uses shared multibank memory can solve these
problems. The proposed pixel subsampling ME algorithm
is suitable for fast motion vector searches for high-quality
resolution images. The proposed algorithm achieves an
87.5% reduction of computational complexity compared
with the full search algorithm in the JM reference
software, while sustaining the video quality without any
conspicuous PSNR loss. The usage amount of shared
multibank memory between the coarse ME and fine ME
blocks is 93.6%, which saves external memory access
cycles and speeds up ME. It is feasible to perform the
algorithm at a 270 MHz clock speed for 30 frame/s real-
time full HD encoding. Its total gate count is 872k, and
internal SRAM size is 41.8 kB.

Keywords: H.264/AVC, High Profile, encoder, fast
motion estimation, shared multibank memory, rate
distortion (RD).

Manuscript received Apr. 21, 2009; revised June 29, 2009; accepted July 14, 2009.
This work was supported by the IT R&D program of MKE/IITA, Rep. of Korea (2007-S-

026-02, Multi-format multimedia SoC based on MPCore Platform).
Sukho Lee (phone: +82 42 860 6171, email: shlee99@etri.re.kr) and Seongmo Park (email:

smpark@etri.re.kr) are with the Convergence Components & Materials Research Laboratory,
ETRI, Daejeon, Rep. of Korea.

Jongwon Park (email: jwpark@cnu.ac.kr) is with the Department of Information
Communications Engineering, Chungnam National University, Daejeon, Rep. of Korea.

doi:10.4218/etrij.09.1209.0007

I. Introduction

H.264/AVC High Profile [1] is known to achieve a
significant improvement in rate-distortion efficiency compared
with existing standards and is designed for broadcast TV over
cable/DSL/satellite, IP set-tops, and HD-DVD/Bluray-DVD
recorders [2]. There are essential coding tools for High Profile
H.264/AVC encoding: inter-prediction, intra-prediction,
deblocking, and entropy coding tools. Among them, motion
estimation (ME) for inter-prediction has high computational
complexity because it thoroughly searches the motion vector
(MV) for all possible candidate macroblocks (MBs). Therefore,
it generally chooses the performance of the encoder,
particularly when implemented in hardware. It is also more
complex in cases of high resolution video such as full HD.

1. Motivation of This Work

Recently, a variety of algorithms have been employed to
reduce the computational complexity of inter-prediction or ME.
A fast inter-mode decision algorithm [3] uses a thresholding
method and early stop of the inter-mode determination.
Another fast MB mode decision algorithm is described in [4],
while [5] presents fast inter-mode selection using a hierarchical
decision process. Their common approach quickly decides the
inter-mode using termination algorithms based on temporal
correlation through statistical analysis. The fast ME proposed
in [6] also adopts a similar early termination strategy according
to the threshold value of minimum cost (MCOST). The
complex optimizing ME in [7] demonstrates the complexity
control by MB partitions with variable block sizes, and fast
full-pel ME for variable block sizes is described in [8]. Also,
computational complexity management for real-time

270 MHz Full HD H.264/AVC High Profile Encoder with
Shared Multibank Memory-Based Fast Motion Estimation

 Sukho Lee, Seongmo Park, and Jongwon Park

ETRI Journal, Volume 31, Number 6, December 2009 Sukho Lee et al. 785

H.264/AVC encoding is presented in [9] and [10]. A novel
processing element (PE) design for ME architecture is
introduced in [11]. However, because most of the previous
works focus on fast inter-mode decisions and size reduction,
they have potential drawbacks in that they do not always
conduct accurate ME compared with the full search algorithm
and are not suitable for various images because they are based
on statistical data. Besides, they suffer from quality loss in
some cases. To solve these problems, we have contrived a
novel approach for full-search-based fast ME and its hardware
implementation. The proposed pixel subsampling ME
algorithm is suitable for ME for high-quality resolutions and
sustains video quality without noticeable PSNR loss. Also, it
reduces computational complexity more than prior works. The
designed ME block has internal shared multibank memory
between coarse ME (MEC) and fine ME (MEF) subblocks,
which reduces the number of data fetch cycles from the
external memory.

2. Brief Introduction of ME

ME is carried out in a video encoder and has a significant
effect on encoder performance. A good prediction reference
choice minimizes the energy in the motion-compensated
residual, which in turn maximizes the compression
performance. ME, therefore, aims to find a match to the current
block or region that minimizes the energy in the motion
compensated residual (the difference between the current block
and the reference area) [12]. For an M×N block, the sum of the
absolute difference (SAD) to estimate the MV is calculated by

1 1
(, ()) | (,) (,) |

M N

x y
x y

SAD c r m c x y r x m y m
= =

= − − −∑ ∑ , (1)

where c is the original current MB, and r is the predicted
reference MB at the position designated by candidate MV m in
the reference picture considered. Finally, a predicted MV that
has a minimum SAD is expressed as

(,) min((, ()).x yMV m m SAD c r m= (2)

Full search ME, which calculates the SAD and searches the
MV for all candidate positions from the top-left of the window
(position [-X, -Y]) to the bottom-right (position [X, Y]) through
a raster search order, is computationally intensive and not
applicable to power-limited and real-time applications [12].
Thus, the choice of its algorithm depends on the platform and
on whether the ME is block-based or region-based.

Section II analyzes the experimental results of exploring
optimal parameters to implement the proposed H.264/AVC
High Profile encoder and describes our proposed searching
algorithm in detail. The entire proposed pipeline architecture

and ME structure for inter-prediction are presented in
section III. Section IV shows the implementation results. A
performance comparison of rate distortion (RD) is described in
section V. Finally, conclusions are drawn in section VI.

II. Proposed Algorithm and Complexity Management

We have thoroughly experimented on various conditions
using the JM13.2 reference software [13] in order to seek
optimal parameters for the hardware implementation of the
High Profile H.264/AVC encoder. On the basis of these results,
the presented hardware encoder was designed. Because most
processing cycles are occupied in ME for inter-prediction, we
have thought out the pixel subsampling ME algorithm and its
architecture to mitigate the computational complexity of
hardware.

