
ETRI Journal, Volume 31, Number 4, August 2009 © 2009 Soonhyun Kim et al. 429

This paper proposes a novel technique for 3D scene
relighting with interactive viewpoint changes. The
proposed technique is based on a deep framebuffer
framework for fast relighting computation which adopts
image-based techniques to provide arbitrary view-
changing. In the preprocessing stage, the shading
parameters required for the surface shaders, such as
surface color, normal, depth, ambient/diffuse/specular
coefficients, and roughness, are cached into multiple deep
framebuffers generated by several caching cameras which
are created in an automatic manner. When the user
designs the lighting setup, the relighting renderer builds a
map to connect a screen pixel for the current rendering
camera to the corresponding deep framebuffer pixel and
then computes illumination at each pixel with the cache
values taken from the deep framebuffers. All the
relighting computations except the deep framebuffer pre-
computation are carried out at interactive rates by the
GPU.

Keywords: Relighting, rendering, image-based
technique, automatic camera placement.

Manuscript received Dec. 4, 2008; revised Apr. 14, 2009; accepted June 24, 2009.
This work was supported by the New Faculty Research Fund of Ajou University in Rep. of

Korea and also partly supported by the IT R&D Program of MKE/MCST/IITA, Rep. of Korea
[2009-S-045-1, Development of Function Extensible High Speed Renderer.].

Soonhyun Kim (email: kkubs@ajou.ac.kr) and Min-Ho Kyung (phone: +82 31 219 1853,
email: kyung@ajou.ac.kr) are with the Visual Computing Lab., Ajou University, Suwon, Rep.
of Korea.

Joo-Haeng Lee (email: joohaeng@etri.re.kr) is with the S/W & Content Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

doi:10.4218/etrij.09.0108.0696

I. Introduction

In 3D animation productions, designing light setups for 3D
scenes is a very time-consuming and labor-intensive task,
mostly carried out at a late stage of production pipelines. The
major difficulty of lighting design comes from a lack of rapid
visual feedbacks with high fidelity. Graphics hardware is not
relevant for rendering a complex 3D cinema scene because of
low rendering quality and limited in-core memory. Software
rendering gives very accurate feedback, but it cannot be so
frequently used because of long rendering times from several
minutes to hours. Therefore, faster and more reliable feedback
methods have been demanded by lighting artists to improve
both efficiency and quality of lighting design.

The relighting technique presented in this paper is based on
deep framebuffers used as cache storages for shading
parameter values pre-computed at each pixel for fast
illumination computation. The cached shading parameters
include ambient color, diffuse color, specular color, roughness,
pixel depths, and so on. Since the deep framebuffer is made at
a specified viewpoint, the deep framebuffer image should be
computed again if the rendering camera is moved.

The major contribution of our work is to make it possible to
freely move the rendering camera without time-consuming re-
caching of the shading parameters. Previous deep framebuffer-
based relighting methods allowed only a fixed viewpoint used
for parameter caching. Some vertex-based indirect light
transport methods can relight a 3D scene in real time, allowing
the camera to move freely. However, they usually require a lot
of pre-computation time and cannot capture high frequency
surface shading features commonly occurring in cinematic
scenes. To overcome such limitations, we adopt an image-
based technique to retrieve the required parameter values from

Relighting 3D Scenes with a
Continuously Moving Camera

 Soonhyun Kim, Min-Ho Kyung, and Joo-Haeng Lee

430 Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009

existing deep framebuffers in run time. The set of deep
framebuffers are cached with automatically generated cameras.
Shading parameter values are accessed through a
correspondence map containing the cache location of a screen
pixel for the current rendering camera. The correspondence
map is rebuilt at every movement of the rendering camera.

We have tested our algorithm on various scenes with up to
1.5 million polygons shaded by Lambert, Phong, and Blinn
models lit by directional, point, and spot light sources [1].
Environment lighting is not yet supported, but it can be
implemented with a little effort. In all these scenes, our
algorithm has achieved interactive performance with
acceptable image quality for lighting design.

