
ETRI Journal, Volume 31, Number 4, August 2009          © 2009  Soonhyun Kim et al.   429 

This paper proposes a novel technique for 3D scene 
relighting with interactive viewpoint changes. The 
proposed technique is based on a deep framebuffer 
framework for fast relighting computation which adopts 
image-based techniques to provide arbitrary view-
changing. In the preprocessing stage, the shading 
parameters required for the surface shaders, such as 
surface color, normal, depth, ambient/diffuse/specular 
coefficients, and roughness, are cached into multiple deep 
framebuffers generated by several caching cameras which 
are created in an automatic manner. When the user 
designs the lighting setup, the relighting renderer builds a 
map to connect a screen pixel for the current rendering 
camera to the corresponding deep framebuffer pixel and 
then computes illumination at each pixel with the cache 
values taken from the deep framebuffers. All the 
relighting computations except the deep framebuffer pre-
computation are carried out at interactive rates by the 
GPU. 
 

Keywords: Relighting, rendering, image-based 
technique, automatic camera placement. 

                                                               
Manuscript received Dec. 4, 2008; revised Apr. 14, 2009; accepted June 24, 2009.  
This work was supported by the New Faculty Research Fund of Ajou University in Rep. of 

Korea and also partly supported by the IT R&D Program of MKE/MCST/IITA, Rep. of Korea 
[2009-S-045-1, Development of Function Extensible High Speed Renderer.]. 

Soonhyun Kim (email: kkubs@ajou.ac.kr) and Min-Ho Kyung (phone: +82 31 219 1853, 
email: kyung@ajou.ac.kr) are with the Visual Computing Lab., Ajou University, Suwon, Rep. 
of Korea. 

Joo-Haeng Lee (email: joohaeng@etri.re.kr) is with the S/W & Content Research 
Laboratory, ETRI, Daejeon, Rep. of Korea. 

doi:10.4218/etrij.09.0108.0696 

I. Introduction 

In 3D animation productions, designing light setups for 3D 
scenes is a very time-consuming and labor-intensive task, 
mostly carried out at a late stage of production pipelines. The 
major difficulty of lighting design comes from a lack of rapid 
visual feedbacks with high fidelity. Graphics hardware is not 
relevant for rendering a complex 3D cinema scene because of 
low rendering quality and limited in-core memory. Software 
rendering gives very accurate feedback, but it cannot be so 
frequently used because of long rendering times from several 
minutes to hours. Therefore, faster and more reliable feedback 
methods have been demanded by lighting artists to improve 
both efficiency and quality of lighting design.  

The relighting technique presented in this paper is based on 
deep framebuffers used as cache storages for shading 
parameter values pre-computed at each pixel for fast 
illumination computation. The cached shading parameters 
include ambient color, diffuse color, specular color, roughness, 
pixel depths, and so on. Since the deep framebuffer is made at 
a specified viewpoint, the deep framebuffer image should be 
computed again if the rendering camera is moved.  

The major contribution of our work is to make it possible to 
freely move the rendering camera without time-consuming re-
caching of the shading parameters. Previous deep framebuffer-
based relighting methods allowed only a fixed viewpoint used 
for parameter caching. Some vertex-based indirect light 
transport methods can relight a 3D scene in real time, allowing 
the camera to move freely. However, they usually require a lot 
of pre-computation time and cannot capture high frequency 
surface shading features commonly occurring in cinematic 
scenes. To overcome such limitations, we adopt an image-
based technique to retrieve the required parameter values from  
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existing deep framebuffers in run time. The set of deep 
framebuffers are cached with automatically generated cameras. 
Shading parameter values are accessed through a 
correspondence map containing the cache location of a screen 
pixel for the current rendering camera. The correspondence 
map is rebuilt at every movement of the rendering camera.  

We have tested our algorithm on various scenes with up to 
1.5 million polygons shaded by Lambert, Phong, and Blinn 
models lit by directional, point, and spot light sources [1]. 
Environment lighting is not yet supported, but it can be 
implemented with a little effort. In all these scenes, our 
algorithm has achieved interactive performance with 
acceptable image quality for lighting design. 