1. Block-Based ME

Full search ME involves calculating SAD in (1) at each point
in the search window, that is, ±S samples around the current
MB position (0, 0). It is guaranteed to find the minimum SAD
in the search window, but it is computationally intensive since
the energy measure must be calculated at every (2S+1)2
location.

In full search ME, the first search location is at the top-left of
the window (position [-S, -S]), and the search proceeds in raster
order until all positions have been evaluated. Many fast search
algorithms have been proposed, such as logarithmic search and
hierarchical search. In each case, the performance of the
algorithm can be evaluated by a comparison with full search [12].

2. Prior Three-Step Search vs. Full Search Algorithm

In the three-step search presented in our prior work [14], ME
is carried out by skipping two pixel (2-pel) units so that there is
occasionally a possibility of searching an inaccurate MV in the
horizontal and vertical directions (X/Y-direction) if an image
includes a higher frequency component. For this reason, it is
necessary to search an accurate MV using fewer steps.
However, because this kind of small step ME increases
hardware cost, various methods are considered: a search
method using a 1-pel unit search in the X direction and a 2-pel
unit search in the Y direction, or using 1-pel in both the X and Y
directions. In the latter case, the window size of Y is half that of
X because movement in the Y direction is generally small in
most video images, whereas movement in the X direction is
large in the human visual system.

We first compare the existing hierarchical search algorithm
with the full search algorithm by various anchor values using

786 Sukho Lee et al. ETRI Journal, Volume 31, Number 6, December 2009

JM13.2 reference software. To judge the algorithm itself, the
test conditions and remaining default settings in JM13.2 are
used. Table 1 shows the main test conditions. An iterative
experiment using various test conditions is performed for CIF
to 1080p images. Tables 2 and 3 demonstrate the results of the
performance comparison for two search modes.

We have deliberated on SearchRange as well as
NumberReferenceFrames and NumberBFrames because its
parameters particularly affect PNSR loss for high quality
sequences. As shown in Table 2, average ΔY-PSNR loss of
SearchRange 16 compared to 128 is –0.14 dB on JM13.2 full
search condition. In Table 3, ΔY-PSNR between
NumberReferenceFrames 1 and 3 is –0.20 dB on JM13.2 full
search condition. If the encoder supports three reference frames
as shown Table 3, the internal SRAM is increased by three
times (9 kB), and ME processing cycles also increase by three
times (1,536 cycle/MB) compared to ME with one reference
frame in case of B frame. It needs a 519 MHz clock frequency
(an additional 1,024 cycle/MB is added to a 1,100 cycle/MB in
the proposed design) for 30 frame/s full HD encoding. Actually,
because it is true that ME with multiple reference frames
increases coding efficiency even if it needs more processing
cycles and higher clock frequency, the proposed design can be
configured to support multiple reference frames by appending
an extra SRAM and merely adding a multiple reference ME
stage to the top scheduler. Additionally, ΔY-PSNR between B
frames number one and three is –0.04 dB. However, because
the proposed High Profile H.264 encoder is a dedicated
hardware for real-time encoding, ME with a wide search range
and multiple reference frames is too computationally intensive
for many practical applications such as computation or power-
limited applications. Therefore, we have prudently chosen a
search range and reference frame numbers and considered the
optimized parameters for hardware implementation because

Table 1. Main test conditions in JM13.2 reference software.

Parameters Anchor value

DisableSubpelME 0 (quarter-pel)

SearchRange 16

NumberReferenceFrames 1

InterSearchSize InterSearch16×16

NumberBFrames 1

DirectModeType 1

RDOptimization 0

SearchMode 0 (fast full search)

RateControlEnable 1

there is not a serious PNSR loss. Optimal parameters for
hardware complexity are adopted on the basis on these test
results except for SearchMode. This is because the full search
method consumes a great deal of processing cycle, which is not
appropriate for real-time applications, and the prior three-step
search method incurs more quality loss.

3. Proposed Pixel Subsampling ME Algorithm and Complex
Management

As shown in Tables 2 and 3, the prior three-step search [14]
deteriorates ΔPSNR by more than 1.0 dB in the CITY and
MOBCAL images, which have a greater number of high-
frequency and complex components. To resolve this problem,
we contrived four candidate methods for ME and finally
selected one novel approach considering the hardware
complexity.

Table 4 shows the four proposed search methods. Actually,
the search range of method 1 is –16 to +15 in the horizontal
direction and –8 to +7 in the vertical direction. Its search steps
are (1-pel, 1-pel) in the x and y directions, respectively, and the
subsampling ratio is (1, 2) as expressed in Table 4.

For an (x, y) position of a pixel in an M × N block in the
search window, let x′ be the subsampled position designated by
candidate MV mx toward the x direction, and let y′ be the
subsampled position designated by the candidate MV my
toward the y direction. Then,

2 1, odd position
2 , even position,

x

x

x m
x

x m
− ±⎧

′ = ⎨ ±⎩

2 1, odd position

2 , even position.
y

y

y m
y

y m

− ±⎧⎪′ = ⎨ ±⎪⎩

The SADs for the four kinds of methods are calculated as
follows.

For method 1,
2

1 1
(, ()) | (, 2 1) (,) | .

NM

x y
x y

SAD c r m c x y r x m y m
= =

′= − − − −∑ ∑

(3)
For method 2,

/2 /2

1 1
(, ()) (2 1,2 1) ().

M N

x y
x y

SAD c r m c x y r x m y m
= =

′ ′= − − − − −∑ ∑

(4)
For method 3,

2 2

1 1
(, ()) | (2 1,2 1) (' , (2 1)) | .

M N

x y
x y

SAD c r m c x y r x m y m
= =

= − − − − − −∑ ∑

(5)

ETRI Journal, Volume 31, Number 6, December 2009 Sukho Lee et al. 787

Table 2. Performance comparison of SearchRange on a JM13.2 reference encoder for IBPBP sequences.