The remainder of this paper is organized as follows. Previous
work related with relighting and image-based rendering
techniques is reviewed in section II, and then the details of the
proposed relighting technique are described in section III.
Section IV discusses the results with two test scenes, and
section V concludes the paper with summary of our work and
remaining problems for future work.

II. Related Work

Several existing techniques for re-rendering 3D scenes have
been developed using deep framebuffers, mostly to cache the
parameter values that are required in order to compute
illumination at each pixel. The notion of deep framebuffers
originated from the geometric buffer (G-buffer) [2], which stores
pre-computed geometric properties such as object IDs, depths,
and surface normals for fast comprehensible rendering. Séquin
and Smyrl [3] proposed a similar idea of maintaining a ray tree at
each pixel to avoid repeated ray intersections in re-rendering 3D
scenes. As modern graphics hardware grows more powerful and
versatile, relighting 3D scenes at interactive rates becomes
feasible through GPU-based rendering. Gershbein and Hanrahan
[4] first proposed a deep framebuffer-based relighting engine for
cinematic lighting design. Ragan-Kelly [5] developed another
GPU-based relighting system which used data-flow analysis to
separate light-independent components for caching. Similarly, a
cinematic relighting engine supporting complex RenderMan
scenes, called Lpics, was developed by Pellacini and others [6].
They also extended it to indirect lighting in [7] by pre-computing
multi-bounce light transports and representing them with wavelet
compressed matrices.

Early image-based rendering techniques were introduced by
Adelson and Bergen [8]. The 7D plenoptic function defines all
radiance observed at every location from every direction.
McMillan [9] presented a 3D warping technique which warps
a set of images given with depth information onto a new
picture from a novel viewpoint. Shum and Kang [10] carried

out a comprehensive review of most classic works on image-
based techniques. These previous image-based techniques
were focused on capturing real-world visual appearances and
adapting them to fast and realistic image synthesis. Instead of
capturing real world appearances, we use the image-based
technique to capture surface shading parameters from different
viewpoints in a 3D scene for fast relighting.

III. Image-Based Relighting Engine

Our relighting renderer is developed as a plug-in module to
an animation production system, Autodesk Maya (see Fig. 1).
Relighting is computed as follows. First, the relighting renderer
finds a set of caching cameras used to capture shading
parameter values on surfaces. Then, with each camera, it

Fig. 1. A 3D animation production system integrated with the
proposed relighting renderer. The green arrows represent
the pre-computation flow, and the grey arrows represent
the interactive flow.

User interface
Cache generation

Correspondence map construction

Re-rendering for altered light setup

Fig. 2. Workflow of the relighting renderer.

User input 3D scene

Camera moved?

Light modified?

New light
selected?

No

No

Yes

Yes

Yes

Creating
caching
cameras

Creating
shading

parameters

Constructing
correspondence

map

Re-shading image
layer for selected light

Updating image
layer for

unselected lights

Composing

Output image

ETRI Journal, Volume 31, Number 4, August 2009 Soonhyun Kim et al. 431

renders the scene into a deep framebuffer to cache shading
parameters. During the lighting design, constructing a
correspondence map and updating the rendered image are
repeatedly executed in real time whenever required. The
overall workflow is illustrated in Fig. 2.

In the following subsections, we will discuss the details of
each step.

1. Caching Cameras

Deep framebuffer images are obtained by rendering the
target scene with a set of caching cameras. Since the deep
framebuffers have shading parameters used for re-rendering,
the set of caching cameras should be carefully determined such
that the deep framebuffers capture most of the important
surface areas with sufficient accuracy. Otherwise, a portion of
surface area not captured in the deep framebuffers will make a
hole in the resulting image because the shading parameters are
not available. Also, if the image resolution used for caching is
too low to capture featured details, they will be blurred in the
resulting image.

A brute-force method to place caching cameras uses a large
number of cameras, ensuring that all surface areas are covered,
and places them at arbitrary positions in the scene workspace.
This is impractical in reality. As an extreme case, suppose that
several hundreds cameras completely cover all the surfaces in a
typical 3D scene. The deep framebuffers generated by those
cameras will require several gigabytes of memory, which
exceeds the on-board memory size of current commodity
graphics hardware. Even worse, with so many caching
cameras, updating the correspondence map at every movement
of the rendering camera is computed far more slowly than at
any interactive rate. This is because the computation time
grows proportionally to the number of caching cameras.

