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To overcome the resource and computing power limitation of mobile devices in Internet of Things (IoT) era, a cloud computing
provides an effective platform without human intervention to build a resource-oriented security solution. However, existing
malware detection methods are constrained by a vague situation of information leaks. The main goal of this paper is to measure a
degree of hiding intention for the mobile application (app) to keep its leaking activity invisible to the user. For real-world application
test, we target Android applications, which unleash user privacy data. With the TaintDroid-ported emulator, we make experiments
about the timing distance between user events and privacy leaks. Our experiments with Android apps downloaded from the Google
Play show that most of leak cases are driven by user explicit events or implicit user involvement which make the user aware of
the leakage. Those findings can assist a malware detection system in reducing the rate of false positive by considering malicious
intentions. From the experiment, we understand better about app’s internal operations as well. As a case study, we also presents a

cloud-based dynamic analysis framework to perform a traffic monitor.

1. Introduction

Malicious code in the form of computer viruses and another
malware is known to wreak havoc on IoT infrastructure as
well as edge devices including mobile devices. Since mobile
devices are in much wider use, the devices are more likely
to be exposed to malicious code and environments similar
to those devices that target enterprise systems. Antivirus
and antimalware tools built for enterprise systems do not
transfer well with mobile devices. A part of reasons is to the
limited ability of mobile devices to efficiently run antivirus
tools. Mobile device limitations include power issues due to
reliance on batteries, fewer CPU cycles to dedicate to running
protective software, and a smaller memory footprint to run
the tools. Few literatures propose an architecture to perform
mobile malware analysis in the cloud. The main purpose of
the architecture is to identify the malware prior to activation
on the mobile device. This can preempt the malicious code
and mitigate the threat before it causes any harm to the user
or the device.

However, it is quite challenging to detect an application as
malware when information leakage really happens. In many
cases, users are willing to send their private or sensitive
data to a remote server in exchange for useful service(s)
such as location-aware search services. Therefore, making
a decision by a seemingly data exfiltration within a certain
period of time can lead to false positives in identifying a mali-
cious information leakage. A best way of getting the original
intention of the outgoing data flow would be to ask the user if
the data flow would be permissible with him/her. However,
getting the intention from the user is not allowed in an
automated cloud system. Instead, we choose to analyze the
intention of the application causing outgoing data flow in
terms of its hiding efforts in preventing the user from getting
aware of the application’s leaking activity.

The contributions of this paper are in three folds. First,
we differentiate the data by a knowledgeable user’s request
and data exfiltration by malware. According to a recent study
[1], Android malware tends to transmit private data without
a user consent. Therefore, most of the malware samples listen
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FIGURE 1: Private data targeted by Android malware.

to unnoticeable system events to start off their undercover
services. To quantify this, the paper presents a methodology
on how to measure user awareness on the data leaks. We
produce this quantitative value in terms of the timing distance
between a user event and data leaks activated by the event.

Second, we analyze a timing distance of real-world
Android apps downloaded from the Google Play, based on
the TaintDroid-ported emulator. The TaintDroid [2] traces
internal data flow in order to detect a privacy leak. This
instrumentation allows us to spot the leaked information and
record a time stamp in milliseconds for each event. Combined
with the Android’s logging system, logcat [3], we can build
a complete record table, featuring leaked information type,
invoking interface, destination IP address, and time for the
event. Our experiments show that the IMEI, accounting for
50 percent of privacy leaks, is frequently transmitted during
the device identification process. In addition, the portion of
IMEI leak, occurring within 30 seconds after the user’s first
input like a button, stands at 65.5%. The remaining cases take
place during the automatic location update under a user’s
consciousness.

Third, to expand the concept of user awareness on the
data leak, we build a cloud-based analysis system for detect-
ing mobile malware [4, 5]. Our proposed system involves an
amalgamation of both a dynamic application analysis and a
network traffic analysis while the application is running. The
finding that some leaked data were captured in a plain form
while data are being transmitted calls for the need to secure
the sensitive data with end-to-end encryption mechanism.
The user awareness analysis and network-traffic monitoring
can help to detect more sophisticated malware like botnet [6].