Condition Sequences Full search with SR 16 in JM13.2 Full search with SR 128 in JM13.2 PSNR loss
Search
Range

Contents
Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
time (s)

Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
time (s)

ΔY-PSNR
(dB)

CITY (4CIF) 1048.10 32.71 41.46 43.90 177.42 1045.81 32.72 41.40 43.73 2879.48 -0.01
CREW (4CIF) 1077.98 34.82 40.59 40.32 179.05 1071.60 34.39 39.89 39.55 2684.17 0.43

HARBOUR (4CIF) 1259.63 29.86 40.12 41.72 177.36 1054.61 29.33 40.00 41.62 2735.07 0.53
ICE (4CIF) 1033.36 38.93 45.67 46.31 176.86 1034.74 39.47 45.74 46.19 2418.96 -0.54

SOCCOR (D1) 1093.63 31.26 40.79 42.63 176.37 1046.20 32.13 41.26 43.01 3245.25 -0.87
MOBCAL (720p) 2110.75 32.17 35.67 39.07 393.69 2100.44 32.14 35.63 39.04 6299.73 0.03

PEDESTRIAN (1080p) 5226.43 38.76 43.18 44.52 897.21 5229.07 38.96 42.89 44.07 11592.08 -0.20
BLUE_SKY (1080p) 5219.81 40.04 40.01 41.38 288.61 5239.58 40.10 40.05 41.43 10643.22 -0.06
RIVERBED (1080p) 6373.62 29.41 37.66 40.16 393.94 6023.97 30.32 37.63 40.07 19790.34 -0.91

RUSH_HOUR (1080p) 6373.62 29.41 37.66 40.16 393.94 5239.58 40.10 40.05 41.43 10643.22 -0.07
STATION2 (1080p) 5253.38 40.62 44.60 44.55 302.88 5249.43 40.63 44.58 44.54 13489.31 -0.01

SUNFLOWER (1080p) 5192.30 42.55 43.89 44.43 272.47 5189.37 42.63 43.97 44.48 9978.29 -0.08

128

Average ΔY-PSNR loss -0.14

Condition Sequences Three step search Full search in JM13.2 PSNR loss
Search
Range

Contents
Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
time (s)

Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
time (s)

ΔY-PSNR
(dB)

CITY (4CIF) 1063.44 31.40 41.02 43.39 157.67 1047.17 32.67 41.45 43.86 1950.51 -1.27
CREW (4CIF) 1084.18 34.58 40.46 40.11 155.17 1080.19 34.80 40.52 40.25 1951.03 -0.22

HARBOUR (4CIF) 1550.24 29.78 40.17 41.86 156.05 1267.38 29.87 40.17 41.64 1950.75 -0.09
ICE (4CIF) 1033.22 39.06 45.80 46.36 145.31 1033.39 39.34 45.94 46.65 1951.72 -0.28

SOCCOR (D1) 1068.94 31.39 41.11 43.05 153.10 1063.36 32.03 41.31 43.24 1950.14 -0.64
MOBCAL (720p) 2172.98 31.00 35.27 38.66 354.77 2108.61 32.11 35.65 39.06 4454.91 -1.11

PEDESTRIAN (1080p) 5213.73 39.01 43.35 44.78 780.95 5218.96 39.15 43.46 44.89 10111.78 -0.14

64

Average ΔY-PSNR loss -0.54
CITY (4CIF) 1054.00 31.64 41.09 43.51 56.19 1048.10 32.71 41.46 43.90 177.42 -1.07

CREW (4CIF) 1079.65 34.68 40.51 40.21 56.23 1077.98 34.82 40.59 40.32 179.05 -0.14
HARBOUR (4CIF) 1446.95 29.81 40.21 41.84 58.02 1259.63 29.86 40.12 41.72 177.36 -0.05

ICE (4CIF) 1033.62 38.74 45.50 46.19 57.07 1033.36 38.93 45.67 46.31 176.86 -0.19
SOCCOR (D1) 1129.12 30.72 40.60 42.46 57.31 1093.63 31.26 40.79 42.63 176.37 -0.54

MOBCAL (720p) 2149.74 31.20 35.33 38.72 131.18 2110.75 32.17 35.67 39.07 393.69 -0.97
PEDESTRIAN (1080p) 5226.25 38.64 43.10 44.46 300.22 5226.43 38.76 43.18 44.52 897.21 -0.12

16

Average ΔY-PSNR loss -0.44

For method 4,
2

1 1
(, ()) | (,2 1) (,(2 1)) | .

NM

x y
x y

SAD c r m c x y r x m y m
= =

′= − − − − −∑ ∑

(6)
The subsampling position of pixels for SAD calculation is

dependent on the position of candidate MV (mx, my) as shown
Fig. 1.

The four search methods were tested using JM13.2
software, and the performance of each method was compared

with the full search algorithm in JM. Table 5 shows the
results. Method 1 has the least average ΔPSNR loss
compared with a full search, and it comes closest to the full
search algorithm. In particular, it achieves an outstanding
result compared with that of the prior hierarchical search,
which is degraded by more than 1 dB in such images as the
CITY sequence as shown Tables 2 and 3.

However, since this method requires more processing cycles
than methods 2 and 3, method 2 is the most appropriate for
hardware implementation, though it incurs a little more PSNR

788 Sukho Lee et al. ETRI Journal, Volume 31, Number 6, December 2009

Table 3. Performance comparison of NumberReferenceFrames on a JM13.2 reference encoder for IBPBP sequences.

Condition Sequences Three-step search Full search in JM13.2 PSNR loss
Number

Reference
Frames

Sequence
Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
 time (s)

Bitrate
(kbps)

PSNR
(Y)

PSNR
(U)

PSNR
(V)

Encoding
time (s)

ΔY-PSNR
(dB)

CITY (4CIF) 1054.00 31.64 41.09 43.51 56.19 1048.10 32.71 41.46 43.90 177.42 -1.07
CREW (4CIF) 1079.65 34.68 40.51 40.21 56.23 1077.98 34.82 40.59 40.32 179.05 -0.14

HARBOUR (4CIF) 1446.95 29.81 40.21 41.84 58.02 1259.63 29.86 40.12 41.72 177.36 -0.05
ICE (4CIF) 1033.62 38.74 45.50 46.19 57.07 1033.36 38.93 45.67 46.31 176.86 -0.19

SOCCOR (D1) 1129.12 30.72 40.60 42.46 57.31 1093.63 31.26 40.79 42.63 176.37 -0.54
MOBCAL (720p) 2149.74 31.20 35.33 38.72 131.18 2110.75 32.17 35.67 39.07 393.69 -0.97