Finding an optimal set of caching cameras satisfying image
quality and performance requirements is a challenge. In fact,
the problem is equivalent to the classic “art gallery problem”
known to be NP-complete in computational geometry [11].
Thus, it is not possible to solve the problem exactly within a
reasonable time. Instead, less optimal but practical solutions
have been investigated in image-based modeling and rendering
applications. In [12], Fleishman and others proposed an
automatic camera placement method for image-based
modeling. They restricted the workspace to a curved trajectory
and placed capturing cameras along the trajectory.
Unfortunately, this restriction does not work for lighting design
because designers move the rendering camera freely in 3D
space to see illuminated surfaces from various viewpoints.

We propose a practical heuristic solution suitable for the
purpose of lighting design. The heuristic algorithm may be

summarized as follows.

Step 1. Find the primary camera set covering the majority of
scene surfaces.

Step 2. Find the secondary camera set covering the rest of
scene surfaces uncovered by the primary camera set.

Step 3. Determine the camera attributes such as a viewing
direction, near and far clips, and a field of view.

Step 4. If uncovered areas remain, go to step 2.

This algorithm does not aim to find a complete set of
cameras covering the entire scene including all the small details
because the number of cameras can grow very rapidly. What it
really aims to achieve is reasonable surface coverage with a
small number of cameras allowing interactive performance.
To achieve this, we intensively use a set of sample points as an
approximation to the exact scene geometry. There are a few
assumptions regarding the input scene. It is provided with a
tight bounding box enclosing the surfaces of interest specified
by the user. The “surfaces of interest” usually include the target
objects of main lighting and the background objects supporting
the target objects. This bounding box is used to eliminate
irrelevant surface areas from consideration of camera selection.
Another assumption is that the user may specify important
surface areas by a weight value, which helps to find a better
camera set that captures important surfaces more accurately.

A. Primary Camera Set

In our algorithm, primary caching cameras are a special type
of camera with omni-directional view, that is, cameras which
can see the surroundings in every direction. They are not
standard cameras but can be realized as a cube map made with
six perspective cameras at the center position. The challenge is
to find the primary camera set that maximizes surface coverage
with a reasonably small number of cameras. We conjecture that
such a camera set can be mapped to the centers of inscribed

Fig. 3. Two maximal spheres marked as red circles are found at c1
and c2 with radius r1 and r2, respectively. The pink circles
show a searching sequence of spheres starting from a seed
with δ-radius and ending at c2.

c1

r1

r2

c2

Workspace Surface

Bounding box

432 Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009

spheres, maximally filling the scene workspace shown as the
red circles in Fig. 3. This conjecture is based on the observation
that, if a large sphere is tightly fit to a region of the workspace,
the region usually has a large volume and is surrounded by
large surface areas. Most of these surface areas are visible from
the center of the sphere. Thus, a large portion of the surfaces
can be covered by placing a camera at the center of this sphere.

Thus, the problem of finding primary cameras is reduced to
the problem of finding maximal spheres that tightly fit the
scene workspace. We developed an iterative scheme to solve
this problem, and it may be summarized as follows.

Step 1. Sample a surface point randomly, and define a
δ-radius seed sphere above a point in the workspace.

Step 2. Increase the sphere radius until the sphere comes into
contact with surface points of the second largest pink circle.

Step 3. Move the sphere by δ in a way to disengage it from
the contacting points.

Step 4. If there are no directions to move the sphere, report it
and stop. Otherwise, go to step 2.

This algorithm guarantees convergence to a maximal sphere
if the workspace is bounded. Otherwise, the sphere could grow
to infinity without stopping. To make the workspace bounded,
we enclose it with the bounding box provided with the scene.
The initial position of the sphere is set to s sδ+ ⋅p n , where
ps is the sample surface point, and ns is its normal vector.

