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In this paper, an error compensation technique for a 
dead reckoning (DR) system using a magnetic compass 
module is proposed. The magnetic compass-based 
azimuth may include a bias that varies with location due 
to the surrounding magnetic sources. In this paper, the DR 
system is integrated with a Global Positioning System 
(GPS) receiver using a finite impulse response (FIR) filter 
to reduce errors. This filter can estimate the varying bias 
more effectively than the conventional Kalman filter, 
which has an infinite impulse response structure. 
Moreover, the conventional receding horizon Kalman FIR 
(RHKF) filter is modified for application in nonlinear 
systems and to compensate the drawbacks of the RHKF 
filter. The modified RHKF filter is a novel RHKF filter 
scheme for nonlinear dynamics. The inverse covariance 
form of the linearized Kalman filter is combined with a 
receding horizon FIR strategy. This filter is then combined 
with an extended Kalman filter to enhance the 
convergence characteristics of the FIR filter. Also, the 
receding interval is extended to reduce the computational 
burden. The performance of the proposed DR/GPS 
integrated system using the modified RHKF filter is 
evaluated through simulation. 
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I. Introduction 

Navigation technology has become one of the core 
technologies in the local based service/telematics industry. The 
navigation system used in telematics is called a car navigation 
system (CNS). An off-line CNS is generally comprised of a 
stand-alone Global Positioning System (GPS) receiver and 
digital map. The navigation system for on-line CNS uses an 
assisted GPS (A-GPS) or network RTK-GPS instead of a 
stand-alone GPS. However, the GPS signal cannot be used 
continuously in an urban area due to signal blockage. Therefore, 
the GPS-based CNS cannot provide accurate seamless 
navigation service in urban environments. To overcome this 
problem, a dead reckoning (DR)/GPS integrated navigation 
system has been adopted for the CNS [1]-[3]. For the mass 
market, the DR system should be implemented using low-cost 
sensors. Therefore, a magnetic compass module is discussed in 
this paper. The module usually consists of a 2-axis 
accelerometer and three magnetic compass sensors for tilt 
compensation. In this paper, the output of the 2-axis 
accelerometer and tilt compensated azimuth data are integrated 
with the GPS data for CNS. 

A magnetic compass offers absolute azimuth data by 
measuring Earth’s magnetic flux. Therefore, magnetic 
compass-based azimuth data does not have increasing errors 
over time unlike gyro-based azimuth data. However, magnetic 
compass-based azimuth data can be influenced by the 
surrounding magnetic sources such as bridges, buildings, cars, 
as well as by Earth’s magnetic field. Therefore, magnetic 
compass-based azimuth data has a bias error dependent upon 
the location [4], [5]. 

To compensate for bias error, a proper filter is necessary in 
the DR/GPS integrated system. In general, extended Kalman 
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filter (EKF) is widely used in an integrated navigation system 
[1]-[3], [6]. When a CNS is used in an urban area, a magnetic 
compass error varies with a larger bias. It is assumed that the 
bias error of a magnetic compass is modeled as a random 
constant error. In this case, the EKF cannot estimate the 
varying bias exactly, as the EKF has an infinite impulse 
response (IIR) structure. In this paper, an RHKF filter is 
adopted to overcome this problem. The RHKF filter estimates 
the state variables using the measurements only on the current 
horizon[ ],t T t− Δ . This filter has a fast estimation property 
due to the finite impulse response (FIR) structure [7]-[15]. 
However, the DR error has nonlinear dynamics, and research 
on the RHKF filter for nonlinear systems is insufficient. In this 
paper, the RHKF filter is modified for application in nonlinear 
systems that have a discrete-time model. The inverse 
covariance form of the linearized Kalman filter is derived 
because the RHKF filter has a feed-forward structure in the 
horizon. This filter has two demerits: one is bad convergence 
characteristics, and the other is a heavy computational burden. 
In this paper, the FIR construction is modified to overcome 
these problems. The inverse covariance form of the linearized 
Kalman filter is combined with the EKF to enhance the 
convergence characteristics. Also, the receding interval is 
extended to TΔ , the size of the horizon of the RHKF filter, to 
reduce the computational burden. The modified RHKF 
(MRHKF) filter has several merits. It is robust to the model 
uncertainty, temporary disturbance, and so on, due to the FIR 
structure. It also has a fast estimation property. The 
convergence characteristic is enhanced compared with the 
conventional RHKF filter. Moreover, the computational burden 
is reduced. To verify the performance of the MRHKF filter, a 
DR/GPS integrated system is implemented virtually using 
MATLAB toolbox. 