PEDESTRIAN (1080p) 5226.25 38.64 43.10 44.46 300.22 5226.43 38.76 43.18 44.52 897.21 -0.12

1

Average ΔY-PSNR loss -0.44
CITY (4CIF) 1050.33 32.38 41.37 43.74 79.81 1047.52 32.95 41.55 43.95 352.89 -0.57

CREW (4CIF) 1078.02 35.02 40.70 40.44 80.06 1079.53 35.12 40.78 40.52 352.83 -0.10
HARBOUR (4CIF) 1310.01 29.91 40.17 41.88 79.51 1224.31 29.94 40.12 41.76 353.61 -0.03

ICE (4CIF) 1032.69 39.02 45.65 46.41 78.97 1032.96 39.25 45.80 46.53 363.47 -0.23
SOCCOR (D1) 1098.64 31.09 40.78 42.63 79.37 1088.32 31.49 40.92 42.77 347.75 -0.40

MOBCAL (720p) 2107.86 32.45 35.72 39.19 176.57 2092.78 32.69 35.77 39.24 785.61 -0.24
PEDESTRIAN (1080p) 5232.46 38.90 43.28 44.61 402.57 5229.62 38.98 43.32 44.67 1791.97 -0.08

3

Average ΔY-PSNR loss -0.24

Table 4. Proposed search methods for integer-pel ME.

 Method 1 (X,Y) Method 2 (X,Y) Method 3 (X,Y) Method 4 (X,Y) Full search

Search range
–S ~ +(S–1),

+S/2 ~ –(S–1)/2
–S ~ +(S–1),

+S/2 ~ – (S–1)/2
–S ~ +(S–1),
–S ~ +(S–1),

–S ~ +(S–1),
–S ~ +(S–1),

–S ~ +(S–1),
–S ~ +(S–1),

Search step (1-pel, 1-pel) (1-pel, 1-pel) (1-pel, 2-pel) (1-pel, 2-pel) (1-pel, 1-pel)

Subsampling ratio of MB1 (1, 2) (2, 2) (2, 2) (1, 2) (1, 1)

Complexity2 (cycle) S2MN S2MN/2 S2MN/2 S2MN 4S2MN

 1. The subsampling ratio of an MB is the sampling ratio in block matching. For example, a (1, 2) subsampling ratio calculates SAD for only a Y directional 2:1 subsampled
16×8 MB instead of a normal 16×16 MB, and a (2, 2) subsampling ratio calculates SAD for a bidirectional 2:1 subsampled 8×8 MB. This helps reduce the number of
processing cycles for SAD calculation, where the search range is 16 and expresses two’s complement format when implemented in hardware.

2. Complexity indicates the processing cycles when the designated method is implemented in hardware, where S is the search range and M×N is the searched block size.

Table 5. Performance comparison of candidate ME algorithms compared with full search algorithm in a JM13.2 reference encoder (the same
test condition as in Table 1).

 Method 1 Proposed method 2 Method 3 Method 4

Test sequences
PSNR

(Y)
Bitrate
(kbps)

ΔPSNR
(dB)

PSNR
(Y)

Bitrate
(kbps)

ΔPSNR
(dB)

PSNR
(Y)

Bitrate
(kbps)

ΔPSNR
(dB)

PSNR
(Y)

Bitrate
(kbps)

ΔPSNR
(dB)

CITY (4CIF) 32.61 1050.63 -0.10 32.57 1051.99 -0.14 32.07 1053.82 -0.64 32.16 1054.32 -0.55

CREW(4CIF) 34.67 1088.97 -0.15 34.64 1087.40 -0.18 34.75 1082.00 -0.07 34.77 1079.79 -0.05

HARBOUR (4CIF) 29.87 1257.20 0.01 29.86 1271.37 0.00 29.86 1278.98 0.00 29.86 1265.69 0.00

ICE (4CIF) 38.80 1033.48 -0.13 38.75 1033.45 -0.18 38.86 1034.07 -0.07 38.91 1033.37 -0.02

SOCCOR (D1) 31.04 1106.45 -0.22 30.98 1108.79 -0.28 30.91 1105.18 -0.35 30.94 1102.75 -0.32

MOBCAL (720p) 32.17 2106.50 0.00 31.95 2103.53 -0.22 31.76 2137.82 -0.41 31.86 2131.81 -0.31

PEDESTRIAN (1080p) 38.71 5227.88 -0.05 38.68 5229.36 -0.08 38.69 5232.97 -0.07 38.69 5227.03 -0.07
Average ΔPSNR loss -0.09 -0.15 -0.23 -0.19

ETRI Journal, Volume 31, Number 6, December 2009 Sukho Lee et al. 789

Fig. 1. Subsampled pixels for SAD calculation in method 2.

M

N

Reference search window

N

M

M×N current luma MB

3M

r(2x-1, 2y-1)

r(2x, 2y-1)
r(2x-1, 2y)
r(2x, 2y)

c(2x-1, 2y-1)

(-S, S/2)
(mx, my)

(0,0)

(S-1, S/2-1)

2N

loss. The proposed pixel subsampling ME algorithm achieves
an 87.5% reduction of computational complexity compared
with the full search algorithm as shown in Table 4.

4. Fractional ME with Shared Memory

Subpixel ME requires the encoder to interpolate between
integer sample positions in the reference frame. In the case of
quarter-pixel ME, the best integer match is first found, and then
the best half-pel position match in the immediate neighborhood
is calculated. Finally, the best quarter-pel match around this
half-pixel position is found [12]. It first searches the best half-
pel MV for eight candidate positions around the previously
calculated integer-pel and then finally searches the best quarter-
pel MV around the half-pel in the same manner as in the half-
pel search. Quarter-pel ME uses a six-tap finite impulse

response (FIR) filter, and the six calculated samples are the
neighboring samples of the position that the integer MV
designates. Therefore, the reference window size used to search
a fractional MV is (3+3M+3)×(3+2N+3) considering
interpolation. If the estimated integer MV ranges between
X[–S+3, S–4] and Y[–S/2+3, S/2–4], which expresses two’s
complement format in hardware, the sampling data to be
considered for six-tap filtering for MEF wholly exists in the
reference memory that was used for MEC. This is considerably
effective because it fetches pixel data not from external frame
memory, which requires further fetch cycles, but from internal
MEC memory only. As previously stated, sharing MEC and
MEF internal memory can reduce the number of fetch cycles
and internal memory size. The hit ratio of the integer MVs
existing within the previously mentioned range, which MEF
can share with MEC reference memory, is explored. The
average hit ratio is 93.9% for various test images as shown
Fig. 2. The test conditions are the same as in Table 1, and
FrameToBeEncoded is 300 frames. On the basis of these
results, fast ME with a shared-memory-based hardware
encoder is implemented.