In step 2, increasing the sphere radius by δ and then testing
sphere/surface intersection are repeated until the test finds the
sphere intersecting a surface. If intersections are found, a
direction d satisfying the separation constraints, that is,

() 0i⋅ − ≤d r c for all intersections i, (1)

is chosen as a direction to move the sphere at step 3. Here, c
and ri denote the current sphere center and a surface point
chosen from an intersecting area, respectively. Direction d can
be computed by solving a simple linear problem with the
above constraints. If there are no directions satisfying the
constraints, the current sphere is a maximal sphere.

There may be more than one maximal sphere. To find more
spheres, we run the search algorithm multiple times, starting at
different sample points. Some of them may converge to the
previously found spheres, and some of them may converge to
new spheres. We stop repeating the sphere searching if k
consecutive executions do not find new spheres. According to
our experiments, k=50 was good enough to find primary
cameras having large coverage.

B. Secondary Camera Set

A secondary camera is an ordinary perspective camera that is
used to cover the surface areas that are not completely covered

by the primary camera set. Because exact computation of the
uncovered area is time-consuming and is not easy to
implement robustly, we use a set of point samples on surfaces
to identify uncovered areas approximately.

There are two different ways to sample points on surfaces,
namely, uniform sampling and importance-based sampling
[13], [14]. Uniform sampling is easy to implement, but
sometimes it misleads camera selection by regarding even
unimportant samples equally. Importance sampling can avoid
such undesired camera selection with user-assigned weights.
Therefore, we use an importance-based sampling method with
a probability distribution function defined as

1

() ,i i
n

k k
k

w A
f i

w A
=

=

∑
 (2)

where wi and Ai are a weight in [0, 1] and an area of polygon i,
respectively. Multiplying f(i) by the total number of samples
will give the number of samples on polygon i. Then, the
interior of each polygon is uniformly sampled.

The sample points are classified into two groups, namely, a
covered set and an uncovered set, by a visibility test with the
current cameras including the primary cameras. The visibility
test is accelerated with a kd tree containing the surface
polygons. A ray from a sample point to a camera is tested for
occlusion by other surfaces. If the ray is not occluded to the
camera, the sample point is already covered by it. If all the rays
from a sample point are occluded, the sample point is not yet
covered, and thus it will be regarded as uncovered and to be
covered by the next cameras.

If there are more uncovered points than a threshold m , we
need additional cameras to cover them. The intuition to find the
best location having the best view of uncovered sample points
is that such a location will be where the most rays from
uncovered points intersects. The procedure to find this location
is carried out as follows.

First a set of n rays is sampled on the unit hemisphere and
transformed to the tangent plane of each uncovered point. Then,
the workspace is searched for the largest ray intersection point.
Finding the intersection point, however, is not trivial because
the rays are discretely sampled, so they do not exactly intersect
in R3. Therefore, instead of exact intersection, we consider
proximity of rays as an approximation of ray intersection. A 3D
grid discretizing the workspace is used to record the number of
rays passing closely in a distance δ. Figure 4 illustrates how to
find a secondary camera. A 3D grid aligned with the scene
bounding box is constructed with cell size

bbox bboxmax(,) /width height nδ = . We used n=128 for our
test scenes. Rays are shot from the sample points on uncovered
areas.

ETRI Journal, Volume 31, Number 4, August 2009 Soonhyun Kim et al. 433

Fig. 4. The cameras at c1 and c2 cover most surface areas (yellow
and green lines) except the areas with the black dots. The
uncovered points are covered by the secondary camera c3.

c1

c2

c3

Surface Workspace

δ

While a ray is traversing the grid, the cell counters on the
ray path are incremented. Finally, the counters record the
number of rays passing through the cells. To reflect surface
importance, we increment the counter by ,iwα ⋅ where the
weight wi is from the surface polygon at which the point was
sampled, and α is a constant factor. A new camera is placed at
the center of the cell whose counter is the largest and then
added to the secondary camera set. Uncovered points visible
from the new camera are also considered covered. If there are
still more uncovered points than m, the program runs another
iteration.

C. Camera Attributes

Once the locations of the caching cameras have been
obtained, it is time to determine the other camera attributes
including view direction, field-of-view (FOV) angle, near and
far clips, and image resolution. For a primary camera, it is easy
to determine these attributes. Since it is an omni-directional
view camera, it has to be decomposed into six perspective
cameras with view directions –x, +x, –y, +y, –z, and +z,
respectively. Note that all of them have an FOV of 90°.