This paper is organized into five sections. In section II, the 
MRHKF filter is proposed as an iterative form and batch-
process form. In section III, the DR/GPS integrated navigation 
system using the MRHKF filter is described. In section IV, its 
performance is verified by simulation, and, finally, some 
concluding remarks are given in the last section. 

II. MRHKF Filter 

The RHKF filter, also referred to as a moving horizon filter 
or moving window filter, has an FIR structure; thus, the RHKF 
filter estimates current states based on a finite number of 
measurements over the recent time horizon. It is known that the 
RHKF filter has a robust property against temporary errors and 
has a fast estimation property. However, a conventional RHKF 
filter has three problems: 

1) It can be applied only in linear systems. 

2) It has a much heavier computational burden than the 
conventional Kalman filter, which has an IIR structure. 

3) The convergence characteristic is not good due to the use 
of a finite number of measurements. 

In this paper, an MRHKF is proposed to overcome these 
problems. This filter consists of an RHKF filter and an EKF. 
First, the nonlinear system model is linearized on the 
propagated nominal points, and the RHKF filter is processed 
using the linearized model. The filter is then combined with the 
EKF to enhance the convergence characteristics. Figure 1 
shows the concept of the MRHKF filter. The receding interval 
is set by N, the horizon size of the RHKF filter to reduce the 
computational burden. In Fig. 1, the dotted line is the hidden 
horizon and the solid line is the active horizon. The RHKF 
filter is processed in the hidden horizon. The state variables 
cannot be estimated in this horizon. After processing the hidden 
horizon, the active horizon and another hidden horizon are 
carried out. In the active horizon, the EKF is processed and the 
state variables are estimated by the EKF. A measurement is 
used only twice. In this section, the discrete time model of the 
MRHKF filter is presented. 

Consider a nonlinear discrete time system represented by 

1 ( ) ,
( ) ,

k k k

k k k

x f x Gw
y h x v
+ = +

= +
               (1) 

where k is the discrete time, L
kx ∈ ℜ is the state, and  

q
ky ∈ℜ is the output. Moreover, p

kw ∈ℜ and q
kv ∈ℜ  are 

uncorrelated zero-mean white Gaussian noise processes, and 
the covariance of the two processes are denoted by Q and R, 
respectively. The functions f and h are assumed to be 
continuously differentiable. 

The RHKF filter has an inverse covariance form. For this 
paper, the inverse covariance matrix is defined as 

1
k kP−Ω = .                   (2) 

The measurement update and time propagation equations of 
the inverse covariance and Kalman gain equation are then 
expressed as follows [16]: 

1T
k k k k kH R H− −Ω = Ω + ,              (3) 

( )1 1
T

k k kI G−
− −Ω = − Γ Ψ ,            (4) 

1 1T
k k kK H R− −= Ω ,                 (5) 

where 
1T

k k k kF F− −Ψ = Ω ,                (6a) 

( ) 11 T
k k kG Q G G

−−Γ = Ψ + Ψ ,          (6b) 
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Fig. 1. Concept of MRHKF filter. 
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where kx∗
 is the nominal point for linearization of the 

nonlinear functions and is defined as 

k k kx x xδ∗ = − .                 (7) 

The nominal point is time propagated in the hidden horizon 
as 

1( ).k kx f x∗ ∗
−=                   (8) 

The measurement update equation of the error state can be 
expanded as (9) using (5). 