The rest of this paper is organized as follows: Section 2
gives the problem we are targeting and explanation of pre-
liminary analysis result. Section 3 describes a design of

the proposed measurement methodology and architecture.
In Section 4 we present experiment results. In Section 5, we
explain a cloud-based dynamic analysis as a case study. And
in Section 6, we discuss challenging issues and problems. We
present previous work in Section 7 and, lastly, the conclusion
is shared in Section 8.

2. Background

Limited resources available to software tools deployed on
mobile platforms indicate the value of a cloud-based solution.
A cloud computing provides multiple instances of mobile
platform with more powerful CPU and less memory con-
straints. In addition, the analysis and processing of potentially
malicious code occur in a virtualized phone outside of the
real mobile device [4, 7-9]. Aside from the limited resources,
the vulnerabilities [10] of mobile devices and the hacking
capabilities from the malware would make the problem more
complex than enterprise computing systems.

In an effort to understand categories and behavioral char-
acteristics of malware in obtaining the private data targeted by
them, we performed a static analysis on 55 collected Android
malware samples from different families by reverse engi-
neering [11] and analyzing the codes. The analysis result of
Figure 1 suggests that sensitive data including Short Message
Service (hereinafter SMS) and contacts are mainly targeted
by Android malware. Most malware usually has excessive
access permissions to SMS and IP networking. Another
aspect to note is that many malware samples imitate popular
applications to deceive users into installing the malware apps
without any skepticism. So we compare the permissions
requested by the original application with the imitations. The
chart (Figure 2) of sample applications shows three different
types of characteristics. First, being the obvious one, is where
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FIGURE 2: Permission analysis of original app versus imitation app
(fake and malicious).

the malicious application requests permissions above and
beyond the ones requested by the original application. For the
second type, distinguishing malicious applications from the
original applications based on the same number of permis-
sions is challenging. One of the reasons is that permissions are
broad in nature and encompass many features. For example,
the permission called “INTERNET” allows the application
complete network access. Finally the most interesting type of
malicious application requires fewer number of permissions
in comparison to the original application. This is the case
where malware simply looks like the original application but
has completely different code.

It is very challenging to draw a clear line between
the malicious activity and a normal operation of mobile
applications. In general, a large number of malware samples
harvest the private data stored in the mobile device and send
the data to remote servers with malicious intent. This form of
information leak attack could have more impact on the users
when financial credential is targeted. However, to make our
goals more evident, this paper defines the malware as private
data leaks without user’s consciousness. A recent study [1, 12]
shows that existing Android malware is mainly activated
by BOOT, SMS, and NET related events. In particular,
BOOT_COMPLETED event among system events is mostly
targeted by the malware. Another interesting feature is that
most malware is commanded through network and SMS
messages from a remote Command and Control (hereinafter
C&C) server. This trend shows a stealthy feature of malicious
apps and makes them unnoticeable to the user. Also, this is a
critical challenge for existing malware mitigation approaches
[2, 9, 13]. Among the approaches, TaintDroid provides run-
time analysis by tracking the sensitive data flow to identify
the misuse of user’s private information. In addition to Java-
written portion of application, the DroidScope allows its
internal analyzer to track the information flow of native
library portion where malicious elements could reside [14].

However, automatic malware detection without human
intervention tends to be erroneous due to lack of under-
standing of user intention. Many popular mobile applications
demand user’s geographic information to offer accurate
locality-based services without any explicit input from the
user. For example, Foursquare [15] helps people find places
of interest nearby using their location. Therefore, it is really
hard to tell whether the data exfiltration of the GPS location
is malicious or not.