For a secondary camera c at position c, we first compute the
center of the sample points c

ip covered by camera c as

1

1

,

n
c c
i i

i
c n

c
i

i

w

w

=

=

=
∑

∑

p
p (3)

where n is the number of covered sample points, and wi
c’s are

the sample weights. Then, the FOV angle θ is computed as

1

1, ,

() ()
min max cos ,120 .

|| || || ||

c
c i

ci n
c i

θ −

=

⎛ ⎞⎛ ⎞− ⋅ −
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− ⋅ −⎝ ⎠⎝ ⎠

p c p c
p c p c

 (4)

The reason to restrict the FOV angle within 120° is that cache
images made with a wider FOV angle have a serious accuracy
problem due to under-sampling errors. The covered sample
points out of this bound will be marked again as uncovered and
be taken back to the previous step to find an additional
secondary camera.

Near and far clips are set as min(dnear, nc) and max (dfar, fc),
where dnear and dfar are the nearest and farthest distances of the
samples covered by each camera. Here, nc and fc denote the
clipping limits determined with respect to the dimension of the
scene bounding box, and they are usually set to 0.01 and 1000,
respectively.

The rendering resolution is set to one of 2,048×2,048,
1,024×1,024, 512×512, and 256×256 with respect to the
number of covered samples.

2. Shading Parameter Caching

Shading parameters to be cached are selected according to
the illumination models used by the surface shaders in the
scene. A variety of reflection models have been developed to
simulate natural and artistic appearances of illuminated
surfaces. Among them, we support the Lambert, Blinn, and
Phone models in the current implementation, which are simple
and are the most commonly used models in production studios.
Other reflection models presented in [13] and [15] could be
supported in the future by extending the caching parameter set.

We chose a set of eight parameters as in Lpics [6], including
ambient color, shader ID, surface color, depth, diffuse color,
surface normal, specular attributes, and specular color. Figure 5
shows the shading parameters used in our test scene. Ambient
occlusion and other parameters which are not included in the
current parameter set can be additionally added if required.

The deep framebuffer is iteratively constructed for each
caching camera by using an ordinary rendering technique. All
the shading parameters except pixel depths are cached with a

Fig. 5. Cache images of eight shading parameters for the scene in
Fig. 10: (a) ambient color, (b) shader ID, (c) surface color,
(d) depth, (e) diffuse color, (f) surface normal, (g)
specular attributes, and (h) specular color.

(a) (b) (c) (d)

(e) (f) (g) (h)

434 Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009

standard software renderer. In our work, the Maya renderer is
used with rendering options tailored to output the shading
parameters into color channels. The depth image is rendered
separately by OpenGL with a graphic hardware for speedup.

3. Correspondence Map Construction

The correspondence map has the cache location of the
shading parameter values for screen pixels viewed from the
current rendering camera (see Fig. 6). The cache location is
represented by two values: the deep framebuffer ID and the
(u, v) coordinates on the associated deep framebuffer.

The first step of construction is to find the visible surface
samples from the current rendering camera. A visible surface
sample pw in the scene space is obtained by inversely
projecting a screen pixel back to the scene space. Note that a
depth map is rendered with the current rendering camera to
provide the screen pixel depth before inverse projection is
applied.

Then, for the visible surface sample pw, we find the best
caching camera k with regard to three factors: visibility, surface
normal, and distance. The computation is formulated as

2

() (())
arg max ,i w w i

i
i

v
k

d
⎛ ⎞⋅ ⋅

= ⎜ ⎟⎜ ⎟
⎝ ⎠

p n p u
 (5)

where vi(p) is a visibility function giving 1 if a point p is visible
from camera i and 0 otherwise, n(pw) is the surface normal at
pw, ui is the view direction (to the caching camera), and di is
distance to pw from the view point. The camera ID k and the
projection coordinates of pw onto the deep framebuffer are
recorded on the correspondence map.