( )
( )

( ) ( )
( ) ( ){ }
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1 1 1 1

1 1 1

ˆ ˆ ˆ( )

ˆ ˆ( )

ˆ ( )
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δ
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(9) 
where zk is a sensor measurement. 

The initial value of the inverse covariance matrix is zero 
because there is not any information for initial states. This leads 
to singularities in the calculation of 1

k
−Ω . Therefore, the error 

states cannot be updated using (9). To avoid this problem, let us 
define another pseudo error state as 

ˆ ˆk k kxξ δ= Ω .                (10) 

The pseudo error state can be written as (11) by substituting 
(3) and (9) into (10). 

( ) ( )
( )

( )

1 1

1

1

ˆ ˆ ( )

ˆ ( )

ˆ ( ) .

T T
k k k k k k k k

T
k k k k k

T
k k k k

H R H x H R z h x

x H R z h x

H R z h x

ξ δ

δ

ξ

− − − ∗

− − − ∗

− − ∗

= Ω − + −
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= + −

  

(11)

 

The time propagation equation of the pseudo error state is 

expressed as  

( )
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( )
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(12)

 

The pseudo error state is updated in the hidden horizon using 
(11). At the end of the hidden horizon, the inverse matrix of the 
inverse covariance matrix is necessary to estimate the error 
state variables. To calculate the covariance matrix, the size of 
the hidden horizon, N, must be larger than or equal to the state 
dimension, L [7]. If N L≥ , then the inverse of kΩ can be 
achieved. Therefore, the error state can be estimated as 

1 ˆˆ .k k kxδ ξ−= Ω                (13) 

Now, the inverse covariance form of the linearized Kalman 
filter is combined with the RH strategy. This filter is applied 
from t0 to tN and estimates the error states at tN, as can be seen in 
Fig. 1. Also, EKF is applied from tN+1 to t2N, where the initial 
value of EKF is set by the compensated value (13) at tN and the 
initial error covariance matrix is set by the inverse matrix of the 
inverse covariance matrix. Also, a new hidden horizon is 
formed from tN to t2N. 

Generally, the size of the horizon is equal to the state 
dimension. However, N must be larger than L when the degree 
of observability is low. The more the horizon size of the RHKF 
filter increases, the more the filter is affected by uncertainties. If 
the horizon size of the RHKF filter is set to small, the 
convergent characteristics of the filter may worsen. Therefore, 
it is important to set the horizon size properly. 

To express the MRHKF filter clearly, the summary of the 
MRHKF filter is shown in Table 1. 

The linearized RHKF filter in the hidden horizon is in an 
iterative form. This filter can be expressed as a batch form, 
which utilizes N measurements on the horizon[ ],k N kt t− . It 
can be represented in an FIR structure. 

Let us define new variables as 

( ) ,T T
k N i k N i k N iA I G F −

− + − + − += − Γ        (14a) 

1,T
k N i k N iB H R−

− + − +=              (14b) 

and 

( )1
1 1 1

1 1 1.

k N i k N i k N i k N i k N i k N i k N i

k N i k N i k N i

C A F B H x

A x

− ∗
− + − + − − + − − + − − + − + − +

∗
− + − − + − − + −

= Ω +

− Ω

(14c) 
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Table 1. Summary of MRHKF filter. 