Therefore, a result of data transmission from a mobile
device does not necessarily mean a data leak situation. Even
benign activity could be considered as a data leakage from
a simple decision based solely on information flow. As a
result, a malware analysis model with rough threat definition
could lead to a high false positive even in a situation when
users purposely allow the internal information to leave their
devices. In addition to the internal data flow itself, we
should consider external contexts of applications (such as
user intent) in making a decision on whether the leak activity
is malicious or not.

Instead of incurring immediate information leak on the
stored data, some malware aims to control the mobile device
for future exfiltration. For instance, the Android.Stels [16] is
one of infamous Trojans recently reported in Android plat-
form. Once installed on the infected device, the Trojan opens
a back door for handling requests from a C&C server. And
later the Trojan initiates phone calls to premium numbers
obtained through the C&C server. Making phone calls and
sending SMS messages to premium numbers could result in
a financial damage to the user. However, the Trojan never
moves sensitive data out of the device or exfiltrates private
user information to the remote server. Instead, this special
malware activates the malicious operations without user
consent. Developing a method to measure user awareness
of the application’s activity can assist in identifying the
unintended sensitive API calls: sending SMS messages and

making phone calls.
The architecture and design principles presented in this

paper do not limit their applications to any specific mobile
platform. The predominance of the Android platform in
the mobile device market and continually expanding growth
(approximately 78 percent of the mobile market in the first
quarter of 2015 [17]) convince the authors to choose the
Android platform as a reference model.

3. Design

3.1. Measurement Methodology. A recent user-friendly
mobile application comprises multiple instances of view
objects and layers. This type of application is running in an
event-driven way, rather than a sequential execution flow
from a program’s entry point. For example, an Android app
consists of several activities, representing independent exe-
cution element with corresponding user-interactive object.
Each activity responds to user’s inputs and displays results
for visible information. For example, the Android app of
Figure 3 consists of six independent elements, expressed as a
set of {E, E, E,, E5, Ey, Es}. Among them, the two elements,
E, and E;, have user-interactive operations in the blue
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FIGURE 3: Measurement factors for data leak intention.

rectangles, responding to the user inputs. The element E,,
running as a background service without user interaction,
includes data leak operations at the four distinct time slices
in the red rectangles. The distance variable (At) designates
the elapsed time between the data leak operation and its
preceding user-interactive operation. The period variable,
noted as P, specifies the time span during which all
corresponding data leaks are assumed to be triggered by the
identical user-interactive operation. The time distances At
and At, in period P, are assumed to be triggered by the same
user-interactive operation.

Generally, app can be launched by clicking the app’s
icon. So, we assume that there is an explicit user interaction
involved. Then, by our definition, the first period P, begins
right after the app gets started. Among all execution elements
in Figure 3, the elements E, E;, and E, in the black rectangles
are running without any explicit user interaction during the
app’s lifetime. They do not involve any data leak either, so we
exclude them from the measurement procedure. Considering
the malicious applications’ behavior, malware manages to
hide its internal activities from the user’s consciousness. In
other words, the device user hardly notices the activities
and events which are happening behind the user-interactive
operations. As a basic unit of measurement, a time distance
(At) of an event represents a quantitative value of a user
awareness on the event. By combining all timing distances,
we aim to measure a degree of intention with which the
application tries to hide its internal activities from the user
consciousness. As the application hides more, the distance
values would be higher.

3.2. Overall Architecture. To conduct our measurement on
an application in question, the runtime information inside
the application should be monitored while it is running.
Hence, the crucial function in our approach is to track and
record all activities that take place inside the application
and let the analyzer examine the gathered information
afterwards. With three major design principles, we propose
a platform architecture that collects the runtime information
at two different checkpoints. First, tracking the data flow
inside the application is an initial step to trace the flow
of sensitive information. When the data under monitoring
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leaves the application through network or interapplication
communication (IPC), this potential leak should be reported
with supplemental information. To accomplish this task,
application’s operational information needs to be provided
from the base platform on which the application is running.
Second, in addition to the local data flow, external data flow
such as network traffic should be taken into account. Our
preliminary analysis showed that a good amount of malware
communicates with an external server acting as a C&C server.
Moreover, analyzing network traffic of the application allows
getting a better understanding of tactics used by malware.
Finally, the measurement architecture can be deployed in
cloud computing environment, so the entire processes should
be done automatically without human intervention.