There may be surface samples that are not visible from any

Fig. 6. Correspondence map constructed with a set of five
caching cameras. The image of view i shows the depth
map of the i-th caching camera. The colors in the
correspondence map image indicate which caching
camera is associated with each pixel.

View 5

View 5
View 3

View 2

View 1

Correspondence map

Fig. 7. Re-rendering process: image layers lit by each light are
computed by the fragment shader and integrated into the
final image. The layers in the green dotted box are
computed for the unselected light, so they are computed
once and reused until new selection occurs.

Fragment
shader

Light i lIght i+1 Light 1

Shader table

glBlendFunc()

glBlendFunc()

Cache
textures

Correspondence
map

Light 1Light i-1

+

+

Output

caching cameras, and this makes holes in the resulting image.
If a hole is one- or two-pixel sized, the hole is simply filled by
interpolating adjacent pixels. If a hole is bigger, a small
temporary scene that includes the polygons that contain holes is
constructed and rendered with the software renderer in run time
to cache the shading parameters. Since the temporary scene is
so small as to be rendered in under a second, the performance
is only slightly slowed down.

4. Re-rendering

In re-rendering, an image layer lit by each light source is
computed, and all such layers are integrated into a final image
(see Fig. 7). For each light source, we draw a rectangle filling
the whole image space to trigger fragment-based shading at
screen pixels. The fragment shading program computes
illumination at every pixel with the light source and the cached
shading parameter values. The cache location is read from the
correspondence map with the pixel coordinates. The result of
every rectangle is simply accumulated onto the framebuffer to
produce a final image. If there are unmodified light sources for
a while, their illumination results are stored in an extra buffer
and reused until any changes are made on them (see the green
dotted box in Fig. 7).

IV. Results

We tested the relighting renderer on a 3.0 GHz dual-core

ETRI Journal, Volume 31, Number 4, August 2009 Soonhyun Kim et al. 435

Pentinum with 2 GB of RAM and an NVidia QuadroFX 5500
graphics card with 1 GB of video RAM. The first test scene
has a flower vase modeled with 184,143 triangles and lit by
three points and one directional light source. Refreshing the
rendered image with a resolution of 640×480 took 0.03 s for
correspondence map construction (Fig. 8(a)) and 0.02 s for
re-rendering (Fig. 9). Five caching cameras were used for this
example. Four were placed around the vase, and one was
placed above the vase. They were manually placed because
unfortunately our camera placement algorithm generated too
many cameras to cover the leaves and the flower petals highly
occluding each other. The relighted image shows little visual
difference in comparison with the software-rendered image
except small artifacts due to sampling errors around object
boundaries.

The second example is a temple scene provided by an
animation studio, which was made with 1,404,052 polygons
and texture images of 473 MB. Nine caching cameras were
used: one primary camera and eight secondary cameras. The
computation time to find them was 354 s for the primary
camera and 580 s for the secondary cameras. Refreshing the
rendered image took 0.0425 s for correspondence map
construction and 0.02 s for re-rendering (Fig. 10). The
correspondence map used for this image is shown in Fig. 8(b),
where the high frequency noises appearing on the carpet floor
are due to bump-mapped surface normals. The refreshing time
increased only by 25%, whereas the scene complexity

Fig. 8. Correspondence maps (a) for the vase scene in Fig. 9 and
(b) for the temple scene in Fig. 10.

(a) (b)

Fig. 9. Rendered images for the flower vase scene with 184,143
triangles: (a) software-rendered image and (b) relighted
image.

(a) (b)

Fig. 10. Temple scene modeled with 1,404,052 polygons rendered
from four different viewpoints: software-rendered images
(top), relighted images (center), and difference images
obtained by subtracting the center images from the top
images (bottom). Nine cameras were used to cache the
shading parameters of the scene.

increased by 662% from the first example. The small increase
in the refreshing time demonstrates that our relighting renderer
is nearly independent of the scene complexity except for depth-
renderings which are to construct the correspondence map and
shadow maps.