( 1) , 0,1,...jN k j Nt t t j+≤ ≤ = : Hidden horizon (RHKF filter) 

• Initialization 

* ˆ
jN jNx x= , 

0jN L L×Ω = ,  

1
ˆ 0jN Lξ ×=  

Let: ih jN i= +  

• Time propagation (1 )i N≤ ≤  

  Initialization 

1
1 1 1 1i i i i

T
h h h hF F− −

− − − −Ψ = Ω  

( ) 11
1 1 1 1i i i i

T
h h h hG Q G G

−
−

− − − −Γ = Ψ + Ψ

1( )
i ih hx f x∗ ∗

−=  

  Inverse covariance ( )1 1i i i

T
h h hI G−

− −Ω = − Γ Ψ  

  Pseudo error state ( )1 1 1
ˆ ˆ

i i i i

T T
h h h hI G Fξ ξ− −

− − −= − Γ  

• Measurement update  (1 i N≤ ≤ ) 

 Inverse covariance 
1

i i i i

T
h h h hH R H− −Ω = Ω +  

   Pseudo error state ( )1ˆ ˆ ( )
i i i i i

T
h h h h hH R z h xξ ξ − − ∗= + −  

( 1) ( 2) , 0,1,...j N k j Nt t t j+ +< ≤ = : Active horizon (EKF) 

• Initialization 
( ( 1)k j Nt t += ) 

1
( 1) ( 1)j N j NP −

+ += Ω , 
1

( 1) ( 1) ( 1)
ˆˆ

j N j N j Nxδ ξ−

+ + += Ω , 
* *
( 1) ( 1) ( 1)

ˆ
j N j N j Nx x xδ+ + += +  

Let: ( 1)ia j N i= + +  

• Measurement update (1 )i N≤ ≤  

 Kalman gain ( ) 1

i i i i i i

T T
a a a a a aK P H H P H R

−
− −= +  

 Error state ( )ˆ ( )
i i i ia a a ax K z h xδ ∗= −  

 Covariance ( )
i i i ia a a aP I K H P−= −  

• Time propagation (1 )i N≤ ≤  

 State 1 ( )
i ia ax f x∗ ∗

+ =  

 Covariance 1i i i i

T
a a a aP F P F Q−

+ = +  

 

  Substituting (12) and (14) into (11) yields 

1 1
ˆ ˆ

.
k N i k N i k N i

k N i k N i k N i

A
B z C

ξ ξ− + − + − − + −

− + − + − +

=

+ +
         (15) 

At the end of the horizon, the variable is estimated as 

( )

1

1

1 1

1

1 1

ˆ ˆ

( )

.

N

k k j k N
j

N nN

k j k N n k N n k N n
n j

N nN

k k k j k N n k
n j

A

A B z h x

B z A C C

ξ ξ− −
=

−−
∗

− − + − + − +
= =

−−

− − +
= =

=

⎛ ⎞
⎜ ⎟+ −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟
⎝ ⎠

∏

∑ ∏

∑ ∏

    (16) 

The error state is then calculated as (17) using (13). 

( )

1

1

1
1

1 1

1
1

1 1

ˆˆ

( )

.

N

k k k j k N
j

N nN

k k j k N n k N n k N n
n j

N nN

k k k k j k N n k
n j

x A

A B z h x

B z A C C

δ ξ−
− −

=

−−
− ∗

− − + − + − +
= =

−−
−

− − +
= =

= Ω

⎛ ⎞
⎜ ⎟+ Ω −
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ + Ω +
⎜ ⎟
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∏

∑ ∏

∑ ∏

(17) 

Since the variable of k̂ Nξ −  is zero, (17) can be expressed in 
an FIR form as follows: 

( )
1 1

0 0

ˆ ( ) ,
N N

k m k m k m m k m
m m

x z h x C
− −

∗
− − −

= =

= − +∑ ∑H L     (18) 

where the last term is produced from the time propagation of 
the nominal point; also 

1
1 2m k k k k mA A A−

− − −= ΩL            (19a) 

and 
1T

m m k m k mH R−
− −=H L .             (19b) 