The remainder of this paper is organized as follows. Previous 
work related with relighting and image-based rendering 
techniques is reviewed in section II, and then the details of the 
proposed relighting technique are described in section III. 
Section IV discusses the results with two test scenes, and 
section V concludes the paper with summary of our work and 
remaining problems for future work. 

II. Related Work 

Several existing techniques for re-rendering 3D scenes have 
been developed using deep framebuffers, mostly to cache the 
parameter values that are required in order to compute 
illumination at each pixel. The notion of deep framebuffers 
originated from the geometric buffer (G-buffer) [2], which stores 
pre-computed geometric properties such as object IDs, depths, 
and surface normals for fast comprehensible rendering. Séquin 
and Smyrl [3] proposed a similar idea of maintaining a ray tree at 
each pixel to avoid repeated ray intersections in re-rendering 3D 
scenes. As modern graphics hardware grows more powerful and 
versatile, relighting 3D scenes at interactive rates becomes 
feasible through GPU-based rendering. Gershbein and Hanrahan 
[4] first proposed a deep framebuffer-based relighting engine for 
cinematic lighting design. Ragan-Kelly [5] developed another 
GPU-based relighting system which used data-flow analysis to 
separate light-independent components for caching. Similarly, a 
cinematic relighting engine supporting complex RenderMan 
scenes, called Lpics, was developed by Pellacini and others [6]. 
They also extended it to indirect lighting in [7] by pre-computing 
multi-bounce light transports and representing them with wavelet 
compressed matrices. 

Early image-based rendering techniques were introduced by 
Adelson and Bergen [8]. The 7D plenoptic function defines all 
radiance observed at every location from every direction. 
McMillan [9] presented a 3D warping technique which warps 
a set of images given with depth information onto a new 
picture from a novel viewpoint. Shum and Kang [10] carried 

out a comprehensive review of most classic works on image-
based techniques. These previous image-based techniques 
were focused on capturing real-world visual appearances and 
adapting them to fast and realistic image synthesis. Instead of 
capturing real world appearances, we use the image-based 
technique to capture surface shading parameters from different 
viewpoints in a 3D scene for fast relighting. 

III. Image-Based Relighting Engine 

Our relighting renderer is developed as a plug-in module to 
an animation production system, Autodesk Maya (see Fig. 1). 
Relighting is computed as follows. First, the relighting renderer 
finds a set of caching cameras used to capture shading 
parameter values on surfaces. Then, with each camera, it 
 

 

Fig. 1. A 3D animation production system integrated with the 
proposed relighting renderer. The green arrows represent 
the pre-computation flow, and the grey arrows represent 
the interactive flow. 
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Fig. 2. Workflow of the relighting renderer. 
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renders the scene into a deep framebuffer to cache shading 
parameters. During the lighting design, constructing a 
correspondence map and updating the rendered image are 
repeatedly executed in real time whenever required. The 
overall workflow is illustrated in Fig. 2. 

In the following subsections, we will discuss the details of 
each step. 

1. Caching Cameras 

Deep framebuffer images are obtained by rendering the 
target scene with a set of caching cameras. Since the deep 
framebuffers have shading parameters used for re-rendering, 
the set of caching cameras should be carefully determined such 
that the deep framebuffers capture most of the important 
surface areas with sufficient accuracy. Otherwise, a portion of 
surface area not captured in the deep framebuffers will make a 
hole in the resulting image because the shading parameters are 
not available. Also, if the image resolution used for caching is 
too low to capture featured details, they will be blurred in the 
resulting image. 

A brute-force method to place caching cameras uses a large 
number of cameras, ensuring that all surface areas are covered, 
and places them at arbitrary positions in the scene workspace. 
This is impractical in reality. As an extreme case, suppose that 
several hundreds cameras completely cover all the surfaces in a 
typical 3D scene. The deep framebuffers generated by those 
cameras will require several gigabytes of memory, which 
exceeds the on-board memory size of current commodity 
graphics hardware. Even worse, with so many caching 
cameras, updating the correspondence map at every movement 
of the rendering camera is computed far more slowly than at 
any interactive rate. This is because the computation time 
grows proportionally to the number of caching cameras. 