The last example is a scene with one of four heavenly kings
captured from a real wooden statue in a Korean temple (see
Fig. 11). The scene shows only the face of the model because
the full body is too heavy to work with for a real-time task. The
image was made with 577,746 polygons, and 10 caching
cameras were used: two primary cameras and eight secondary
cameras. The computation time to find them was 578 s for the
primary cameras and 680 s for the secondary cameras.
Refreshing the rendered image took 0.043 s for
correspondence map construction and 0.021 s for re-rendering.
The performance slowdown is due to using more cameras than
were used in the temple scene.

To verify relighting image quality, we computed residual
images by subtracting the relighting images from the final-
quality images rendered by the Maya software render. The
residual images are shown in the third row of Figs. 10 and 11.
The errors are barely noticeable over most image areas, though
the surface boundaries show high errors. The high boundary
errors are due to aliasing artifacts on the relighting images
rendered with one sample per pixel. Since our relighting
renderer is targeted to previewing for lighting design, the
boundary accuracy is actually not the main concern. However,
if higher quality without aliasing artifacts is required, we can
use a super-sampling technique such that the renderer
synthesizes an image four times bigger and reduce it to the
original size. We also computed the peak signal-to-noise ratios

436 Soonhyun Kim et al. ETRI Journal, Volume 31, Number 4, August 2009

Fig. 11. Heavenly king scene modeled with 577,746 polygons
rendered from four different viewpoints: software-
rendered images (top), relighted images (center), and
difference images obtained by subtracting the center
images from the top images (bottom). Ten cameras were
used to cache the shading parameters of the scene.

Table 1. PSNRs (dB) for the images in Figs. 10 and 11. The PSNRs
are computed with YUV images converted from the RGB
difference images.

 Frame 1 Frame 2 Frame 3 Frame 4

Temple scene 33.2 33.3 33.2 34.7

King scene 36.6 36.3 36.1 35.0

(PSNRs) of the relighting images over the final quality images,
which are summarized in Table 1. The PSNRs are between
33.2 dB to 36.6 dB, which is comparable to moderate quality
lossy compressed images. One major factor pulling down the
PSNRs is the high peak errors on the surface boundaries; thus,
if surface boundaries are disregarded, we can expect the
PSNRs to be much higher. Also, the errors on small surface
details also reduce the PSNRs, but such errors can be ignored
for the main lighting setup over the whole scene. Therefore, we
can conclude that the relighting images are visually equivalent
to the software-rendered images for the purpose of lighting
design.

V. Summary and Discussion

We presented a relighting technique which supports a
moving camera in a deep framebuffer framework. Our
relighting renderer caches the shading parameters into multiple
deep framebuffers with automatically placed caching cameras.
Because deep framebuffers provide the shading parameters
required for illumination computation, time-consuming surface
sampling, surface texturing, and complex shading

computations are avoided in run-time, and this enables
interactive performance. To allow relighting at an arbitrary
viewpoint, we employed a correspondence map containing the
cache locations for screen pixels viewed from the current
rendering camera. The correspondence map is refreshed every
time the rendering camera moves. We tested our relighting
engine on several 3D scenes of high complexity to demonstrate
its applicability to real 3D animation productions.

The relighting results with a moving camera were found to
be of slightly lower quality than those rendered by a production
quality renderer. Although the relatively low quality was still
acceptable for lighting design, it raises further research
problems which we will address in the future. Most artifacts
affecting image quality are mainly due to intrinsic limitations of
image-based approaches such as aliasing and blurring. To
alleviate aliasing artifacts, we can use standard advanced anti-
aliasing techniques such as mipmapping and anisotropic
filtering. Ragan-Kelley and others [5] proposed a more
efficient anti-aliasing technique using an indirect framebuffer
with subpixel information for boundary pixels. The indirect
framebuffer technique can also be adopted into our framework.
Blurring is due to lack of required details in existing deep
framebuffers; thus, we can reduce it by capturing further details
with more caching cameras and by increasing the deep
framebuffer resolution. However, using many caching cameras
raises a question of how to efficiently determine the best
camera in run time. Some heuristics such as nearest camera
selection and camera clustering may be partial answers to this
question.

References

[1] R. Barzel, “Lighting Controls for Computer Cinematography,” J.
of Graphics Tools, vol. 2, no. 1, 1997, pp. 1-20.