III. DR/GPS Integrated Navigation Using MRHKF 
Filter 

The typical CNS consists of a GPS receiver, digital map, and 
navigation computer. However, a GPS signal cannot be used 
continuously in an urban area due to signal blockage. To 
provide seamless position information, a CNS can adopt a 
DR/GPS integrated system, which can be accomplished using 
an odometer, magnetic compass, accelerometer, gyro, and so 
on. In this paper, a magnetic compass module is used for the 
DR system. Generally, the magnetic compass module consists 
of an MEMS-type 2-axis accelerometer and three magnetic 
compass sensors. The accelerometers are used for tilt 
compensation of the magnetic compass sensors. It is easy to 
extract the sensor signals from the module for integrating 
signals with the GPS data. The module is aligned such that the 
accelerometer measures the forward and lateral accelerations of 
the vehicle and the magnetic compass provides the azimuth 
angle of the vehicle. 

Using the DR system, the velocity and position of the vehicle 
are calculated as follows: 

1( ) ( ) ( )b b b
x k x k x kV V A k−= + Δ ,           (20) 

( )1 ( )n n n b
k k x x kk

P P C V k−= + Δ ,           (21) 

where the Coriolis effect is ignored for simplicity as a low-
grade accelerometer is used. Also, kΔ  is the discrete time 
interval, b

xA  is the x-axis accelerometer output on the body 
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frame, b
xV is the x-axis velocity, Pn is the position on the 

navigation frame (N-E), and n
xC  denotes the direction cosine 

matrix from the x-axis on the body frame to the navigation 
frame denoted as 

cos
sin

n
xC

ψ
ψ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
,                  (22) 

where ψ  is the tilt compensated azimuth angle obtained from 
the magnetic compass module. 

The azimuth is calculated by measuring Earth’s magnetic 
flux using the magnetic compass sensors. Unfortunately, the 
measured signal can be influenced by the surrounding 
magnetic field caused by the several magnetic sources such as 
steel structures, electric/electronic devices, and communication 
devices. Therefore, the azimuth information may have bias 
errors dependent upon the location. This causes navigational 
errors in the DR system. In this paper, the DR system is 
integrated with a GPS receiver to compensate the DR errors 
using the proposed MRHKF filter as described in Fig. 2. The 
MRHKF filter can estimate the varying bias errors of the 
magnetic compass more effectively than the conventional EKF. 

First, the DR error model is derived. A low-grade 
accelerometer has several errors such as bias errors, scale factor 
errors, and non-linearity. However, in this paper, it is assumed 
that the accelerometer has a dominant bias error. Also, other 
minor errors are treated as noise. So, the accelerometer output 
is modeled as 

accel( ) ( ) ( )b b
x k x k x kA A w= + ∇ + ,           (23) 

where b
xA  is the true acceleration, x∇ is the bias, and accelw  

is white Gaussian noise. Bias errors are modeled as 

( )
1

0 accel accel

( ) ( ) ,
( ) ~ (0, ), ~ (0, ).

x k x k

x kN P w N Q
−

∇

∇ = ∇

∇
    (24) 

An azimuth angle computed in the magnetic compass has 
the following error characteristics. 

( ) ( )k k mc mck kb wψ ψ= + + ,          (25) 

where kψ  is the true azimuth, bmc is a bias error, and wmc is 
white Gaussian noise. The bias error is modeled as follows: 

( ) ( )
( ) ( )

1

0

,

~ (0, ), ~ (0, ).
mc mck k

mc mc mc mck

b b

b N P w N Q
−=

      (26) 

Using the linear perturbation method, a velocity error is 
derived from (20). 

{ }1 1( ) ( ) ( ) ( ) ( ) .b b b b b
x k x k x k x k x k xV V V V A kδ δ− −+ = + + + ∇ Δ  

(27) 
Therefore, velocity error is modeled as follows: 

 

Fig. 2. Block diagram of DR/GPS using MRHKF filter. 
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Finally, position errors can be derived from (21). 