Finding an optimal set of caching cameras satisfying image 
quality and performance requirements is a challenge. In fact, 
the problem is equivalent to the classic “art gallery problem” 
known to be NP-complete in computational geometry [11]. 
Thus, it is not possible to solve the problem exactly within a 
reasonable time. Instead, less optimal but practical solutions 
have been investigated in image-based modeling and rendering 
applications. In [12], Fleishman and others proposed an 
automatic camera placement method for image-based 
modeling. They restricted the workspace to a curved trajectory 
and placed capturing cameras along the trajectory. 
Unfortunately, this restriction does not work for lighting design  
because designers move the rendering camera freely in 3D 
space to see illuminated surfaces from various viewpoints. 

We propose a practical heuristic solution suitable for the 
purpose of lighting design. The heuristic algorithm may be 

summarized as follows.  

Step 1. Find the primary camera set covering the majority of 
scene surfaces. 

Step 2. Find the secondary camera set covering the rest of 
scene surfaces uncovered by the primary camera set.  

Step 3. Determine the camera attributes such as a viewing 
direction, near and far clips, and a field of view. 

Step 4. If uncovered areas remain, go to step 2. 

This algorithm does not aim to find a complete set of 
cameras covering the entire scene including all the small details 
because the number of cameras can grow very rapidly. What it 
really aims to achieve is reasonable surface coverage with a 
small number of cameras allowing interactive performance.  
To achieve this, we intensively use a set of sample points as an 
approximation to the exact scene geometry. There are a few 
assumptions regarding the input scene. It is provided with a 
tight bounding box enclosing the surfaces of interest specified 
by the user. The “surfaces of interest” usually include the target 
objects of main lighting and the background objects supporting 
the target objects. This bounding box is used to eliminate 
irrelevant surface areas from consideration of camera selection. 
Another assumption is that the user may specify important 
surface areas by a weight value, which helps to find a better 
camera set that captures important surfaces more accurately. 

A. Primary Camera Set 

In our algorithm, primary caching cameras are a special type 
of camera with omni-directional view, that is, cameras which 
can see the surroundings in every direction. They are not 
standard cameras but can be realized as a cube map made with 
six perspective cameras at the center position. The challenge is 
to find the primary camera set that maximizes surface coverage 
with a reasonably small number of cameras. We conjecture that 
such a camera set can be mapped to the centers of inscribed 
 

 

Fig. 3. Two maximal spheres marked as red circles are found at c1
and c2 with radius r1 and r2, respectively. The pink circles 
show a searching sequence of spheres starting from a seed 
with δ-radius and ending at c2. 

c1 

r1 

r2

c2

Workspace Surface 

Bounding box

 



432   Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009 

spheres, maximally filling the scene workspace shown as the 
red circles in Fig. 3. This conjecture is based on the observation 
that, if a large sphere is tightly fit to a region of the workspace, 
the region usually has a large volume and is surrounded by 
large surface areas. Most of these surface areas are visible from 
the center of the sphere. Thus, a large portion of the surfaces 
can be covered by placing a camera at the center of this sphere.  

Thus, the problem of finding primary cameras is reduced to 
the problem of finding maximal spheres that tightly fit the 
scene workspace. We developed an iterative scheme to solve 
this problem, and it may be summarized as follows. 

Step 1. Sample a surface point randomly, and define a     
δ-radius seed sphere above a point in the workspace.  

Step 2. Increase the sphere radius until the sphere comes into 
contact with surface points of the second largest pink circle.  

Step 3. Move the sphere by δ in a way to disengage it from 
the contacting points. 

Step 4. If there are no directions to move the sphere, report it 
and stop. Otherwise, go to step 2. 

This algorithm guarantees convergence to a maximal sphere 
if the workspace is bounded. Otherwise, the sphere could grow 
to infinity without stopping. To make the workspace bounded, 
we enclose it with the bounding box provided with the scene. 
The initial position of the sphere is set to s sδ+ ⋅p n , where   
ps is the sample surface point, and ns is its normal vector.  