III. Hardware Implementation

1. Proposed H.264/AVC High Profile Architecture

The proposed H.264/AVC High Profile hardware encoder
has a four-stage MB level pipeline and consists of inter/intra
blocks, deblocking, an entropy coder, rate control block, and
FSM controller for the top schedule and pipeline management.
It is connected with a 64-bit system/memory bus as shown
Fig. 3. Most of all, the performance of the hardware encoder
depends on not core processing cycles but on memory
bandwidth, which is memory access cycles according to pixel
data R/W between the external frame memory and the internal
SRAM. To solve this problem, we used one-third of the

Fig. 2. Hit ratio of integer motion vectors existing within the range X[–S+3, S–4] and Y[–S/2+3, S/2–4] for various images.

A
K

IY
O

 (C
IF

)

B
A

B
Y

 (C
IF

)

99.7
91.8 97.8 98.4

86.4

57.3

88.0
98.9 99.0 99.2 99.0 99.4 97.0 99.4

86.7
97.4 99.5 96.9 99.3

87.4

0
20

40
60

80
100
120

SequencesC
O

A
ST

G
U

A
R

D
 (C

IF
)

C
O

N
TA

IN
ER

 (C
IF

)

D
A

N
C

ER
 (C

IF
)

FO
O

TB
A

LL
 (C

IF
)

FO
R

EM
A

N
 (C

IF
)

H
A

LL
 M

O
N

IT
O

R
 (C

IF
)

M
O

B
IL

E
(C

IF
)

M
O

TH
ER

 &

 D
A

U
G

H
TE

R
(C

IF
)

M
EW

S
(C

IF
)

SE
A

N
 (C

IF
)

SI
LE

N
T(

C
IF

)

SI
N

G
ER

 (C
IF

)

ST
EF

A
N

 (C
IF

)

TA
B

LE
 (C

IF
)

W
EA

TH
ER

 (C
IF

)

M
O

B
C

A
L

(7
20

p)

PA
R

K
R

U
N

 (1
08

0p
)

B
U

LE
 S

K
Y

 (1
08

0p
)

H
it

ra
tio

 (%
)

790 Sukho Lee et al. ETRI Journal, Volume 31, Number 6, December 2009

Fig. 3. Proposed H.264/AVC High Profile encoder hardware architecture.

64-bit memory bus

DDR memory
controller

32 DMA controller

Motion compensation

DDR SDRAM external frame memory

Top schedule and pipeline control (FSM)

64 64

64

64

64 64

64 32

6464

Rate control (RC)

64

64

64

64

64

Current
frame

Skipped
frame

Forward
ref. frame

Backward
ref. frame

Shared
forward
luma ref.
memory
48×32

Shared
backward
luma ref.
memory
48×32
64

Integer-pel motion
estimation (MEC)

X[-16 to +15],
Y[-8 to +7]

MEC controller 64

Shared luma [63:0]
Half-pel motion

estimation
X[±0.5], Y[±0.5]

MEF/MC controller

Quarter-pel motion
estimation

X[±0.75], Y[±0.75]

Luma current
memory
16×16

Chroma current
memory
8×8×2

Intra prediction includes
Kuma 8×8 mode (lpred)

DCTQ/IQIDCT
REC. includes
4×4, 8×8 DCT

DC coef.

AC coef.

IPRED controller

Deblocking
filter (DB)

DB
controller

CABAC

CAVLC

64

QP[5:0]

MEC_MV_list0_ref0[15:0]
MEC_MV_list0_ref1[15:0]

MEC_MV_list1_ref0[15:0]

Shared luma
current memory

16×16*

Raw data
stream

MB timing slot 1
(MEC)

MB timing slot 2
(MEF/MC)

MB timing slot 3
 (IPRED)

MB timing slot 4
(DB/Entropy)

MEC_MV_list1_ref1[15:0]

VIM
64

BEST_MV_list0[15:0]

BEST_MV_list0[15:0]

ME MINCOST[1:0]

BEST_PDIR[1:0]

MC_inter[31:0]

64-bit system control bus

MAD[15:0]
Entropy

controller

REC_Luma[31:0]

REC_Chroma[31:0]

Coef_DAT[19:0]

MVD[15:0]

64
Compressed
stream [7:0]

64

* If MEC vector is X[-13, 12] and Y[-5, 4], MEF can share IME luma data

64

Fig. 4. Memory bandwidth reduction of the proposed encoder.

Write reference
pixel data from

deblocking
Fetch reference pixel data

to MEF

Write reference
pixel data from

deblocking

Fetch reference pixel data
to MEF

Fetch current
pixel data to

IPRED

Write reference
pixel data from

deblocking

IPRED cycle
(Tipred)

Total memory access cycle (Ttotal) on the macro-block level pipeline

External frame memory (DDR SDRAM)

Fetch current and reference
pixel data to MEC

Fetch current
pixel data to

IPRED

DB cycle
(Tdb)

MEF cycle (Tmef) MEC cycle (Tmec)

One-third
access

(Tmec/3)

One-third
access

Fetch current
pixel data to

IPRED

[1]

[2]

[3]

[1]: Full memory access to/from DDR SDRAM
[2]: One-third memory access scheme
[3]: Shard multibank memory access scheme with one-third memory access (Proposed)

memory access schemes as in our previous works [14], [15].