( ) { }1 1 ( ) ( ) ,n n n n n b b
k k k k x x k x kk

P P P P C V V kδ δ δ− −+ = + + + Δ (29) 

where 
( )
( )

cos
sin

sin
.

cos

n
x

n
x

C

C

ψ δψ
ψ δψ

ψ
δψ

ψ

⎡ + ⎤
= ⎢ ⎥+⎣ ⎦

−⎡ ⎤
≅ + ⎢ ⎥

⎣ ⎦

           
(30)

 

Position error is modeled as  

1
sin

( ) ( ) .
cos

n n n b b
k k x x k x kP P C k V V k

ψ
δ δ δ δψ

ψ−
−⎡ ⎤

≅ + Δ ⋅ + Δ ⋅⎢ ⎥
⎣ ⎦

(31) 

The derived DR error model is used to design the system 
model of the error compensation filter. The state variables are 
set as position errors on the navigation frame, velocity error, 
accelerometer bias, and magnetic compass bias as in (32). 

[ ]TN E x x mcx P P V bδ δ δ δ= ∇         (32) 

The corresponding system model is designed as  

( )2 2 2 1 _

1 2

2 5

0
,0 1 0

0

n
x pmc kk

k

I C k f
F k

× ×

×

×

⎡ ⎤Δ
⎢ ⎥

= ⎢ ⎥Δ
⎢ ⎥
⎢ ⎥⎣ ⎦

    (33) 

where 

( )
( )_

sin
.

cos

b
x kk

pmc k b
x kk

V
f k

V

ψ

ψ

⎡ ⎤−
⎢ ⎥= Δ⎢ ⎥
⎢ ⎥⎣ ⎦

        (34) 

The position and velocity information obtained from a GPS 
receiver is used as a measurement. The measurement model is 
designed as 
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[ ]3 3 3 20 .kH I × ×=               (35) 

The system dimension is five. Therefore, the hidden/active 
horizon size and interval between the horizons are set by five. 

IV. Simulation Results and Analysis 

To analyze the performance of the MRHKF filter in the 
DR/GPS integrated system for car navigation, a simulation is 
conducted. The simulation trajectory is denoted in Fig. 3(a). 
The accelerometer bias is set as a random constant as 

2 2 2 2
accel(1m/s ) , (0.1m/s ) .P Q∇ = =          (36) 

It is assumed that the magnetic compass bias varies as 
follows, due to the surrounding magnetic field: 

2
1( ) ( ) , (0.3 ) ,mc k mc k k k mcb b Qα β−= + + =     (37) 

where 

( )2~ 0, (0.1 ) ,kα                (38) 

10 , 6,
10 , 20,
10 , 40,

10 , 60,
0.2 , 80 85,
0.2 , 95 100,

0, otherwise.

k

k
k
k
k

k k
k k

β

⎧ =
⎪ − =⎪
⎪ − =
⎪

= =⎨
⎪ Δ ≤ ≤⎪
⎪− Δ ≤ ≤
⎪
⎩

        (39) 

Figure 3(b) shows a sample of the sensor biases. The 
magnetic compass bias includes a step-type bias and a ramp-
type bias. However, the magnetic compass bias is modeled as a 
random constant bias denoted in (26). Therefore, the 
corresponding value of the process noise covariance matrix in 
the filters is set by zero. In other words, there is a model 
uncertainty. In this case, the capability of estimating the varying 
magnetic compass bias is evaluated based on the EKF and  
MRHKF filter. GPS data is generated using the GPS toolbox 
for MATLAB. GPS data includes various errors such as 
ionospheric errors, tropospheric errors, multipath errors, and 
thermal noise. 

Simulation results under the environment denoted in Fig. 3 
are shown in Fig. 4. Figure 4(a) denotes estimated 
accelerometer bias. It can be seen that the convergence 
characteristics of the EKF are better than those of the MRHKF 
filter. However, the variance of the estimated accelerometer 
bias in the MRHKF filter is less than that of the white Gaussian 
noise of the accelerometer output. Consequently, the estimated 
accelerometer bias in the MRHKF filter is reasonable.  