In step 2, increasing the sphere radius by δ and then testing 
sphere/surface intersection are repeated until the test finds the 
sphere intersecting a surface. If intersections are found, a 
direction d satisfying the separation constraints, that is, 

( ) 0i⋅ − ≤d r c  for all intersections i,        (1) 

is chosen as a direction to move the sphere at step 3. Here, c 
and ri denote the current sphere center and a surface point 
chosen from an intersecting area, respectively. Direction d can 
be computed by solving a simple linear problem with the 
above constraints. If there are no directions satisfying the 
constraints, the current sphere is a maximal sphere.  

There may be more than one maximal sphere. To find more 
spheres, we run the search algorithm multiple times, starting at 
different sample points. Some of them may converge to the 
previously found spheres, and some of them may converge to 
new spheres. We stop repeating the sphere searching if k 
consecutive executions do not find new spheres. According to 
our experiments, k=50 was good enough to find primary 
cameras having large coverage. 

B. Secondary Camera Set 

A secondary camera is an ordinary perspective camera that is 
used to cover the surface areas that are not completely covered 

by the primary camera set. Because exact computation of the 
uncovered area is time-consuming and is not easy to 
implement robustly, we use a set of point samples on surfaces 
to identify uncovered areas approximately. 

There are two different ways to sample points on surfaces, 
namely, uniform sampling and importance-based sampling  
[13], [14]. Uniform sampling is easy to implement, but 
sometimes it misleads camera selection by regarding even 
unimportant samples equally. Importance sampling can avoid 
such undesired camera selection with user-assigned weights.  
Therefore, we use an importance-based sampling method with 
a probability distribution function defined as 

1
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where wi and Ai are a weight in [0, 1] and an area of polygon i, 
respectively. Multiplying f(i) by the total number of samples 
will give the number of samples on polygon i. Then, the 
interior of each polygon is uniformly sampled. 

The sample points are classified into two groups, namely, a 
covered set and an uncovered set, by a visibility test with the 
current cameras including the primary cameras. The visibility 
test is accelerated with a kd tree containing the surface 
polygons. A ray from a sample point to a camera is tested for 
occlusion by other surfaces. If the ray is not occluded to the 
camera, the sample point is already covered by it. If all the rays 
from a sample point are occluded, the sample point is not yet 
covered, and thus it will be regarded as uncovered and to be  
covered by the next cameras. 

If there are more uncovered points than a threshold m , we 
need additional cameras to cover them. The intuition to find the 
best location having the best view of uncovered sample points 
is that such a location will be where the most rays from 
uncovered points intersects. The procedure to find this location 
is carried out as follows. 

First a set of n rays is sampled on the unit hemisphere and 
transformed to the tangent plane of each uncovered point. Then, 
the workspace is searched for the largest ray intersection point. 
Finding the intersection point, however, is not trivial because 
the rays are discretely sampled, so they do not exactly intersect 
in R3. Therefore, instead of exact intersection, we consider 
proximity of rays as an approximation of ray intersection. A 3D 
grid discretizing the workspace is used to record the number of 
rays passing closely in a distance δ. Figure 4 illustrates how to 
find a secondary camera. A 3D grid aligned with the scene 
bounding box is constructed with cell size 

bbox bboxmax( , ) /width height nδ = . We used n=128 for our 
test scenes. Rays are shot from the sample points on uncovered 
areas. 
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Fig. 4. The cameras at c1 and c2 cover most surface areas (yellow
and green lines) except the areas with the black dots. The
uncovered points are covered by the secondary camera c3.
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While a ray is traversing the grid, the cell counters on the 
ray path are incremented. Finally, the counters record the 
number of rays passing through the cells. To reflect surface 
importance, we increment the counter by ,iwα ⋅ where the 
weight wi is from the surface polygon at which the point was 
sampled, and α is a constant factor. A new camera is placed at 
the center of the cell whose counter is the largest and then 
added to the secondary camera set. Uncovered points visible 
from the new camera are also considered covered. If there are 
still more uncovered points than m, the program runs another 
iteration. 