The MEC stage searches integer MVs for two bi-directions
(B-slice), where two motion-compensated reference areas are
obtained from list 0 and list 1 pictures [12], respectively, and
where the picture from list 0 is a forward picture and that from
list 1 is a backward picture at this stage. When in interlace
mode, each of the two reference pictures for list 0 and list 1 are
used for ME and motion compensation (MC). Next, the MEF
stage searches in detail the MVs up to the quarter-pel level and
compensates the luma and chroma blocks with the predictive
MV. As stated in section II.4, because MEF searches a fine MV
in the neighborhood of the MEC-searched integer MV, the

previously MEC-fetched reference pixel data in the shared
memory can be reused if its vector is within the X[–S+3, S–4]
and Y[–S/2+3, S/2–4] range. Therefore, MEF fetches new
reference samples from the external memory only if MEC MV
does not exist within the shared search range. To further reduce
MEF internal SRAM access cycles, MEF does not store the
fetched reference pixel data directly to the internal SRAM in
the raw. After the reference pixel data for the search region is
fetched from the shared SRAM or external DDR SDRAM, the
MEF processes six-tap interpolation by 2-D FIR filtering
immediately and then stores its result only to the internal MEF
SRAM. These strategies limit unnecessary internal SRAM
access cycles for fetch and save all of the ME processing cycles
as well as limiting internal SRAM size. Figure 4 shows the
memory bandwidth reduction of the proposed encoder with
two memory access strategies. Though the pure MB
processing cycle of each MB is within 512 cycles, it suffers
from a limit of external memory bandwidth and CAS latency
of the DDR/SDRAM. Therefore, there is a performance drop
on the pipeline. These issues remain to be solved in future
works. The overall performance of the proposed encoder is
1,100 cycle/MB, and it can encode a 30 frame/s full HD image
at 270 MHz.

2. Coarse ME Architecture

MEC for searching an integer MV has the most processing
cycles among other processing blocks and significantly affects
the performance of the entire encoder. Basically, a single/dual

ETRI Journal, Volume 31, Number 6, December 2009 Sukho Lee et al. 791

Fig. 5. Coarse motion estimation with shared multibank architecture.

Skipped
frame

Forward
ref. frame

Backward
ref. frame

DDR SDRAM external frame memory

MCON DCON
32 64

8 bit 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

Upper SAD calculation for list0/list1, (X, Y)=[-16 to 15, -8 to -1]
System control and best motion vector selection

Forward upper
memory address

control

MEC list0 ref0/ref1
best motion vector

Frame memory
address control

Subsampled pixels
by candidates MV

64 64 64 64

64
Subsampled pixels
by candidates MV

Upper raster
search order

Lower raster
search order

MEF sharing region:
X[-13, 12] and Y[-5, 4]

64

8 bit

64

64-bit system control bus
4 preprocessing elements and 1 postprocessing element

Forward lower
memory address

control
Backward upper
memory address

control
Backward lower
memory address

control

Lower SAD calculation for
list0/list1

 (X, Y)=[-16 to 15, 0 to 7]
Pre-processing elements
for sub-SAD calculation

Post-processing element
for SAD calculation

MEC list1 ref0/ref1
best motion vector

8×16
shared list 0

picture bank 00

Only 1/3 access

64

64-bit memory bus

Execution

Backward
fetch

Forward
fetch

64

8×16
shared current ref 0

picture bank 00

8×16
shared current ref 0

picture bank 10

8×16
shared current ref 0

picture bank 01

8×16
shared current ref 0

picture bank 11

64-bit internal memory bus

8×16
shared list 0

picture bank 10

8×16
shared list 0

picture bank 20

8×16
shared list 0

picture bank 30

8×16
shared list 0

picture bank 40

8×16
shared list 0

picture bank 50

8×16
shared list 0

picture bank 01

8×16
shared list 0

picture bank 11

8×16
shared list 0

picture bank 21

8×16
shared list 0

picture bank 31

8×16
shared list 0

picture bank 41

8×16
shared list 0

picture bank 51

8×16
shared list 1

picture bank 02

8×16
shared list 1

picture bank 12

8×16
shared list 1

picture bank 22

8×16
shared list 1

picture bank 32

8×16
shared list 1

picture bank 42

8×16
shared list 1

picture bank 52

8×16
shared list 1

picture bank 03

8×16
shared list 1

picture bank 13

8×16
shared list 1

picture bank 23

8×16
shared list 1

picture bank 33

8×16
shared list 1

picture bank 43

8×16
shared list 1

picture bank 53

Multibank 48×32 forward memory

Multibank 48×32 backward memory

8×16
shared list 0

picture bank 00

Current
frame

Σ

Fig. 6. High-throughput processing element.

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8 8 8 8 88 8 8 8

+
[9:0]

+
[9:0]

+
[9:0]

+
[9:0]

+
[11:0]

+
[10:0]

+
[10:0]

AddReg 0 [11:0]

ABS register ABS register

AddReg 1 [11:0] AddReg 2 [11:0] AddReg 3 [11:0]

+
[12:0]

+
[12:0]

+
[13:0]

SAD [13:0] MCOST [13:0]
selection

Postprocessing
element

Preprocessing
element

Four 64-bit
current samples

Four 64-bit ref.
samples

Four 64-bit
current samples

Four 64-bit ref.
samples

port SRAM can read fast only one or two words within one
cycle when one or two read addresses are given at the positive

clock edge. However, multiwords of more than two words
cannot be accessed at the same time at the SRAM because of
its limited in-output port number. To solve the problem of
throughput limit, a large SRAM is split into small SRAM
blocks, and row slices and column banks are allocated to each
partitioned SRAM as if it is a SDRAM as shown in Fig. 5.
This multibank memory architecture can fetch multiwords
randomly at one clock cycle wherever there is pixel data.
Moreover, multibank memory is appropriate for our proposed
one-third memory access scheme because the one-third bank
change is needed at each MB cycle, and it has eight times the
processing efficiency of a non-multibank memory architecture.
Simultaneously fetched pixel data is transferred to eight
preprocessing elements, and MCOST is finally calculated at
one postprocessing element as shown in Fig. 6. The MEC
automatically controls the bank change of memory at every
MB cycle. Figure 7 shows the PE scheduling for multibank
memory. The scheduling of the high-throughput PE consists of
a five stage pipeline, including fetch, ABS, add, SAD, and
MCOST stages. After pipeline throughput, an SAD for one
candidate position is calculated within one cycle. Actually, the
proposed pixel subsampling ME algorithm has a complexity of
S2MN/2 cycles (32,768 cycles in this case) as previously shown
in Table 4.