 

Fig. 3. Simulation environment: (a) trajectory and (b) sensor errors.
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Figure 4(b) denotes estimated magnetic compass bias. It can be 
seen that the EKF cannot estimate the varying magnetic 
compass bias exactly within a short time due to the IIR 
structure and the model uncertainty. On the other hand, the 
MRHKF filter can estimate the varying magnetic compass bias 
comparatively well due to the FIR structure and fast estimation 
property even when there is model uncertainty. Figure 4(c) 
denotes the estimated position. It can be seen that the position 
estimation error in the DR/GPS using the MRHKF filter is 
converged into the GPS error range. However, in the DR/GPS 
using the EKF, there is a strong possibility of error regarding 
the estimated position, despite the good GPS measurement. 
This phenomenon is caused by the erroneous estimation result 
of the magnetic compass bias. In this simulation, it can be 
confirmed that the estimation performance of the MRHKF 
filter is better than the EKF when there is model uncertainty. 

Figure 5 shows the simulation results when the GPS signal is 
blocked at 30/45 and 90/105. 

In an urban area, the GPS signal can be blocked due to a  
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Fig. 4. Simulation results: (a) estimated accelerometer bias, (b)
estimated magnetic compass bias, and (c) estimated
position. 
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tunnel, building, and so on. If the GPS signal is blocked, the 
measurement update cannot be processed in the filters. In this 
case, the hidden horizon of the MRHKF filter cannot be 
changed into the active horizon because the inverse matrix of  

 

Fig. 5. Simulation results when GPS signal blockages exist:
(a) estimated accelerometer bias, (b) estimated magnetic
compass bias, and (c) estimated position. 
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the inverse covariance matrix cannot be calculated in (13). As 
shown in Fig. 6, the current hidden/active horizon is extended 
as long as the GPS signal is blocked. 

When the GPS signal is blocked, the sensor bias estimates 



386   Seong Yun Cho and Hyung Keun Lee ETRI Journal, Volume 34, Number 3, June 2012 

 

Fig. 6. Horizon extension when GPS signal is blocked. 
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Fig. 7. Processing times of EKF and MRHKF filter. 
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are maintained, as can be seen in Fig. 5(a) and (b). In this 
section, the position error increases with time because the 
measurement update cannot be processed as denoted in Fig. 
5(c). After the GPS signal is restored, the MRHKF filter 
effectively estimates the varying magnetic compass exactly 
within a short time. In these simulation results, the good 
estimation performance of the MRHKF filter can be 
reconfirmed even when there is a GPS signal blockage. 

Moreover, the computational burden of the MRHKF filter is 
about twice that of the EKF because the MRHKF filter 
processes two filters, the RHKF filter in the hidden horizon and 
the EKF in the active horizon, in parallel. This is evident in Fig. 
7, which shows the processing times computed using the  
“tic/toc” command in MATLAB. 

V. Concluding Remarks 

In this paper, a modified RHKF filter and a DR/GPS 
integrated system using it were proposed. The RHKF filter is 
robust to model uncertainty, temporary disturbance, and so on, 
due to the FIR structure. However, the convergence 
characteristics of the RHKF filter are poor and the 
computational burden is heavy, due to the receding horizon 

FIR structure. Moreover, the conventional RHKF filter can be 
used in linear systems. In this paper, the inverse covariance 
form of the linearized Kalman filter was combined with the 
receding horizon FIR strategy for application in nonlinear 
systems. It was then combined with the EKF to enhance the 
convergence characteristics. Finally, the receding interval was 
extended to reduce the computational burden. Therefore, the 
modified RHKF filter has the merits of an FIR filter and 
enhanced performance. This filter was applied to a magnetic 
compass module-based DR/GPS integrated system. It was 
shown that the modified RHKF filter can estimate the varying 
bias of the magnetic compass efficiently even when there is 
model uncertainty and the GPS signal is blocked temporarily. 
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