C. Camera Attributes 

Once the locations of the caching cameras have been 
obtained, it is time to determine the other camera attributes 
including view direction, field-of-view (FOV) angle, near and 
far clips, and image resolution. For a primary camera, it is easy 
to determine these attributes. Since it is an omni-directional 
view camera, it has to be decomposed into six perspective 
cameras with view directions –x, +x, –y, +y, –z, and +z, 
respectively. Note that all of them have an FOV of 90°. 

For a secondary camera c at position c, we first compute the 
center of the sample points c

ip  covered by camera c as 
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where n is the number of covered sample points, and wi
c’s are 

the sample weights. Then, the FOV angle θ is computed as 
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The reason to restrict the FOV angle within 120° is that cache 
images made with a wider FOV angle have a serious accuracy 
problem due to under-sampling errors. The covered sample 
points out of this bound will be marked again as uncovered and 
be taken back to the previous step to find an additional 
secondary camera.  

Near and far clips are set as min(dnear, nc) and max (dfar, fc), 
where dnear and dfar are the nearest and farthest distances of the 
samples covered by each camera. Here, nc and fc denote the 
clipping limits determined with respect to the dimension of the 
scene bounding box, and they are usually set to 0.01 and 1000, 
respectively. 

The rendering resolution is set to one of 2,048×2,048, 
1,024×1,024, 512×512, and 256×256 with respect to the 
number of covered samples. 

2. Shading Parameter Caching 

Shading parameters to be cached are selected according to 
the illumination models used by the surface shaders in the 
scene. A variety of reflection models have been developed to 
simulate natural and artistic appearances of illuminated 
surfaces. Among them, we support the Lambert, Blinn, and 
Phone models in the current implementation, which are simple 
and are the most commonly used models in production studios. 
Other reflection models presented in [13] and [15] could be 
supported in the future by extending the caching parameter set.  

We chose a set of eight parameters as in Lpics [6], including 
ambient color, shader ID, surface color, depth, diffuse color, 
surface normal, specular attributes, and specular color. Figure 5 
shows the shading parameters used in our test scene. Ambient 
occlusion and other parameters which are not included in the 
current parameter set can be additionally added if required.  

The deep framebuffer is iteratively constructed for each 
caching camera by using an ordinary rendering technique. All 
the shading parameters except pixel depths are cached with a 
 

 

Fig. 5. Cache images of eight shading parameters for the scene in 
Fig. 10: (a) ambient color, (b) shader ID, (c) surface color, 
(d) depth, (e) diffuse color, (f) surface normal, (g) 
specular attributes, and (h) specular color. 
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standard software renderer. In our work, the Maya renderer is 
used with rendering options tailored to output the shading 
parameters into color channels. The depth image is rendered 
separately by OpenGL with a graphic hardware for speedup. 

3. Correspondence Map Construction 

The correspondence map has the cache location of the 
shading parameter values for screen pixels viewed from the 
current rendering camera (see Fig. 6). The cache location is 
represented by two values: the deep framebuffer ID and the  
(u, v) coordinates on the associated deep framebuffer.  

The first step of construction is to find the visible surface 
samples from the current rendering camera. A visible surface 
sample pw in the scene space is obtained by inversely 
projecting a screen pixel back to the scene space. Note that a 
depth map is rendered with the current rendering camera to 
provide the screen pixel depth before inverse projection is 
applied. 

Then, for the visible surface sample pw, we find the best 
caching camera k with regard to three factors: visibility, surface 
normal, and distance. The computation is formulated as 

2

( ) ( ( ) )
arg max ,i w w i

i
i

v
k

d
⎛ ⎞⋅ ⋅
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⎝ ⎠

p n p u
         (5) 

where vi(p) is a visibility function giving 1 if a point p is visible 
from camera i and 0 otherwise, n(pw) is the surface normal at 
pw, ui is the view direction (to the caching camera), and di is 
distance to pw from the view point. The camera ID k and the 
projection coordinates of pw onto the deep framebuffer are 
recorded on the correspondence map. 