However, because this number of cycles is still not

792 Sukho Lee et al. ETRI Journal, Volume 31, Number 6, December 2009

Fig. 7. High-throughput PE scheduling for multibank memory.

Search direction

8 8 8 8 8 8 8 8

Fetch ABS
Fetch

SAD
Add
ABS

Add
ABS
Fetch

MCOST
SAD
Add

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

8 8 8 8 8 8 8 8
8 8 8 8 8 8 8 8

2:1 subsampled current
data

64 bit
C1

C2
C.slice0
C.slice1
C.slice2

C.slice3
C.slice4
C.slice5

C.slice6
C.slice7

2:1 subsampled current
data R1

R2
R.slice0
R.slice1
R.slice2

R.slice3
R.slice4
R.slice5

R.slice6
R.slice7

ABS[C.sllce0-R.sllce0]
ABS[C.sllce1-R.sllce1]
ABS[C.sllce2-R.sllce2]
ABS[C.sllce3-R.sllce3]
ABS[C.sllce4-R.sllce4]
ABS[C.sllce5-R.sllce5]
ABS[C.sllce6-R.sllce6]
ABS[C.sllce7-R.sllce7]

1 cycle

ABS_REG0[63:0]
ABS_REG1[63:0]
ABS_REG2[63:0]
ABS_REG3[63:0]
ABS_REG4[63:0]
ABS_REG5[63:0]
ABS_REG6[63:0]
ABS_REG7[63:0]

ADD_REG0[-16, -8]

ADD_REG1[-16, -8]

ADD_REG2[-16, -8]

ADD_REG3[-16, -8]

SAD_REG[-16, -8] SAD_REG[-15, -8]
MCOST [X, Y]

[-16, -8] [-15, -8] [-14, -8]

Fig. 8. Processing cycle reduction for the presented MEC.

262144

Proposed
hardware

256

Processing cycle/MB
Backward search (list 1)

Skipped current pixel fetch

Only one-third memory access

512

256

32768

Current pixel prefetch

Forward ref. prefetch

Backward ref. fetch

25664+β 32+α
32+α 64+β

Forward search (list 0)

50% reduction

98.4% reduction

87.5% reduction

[1]

[2]

[3]

[1]: Full search algorithm
[2]: Proposed algorithm
[3]: Proposed algorithm with high-throughput PE, where the proposed hardware

has a high-throughput PE and two SAD engines, and α and β are additional
cycles according to the CAS latency of DDR/SDRAM.

reasonable for real-time encoding on a hardware platform, two
SAD engines are added to further enhance the throughput. As
previously shown in Fig. 5, the upper SAD subblock calculates
from samples at position Y[-8, 1], and the lower one calculates
from samples at position Y[0, 7]. The MEC then selects the
best one among the upper and lower SADs.

Consequently, the entire processing cycle reduces to S2

cycles (256 cycles) in the P-slice and 2S2 (512 cycles) in the
B-slice. During a forward search, the MEC first fetches
backward reference samples for list 1 ME. Backward ME for
the B-slice is successively executed after the forward ME.
Figure 8 depicts the processing cycle reduction for the
presented MEC.

IV. Implementation Results

The novel pixel subsampling ME-algorithm-based
H.264/AVC High Profile encoder reference software was
developed in C language, and the hardware encoder was
designed using Verilog RTL language. The developed

ETRI Journal, Volume 31, Number 6, December 2009 Sukho Lee et al. 793

reference model was used to verify the implemented encoder
for various test images from CIF to full HD. To accelerate
hardware verification, the designed encoder was prototyped on
a Virtex 5 LX330 FPGA and was cosimulated using diverse
test vectors. Its LUT usage was 81%, the estimated ASIC gate
count was 872k, and internal memory size was 41.8 kB. The
power consumption estimation of this encoder is 324.9 mW at
270 MHz. Power estimation was carried out with 65 nm
CMOS technology by the Synopsys Power Compiler.

V. Rate-Distortion (RD) Performance

Figure 9 shows the RD performance for High Profile IBPBP
sequences and CA-BAC. The test sequences for this were
encoded using developed reference software with QP factors
ranging from 24 to 36 in steps of 4. Here, its main test
conditions are equivalent to those in Table 1, and the Baseline
Profile uses IPPPP sequences and CA-VLC. Consequently, in
the case of High Profile encoding, there is an average
degradation of around 0.15 dB compared with the JM13.2 full
search algorithm for various test images including the previous
ones.

Fig. 9. RD performance of IBPBP sequences: (a) average ΔPSNR
= -0.07 dB and (b) average ΔPSNR = -0.03 dB compared
to the JM13.2 full search in the case of High Profile
encoding.

Full HD sequence (1920×1080, 300 frames, 30 Hz)

34.14

36.01

38.02

39.82

33

34

35

36

37

38

39

40

41

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Bit rate (kbps)

Y-
PS

N
R

 (d
B

)

Proposed H.264 High Profile
JM13.2 H.264 High Profile
Proposed H.264 Baseline

(a) STATION2 (1920×1080 full HD)

Full HD sequence (1920×1080, 300 frames, 30 Hz)

40.39

38.30

36.04

33.93

0 5,000 10,000 15,000 20,000 25,000

Bit rate (kbps)

Y-
PS

N
R

 (d
B

)

Proposed H.264 High Profile
JM13.2 H.264 High Profile
Proposed H.264 Baseline

33

34

35

36

37

38

39

40

41

(b) TRACTOR (1920×1080 full HD)

VI. Conclusion

The developed H.264/AVC High Profile hardware encoder
has a fast ME block with shared multibank memory. The
proposed search algorithm is a pixel subsampling ME
algorithm that achieves an 87.5% reduction of computational
complexity compared with the full search algorithm. Although
there is an average degradation of around 0.15 dB compared
with JM reference software, it is acceptable considering the
hardware complexity. On average, 93.9% of the pixel data in
the shared memory can be shared and reused together with
MEC and MEF to calculate SAD, reducing the number of data
fetching and MB processing cycles. The shared multibank
memory and high throughput PE significantly raise the
performance of the encoder, and enable the encoding of a full
HD image in real-time at 30 frame/s. While there are still
remaining issues regarding memory bandwidth and the size of
the rate control block, these are left to be solved in future works.