[2] T. Saito and T. Takahashi, “Comprehensible Rendering of 3-D
Shapes,” Proc. Int. Conf. Computer Graphics Interactive Tech.,
1990, pp. 197-206.

[3] C.H. Séquin and E.K. Smyrl, “Parameterized Ray Tracing,” Proc.
Int. Conf. Computer Graphics Interactive Tech., 1989, pp. 307-
314.

[4] R. Gershbein and P.M. Hanrahan, “A Fast Relighting Engine for
Interactive Cinematic Lighting Design,” Proc. Int. Conf.
Computer Graphics Interactive Tech., 2000, pp. 353-358.

[5] J. Ragan-Kelley et al., “The Lightspeed Automatic Interactive
Lighting Preview System,” ACM Trans. Graphics, vol. 26, no. 3,
2007, Article 25.

[6] F. Pellacini et al., “Lpics: A Hybrid Hardware-Accelerated Re-
lighting Engine for Computer Cinematography,” ACM Trans.
Graphics, vol. 24, no. 3, 2005, pp. 464-470.

[7] M. Hasăn, F. Pellacini, and K. Bala, “Direct-to-Indirect Transfer

ETRI Journal, Volume 31, Number 4, August 2009 Soonhyun Kim et al. 437

for Cinematic Relighting,” ACM Trans. Graphics, vol. 25, no. 3,
2006, pp. 1089-1097.

[8] E.H. Adelson and J. Bergen, “The Plenoptic Function and the
Elements of Early Vision,” Computational Models of Visual
Process., MIT Press, 1991, pp. 3-20.

[9] L. McMillan, An Image-Based Approach to Three-Dimensional
Computer Graphics, PhD thesis, University of North Carolina,
Computer Science TR97-013, 1997.

[10] H.Y. Shum and S.B. Kang, “A Review of Image-Based
Rendering Techniques,” Proc. IEEE/SPIE Visual Commun.
Image Process. (VCIP), 2000, pp. 2-13.

[11] A. Aggarwal, The Art Gallery Problem: Its Variations,
Applications, and Algorithmic Aspects, PhD thesis, Johns
Hopkins University, 1984.

[12] S. Fleishman, D. Cohen-Or, and D. Lischinski, “Automatic
Camera Placement for Image-Based Modeling,” Computer
Graphics Forum, vol. 19, no. 2, 2000, pp. 101-110.

[13] M. Pharr and G. Humphreys, Physically Based Rendering: From
Theory to Implementation, Morgan Kaufmann, 2004.

[14] S. Agarwal et al., “Structured Importance Sampling of
Environment Maps,” ACM Trans. Graphics, vol. 22, no. 3, July
2003, pp. 605-612.

[15] J. Dorsey, H. Rushmeier, and F. Sillion, Digital Modeling of
Material Appearance, Morgan Kaufmann Series in Computer
Graphics, 2007.

Soonhyun Kim received the BS and MS
degrees in media from Ajou University in 2005
and 2007, respectively. Currently, he is a PhD
candidate with the Graduate School of
Information and Communication, Ajou
University. His major research topic is real-time
image synthesis for 3D animation production.

Min-Ho Kyung is an associate professor of the
Department of Digital Media at Ajou University.
He received the BS and MS degrees from
Pohang University of Science and Technology
in 1993 and 1995, respectively. He continued
his graduate study at Purdue University, where
he received the PhD degree in computer science

in 2001. His research focuses on real-time image synthesis for 3D
graphics, robot motion planning, and robust geometric algorithms.

Joo-Haeng Lee received his BS, MS, and PhD
degrees in computer science from POSTECH,
Korea, in 1994, 1996, and 1999, respectively.
He joined ETRI, Korea in 1999 and is a senior
research scientist with the Rendering Team of
the Digital Contents Division. His research
interests include geometric modeling and

processing algorithms for computer graphics, CAD, and robotics. He is
also interested in embedded intelligence for computer graphics, CAD,
and robotics applications.

	I. Introduction
	II. Related Work
	III. Image-Based Relighting Engine
	IV. Results
	V. Summary and Discussion
	References