There may be surface samples that are not visible from any 
 

 

Fig. 6. Correspondence map constructed with a set of five
caching cameras. The image of view i shows the depth
map of the i-th caching camera. The colors in the 
correspondence map image indicate which caching
camera is associated with each pixel. 
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Fig. 7. Re-rendering process: image layers lit by each light are 
computed by the fragment shader and integrated into the 
final image. The layers in the green dotted box are 
computed for the unselected light, so they are computed 
once and reused until new selection occurs. 
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caching cameras, and this makes holes in the resulting image. 
If a hole is one- or two-pixel sized, the hole is simply filled by 
interpolating adjacent pixels. If a hole is bigger, a small 
temporary scene that includes the polygons that contain holes is 
constructed and rendered with the software renderer in run time 
to cache the shading parameters. Since the temporary scene is 
so small as to be rendered in under a second, the performance 
is only slightly slowed down. 

4. Re-rendering 

In re-rendering, an image layer lit by each light source is 
computed, and all such layers are integrated into a final image 
(see Fig. 7). For each light source, we draw a rectangle filling 
the whole image space to trigger fragment-based shading at 
screen pixels. The fragment shading program computes 
illumination at every pixel with the light source and the cached 
shading parameter values. The cache location is read from the 
correspondence map with the pixel coordinates. The result of 
every rectangle is simply accumulated onto the framebuffer to 
produce a final image. If there are unmodified light sources for 
a while, their illumination results are stored in an extra buffer 
and reused until any changes are made on them (see the green 
dotted box in Fig. 7). 

IV. Results 

We tested the relighting renderer on a 3.0 GHz dual-core 
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Pentinum with 2 GB of RAM and an NVidia QuadroFX 5500 
graphics card with 1 GB of video RAM. The first test scene 
has a flower vase modeled with 184,143 triangles and lit by 
three points and one directional light source. Refreshing the 
rendered image with a resolution of 640×480 took 0.03 s for 
correspondence map construction (Fig. 8(a)) and 0.02 s for  
re-rendering (Fig. 9). Five caching cameras were used for this 
example. Four were placed around the vase, and one was 
placed above the vase. They were manually placed because 
unfortunately our camera placement algorithm generated too 
many cameras to cover the leaves and the flower petals highly 
occluding each other. The relighted image shows little visual 
difference in comparison with the software-rendered image 
except small artifacts due to sampling errors around object 
boundaries. 

The second example is a temple scene provided by an 
animation studio, which was made with 1,404,052 polygons 
and texture images of 473 MB. Nine caching cameras were 
used: one primary camera and eight secondary cameras. The 
computation time to find them was 354 s for the primary 
camera and 580 s for the secondary cameras. Refreshing the 
rendered image took 0.0425 s for correspondence map 
construction and 0.02 s for re-rendering (Fig. 10). The 
correspondence map used for this image is shown in Fig. 8(b), 
where the high frequency noises appearing on the carpet floor 
are due to bump-mapped surface normals. The refreshing time 
increased only by 25%, whereas the scene complexity 

  

      

Fig. 8. Correspondence maps (a) for the vase scene in Fig. 9 and 
(b) for the temple scene in Fig. 10. 
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Fig. 9. Rendered images for the flower vase scene with 184,143
triangles: (a) software-rendered image and (b) relighted
image. 

(a) (b) 

  

          

Fig. 10. Temple scene modeled with 1,404,052 polygons rendered 
from four different viewpoints: software-rendered images 
(top), relighted images (center), and difference images 
obtained by subtracting the center images from the top 
images (bottom). Nine cameras were used to cache the 
shading parameters of the scene.  

 
increased by 662% from the first example. The small increase 
in the refreshing time demonstrates that our relighting renderer 
is nearly independent of the scene complexity except for depth-
renderings which are to construct the correspondence map and 
shadow maps. 