References

[1] ISO/IEC 14496-10, “Information Technology: Coding of
Audio/Visual Objects-Part 10: Advance Video Coding,” Sept.
2008.

[2] J.B. Lee and H. Kalva, The VC-1 and H.264 Video Compression
Standards for Broadband Video Services, Springer Science, 2008,
pp.78.

[3] B.G. Kim, J.H. Kim, and C.S. Cho, “Fast Inter Mode Decision
Algorithm Based on Macroblock Tracking in H.264/AVC
Video,” ETRI J., vol. 29, no. 6, Dec. 2007, pp. 736-744.

[4] G.F.F. Escibano et al., “A Fast MB Mode Decision Algorithm for
MPEG-2 to H.264 P-Frame Transcoding,” IEEE Trans. Circuits
Syst. Video Technol., vol. 18, no. 2, Feb. 2008, pp. 172-185.

[5] A.C.W. Yu, G.R. Martin, and H. Park, “Fast Inter-Mode Selection
in the H.264/AVC Standard Using a Hierarchical Decision
Process,” IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 2,
Feb. 2008, pp. 186-195.

[6] X. Xu and Y. He, “Improvements on Fast Motion Estimation
Strategy for H.264/AVC,” IEEE Trans. Circuits Syst. Video
Technol., vol. 18, no. 3, Mar. 2008, pp. 285-293.

[7] H.F. Ates and Y. Altunbasak, “Rate-Distortion and Complexity
Optimized Motion Estimation for H.264 Video Coding,” IEEE
Trans. Circuits Syst. Video Technol., vol. 18, no. 2, Feb. 2008, pp.
159-171.

[8] C.M Mak, C.K. Fong, and W.K Cham, “Fast Motion Estimation
for H.264/AVC in Walsh-Hardamard Domain,” IEEE Trans.
Circuits Syst. Video Technol., vol. 18, no. 6, June 2008, pp. 735-
745.

[9] C.S. Kannangara, I.E. Richardson, and A.J. Miller,
“Computational Complexity Management of a Real-Time

794 Sukho Lee et al. ETRI Journal, Volume 31, Number 6, December 2009

H.264/AVC Encoder,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 18, no. 9, Sept. 2008, pp. 1191-1200

[10] S. Saponara et al., “Dynamic Control of Motion Estimation
Search Parameters for Low Complex H.264 Video Coding,”
IEEE Trans. Consum. Electron., vol. 52, no. 1, Feb. 2006, pp.
232-239.

[11] S. Lopez et al., “Grouped Approach for the Design of H.264/AVC
Motion Estimation Architectures,” ETRI J., vol. 30, no. 6, Feb.
2008, pp. 862-864.

[12] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John
Wiley & Sons Ltd., 2003.

[13] Joint Model (JM) – H.264/AVC Reference Software,
http://iphome.hhi.de/suehring/tml/download/.

[14] S.H. Lee et al., “A 40 MHz Dedicated Hardware H.264/AVC
Video Encoder with the Reducing Memory Access Scheme,”
IEEE Int. Symp. Consum. Electron., ISCE.2008.4559542, Apr.
2008, pp. 1-4.

[15] S.M. Park et al., “A MPEG-4 Video Codec Chip with Low Power
Scheme for Mobile Application,” IEICE Trans. Fundam.
Electron., Commun. and Comput. Sci., vol. E86-A, no. 6, June
2003, pp. 1353-1363.

Sukho Lee received the BS degree in electronics
engineering from Kyunghee University, Seoul,
Korea, in 1995. From 1995 to 1997, he was with
the Samsung Electronics, Yongin, Korea, where
he worked on ASIC design and DSP design. He
received the MS degree in electronics
engineering at Korea University, Seoul Korea, in

1999. In 1999, he joined ETRI, Daejeon, Korea, and participated in SoC
design development. He is currently a senior researcher and has been
engaged in research on SoC design, image compression algorithms, and
SoC architecture design. He is currently working toward the PhD degree
with the Department of Information Communications Engineering,
Chungnam National University, Korea. His main research interests are
video coding, image compression, and low-power SoC architecture
design.

Seongmo Park received the BS, MS, and PhD
degrees in electronics engineering from
Kyungpook National University, Daegu, Korea,
in 1985, 1987, and 2006, respectively. From 1987
to 1992, he was with the LG semiconductor
company, Gumi, Korea, where he worked on
ASIC design and Mask ROM design. In 1992, he

was with ETRI, Daejeon, Korea and participated in SoC design
development. He is currently engaged in research on SoC design, image
compression algorithms, and SoC architecture design. He is now a team
leader of the multimedia processor design team and a professor with the
University of Science and Technology. He has published over 30
technical papers in international journals and conference proceedings. His
main research interests are video coding, image compression,
multiprocessor design and low-power SoC architecture design.

Jongwon Park received the BE degree in
electronics engineering from Chungnam National
University (CNU), Korea, in 1979. He received
the MS degree in computer science from Korea
Advanced Institute of Science and Technology
(KAIST), Korea, in 1981. From 1981 to 1993, he
was with the Department of Computer Science of

CNU. He worked towards the PhD degree in computer science at
KAIST from 1988 to 1991. In 1992, Dr. Park was a visiting associate
professor with the Department of Electrical Engineering of the University
of Texas, Dallas, USA. Since 1994, he has been with the Department of
Information Communications Engineering at the CNU, where he is
currently a professor. His main research interests include parallel
computer architecture, image processing and computer vision, pattern
recognition and parallel memory systems, as well as image processing
systems and computer vision. He is a senior member of the IEEE and
the IEEE Computer Society.

	I. Introduction
	II. Proposed Algorithm and Complexity Management
	III. Hardware Implementation
	IV. Implementation Results
	V. Rate-Distortion (RD) Performance
	VI. Conclusion
	References