The last example is a scene with one of four heavenly kings 
captured from a real wooden statue in a Korean temple (see  
Fig. 11). The scene shows only the face of the model because 
the full body is too heavy to work with for a real-time task. The 
image was made with 577,746 polygons, and 10 caching 
cameras were used: two primary cameras and eight secondary 
cameras. The computation time to find them was 578 s for the 
primary cameras and 680 s for the secondary cameras. 
Refreshing the rendered image took 0.043 s for 
correspondence map construction and 0.021 s for re-rendering. 
The performance slowdown is due to using more cameras than 
were used in the temple scene. 

To verify relighting image quality, we computed residual 
images by subtracting the relighting images from the final-
quality images rendered by the Maya software render. The 
residual images are shown in the third row of Figs. 10 and 11. 
The errors are barely noticeable over most image areas, though 
the surface boundaries show high errors. The high boundary 
errors are due to aliasing artifacts on the relighting images 
rendered with one sample per pixel. Since our relighting 
renderer is targeted to previewing for lighting design, the 
boundary accuracy is actually not the main concern. However, 
if higher quality without aliasing artifacts is required, we can 
use a super-sampling technique such that the renderer 
synthesizes an image four times bigger and reduce it to the 
original size. We also computed the peak signal-to-noise ratios 



436   Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009 

 

Fig. 11. Heavenly king scene modeled with 577,746 polygons
rendered from four different viewpoints: software-
rendered images (top), relighted images (center), and
difference images obtained by subtracting the center
images from the top images (bottom). Ten cameras were
used to cache the shading parameters of the scene. 

 

Table 1. PSNRs (dB) for the images in Figs. 10 and 11. The PSNRs
are computed with YUV images converted from the RGB
difference images. 

 Frame 1 Frame 2 Frame 3 Frame 4

Temple scene 33.2 33.3 33.2 34.7 

King scene 36.6 36.3 36.1 35.0 

 

(PSNRs) of the relighting images over the final quality images, 
which are summarized in Table 1. The PSNRs are between 
33.2 dB to 36.6 dB, which is comparable to moderate quality 
lossy compressed images. One major factor pulling down the 
PSNRs is the high peak errors on the surface boundaries; thus, 
if surface boundaries are disregarded, we can expect the 
PSNRs to be much higher. Also, the errors on small surface 
details also reduce the PSNRs, but such errors can be ignored 
for the main lighting setup over the whole scene. Therefore, we 
can conclude that the relighting images are visually equivalent 
to the software-rendered images for the purpose of lighting 
design. 

V. Summary and Discussion 

We presented a relighting technique which supports a 
moving camera in a deep framebuffer framework. Our 
relighting renderer caches the shading parameters into multiple 
deep framebuffers with automatically placed caching cameras. 
Because deep framebuffers provide the shading parameters 
required for illumination computation, time-consuming surface 
sampling, surface texturing, and complex shading 

computations are avoided in run-time, and this enables 
interactive performance. To allow relighting at an arbitrary 
viewpoint, we employed a correspondence map containing the 
cache locations for screen pixels viewed from the current 
rendering camera. The correspondence map is refreshed every 
time the rendering camera moves. We tested our relighting 
engine on several 3D scenes of high complexity to demonstrate 
its applicability to real 3D animation productions. 

The relighting results with a moving camera were found to 
be of slightly lower quality than those rendered by a production 
quality renderer. Although the relatively low quality was still 
acceptable for lighting design, it raises further research 
problems which we will address in the future. Most artifacts 
affecting image quality are mainly due to intrinsic limitations of 
image-based approaches such as aliasing and blurring. To 
alleviate aliasing artifacts, we can use standard advanced anti-
aliasing techniques such as mipmapping and anisotropic 
filtering. Ragan-Kelley and others [5] proposed a more 
efficient anti-aliasing technique using an indirect framebuffer 
with subpixel information for boundary pixels. The indirect 
framebuffer technique can also be adopted into our framework. 
Blurring is due to lack of required details in existing deep 
framebuffers; thus, we can reduce it by capturing further details 
with more caching cameras and by increasing the deep 
framebuffer resolution. However, using many caching cameras 
raises a question of how to efficiently determine the best 
camera in run time. Some heuristics such as nearest camera 
selection and camera clustering may be partial answers to this 
question. 
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