The proposed architecture shown in Figure 4 integrates
core building blocks and surrounding environment. The
required functions from the design principles above are
incorporated into core building blocks. And the operat-
ing platform is projected on the basis of cloud comput-
ing’s virtual environment. Overall, the architecture contains
three instance layers of virtual execution environment: host
machine, mobile device, and software execution platform.
To obtain operational information inside and outside of
the application, two runtime loggers are positioned in the
device and software platform instance, respectively. If we
take Android as a reference model, a mobile device along
with the Android software platform can be emulated on a
host machine with x86 CPU. Even further, the host machine
can be virtualized into multiple instances in the cloud. In
order to examine an Android app, a virtualized host machine
creates an instance of a mobile device with the Android
platform installed. The runtime loggers instrumented in the
Android platform and mobile device allows the analyzers to
retrieve app’s operational information. The app feels the same
environment as in the real Android device so that running
the app would be straightforward.
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3.2.1. Analyzers. The system shown in Figure 4 has three main
building blocks for analyzing application’s runtime behavior
while the application is running. First, the leak analyzer
collects all logs of internal data traces and the outgoing data
flow. Once logs are generated, the data leak analyzer inspects
the leakage and then the event analyzer looks into the related
event causing the data leak. Based on the gathered logs, the
leak analyzer measures the time distances described in the
previous section to gauge the degree of user consciousness of
the data leak. For every seemingly data leak, the leak analyzer
needs to locate unconscious data leak using the information
provided by the event analyzer. Aside from direct data
flow of the application, supplementary information such as
system resources and configuration is helpful to understand
application’s context. Therefore, the runtime loggers located
in the base platforms and mobile device are responsible for
providing information to the two analyzers. Two loggers
located in the instance layers of platform and mobile device
generate logs which include system events, emulated user
events, and their time information. In this paper, we use the
logcat as a ground logging system with which the Google’s
Android Software Development Kit (SDK) [3] comes. Along
with these internal analyzers, there is an external analyzer,
traffic analyzer. When an application is transmitting data
outside, the outgoing packets would be generated. Then the
traffic analyzer can examine the data flow passing through the
network interface card (NIC).

As for the data leak monitoring, many outstanding
approaches [2, 5, 18-20] have been suggested using dynamic
analysis. Generally, the dynamic analysis examines the behav-
ior of an application in execution within a controlled environ-
ment. Among those available in public domain, TaintDroid
was adopted as a runtime logger to trace data flow and
identify any data leak. The TaintDroid, a type of dynamic taint
tracking technique, traces local data and variables through
the instrumented Dalvik virtual machine. This Android-
based approach aims to identify the sensitive data leakage in
real phone.

3.2.2. Generators. Interactive mobile applications are usually
triggered by user inputs or events from system services. To
deploy our architecture in the cloud, we build core blocks
on the virtual instances. For the same reason, one of most
important issues in automating the analysis process is to
emulate user interaction without actual human involvement.
The input generator of Figure 4 controls the application under
examination by emulating user input events to trigger all
activities inside. In addition to the input generator, the SMS
generator makes the application believe that it runs on a
real phone by emulating SMS messages. When testing an
application without human intervention, the performance of
the input generator determines the accuracy of the entire
dynamic analysis system.

Our preliminary static analysis in the previous section
showed that most malware has excessive permissions on the
SMS and IP networking access. Similarly, the previous studies
[1,12] suggest that a good number of malware samples utilize
SMS messages to activate themselves. Therefore, emulating
SMS is critical for activating malicious applications as well as

normal applications. In practice, the SMS generator is tightly
coupled with a mobile device emulator. The generator used in
our experiment utilizes the Google’s Android Debug Bridge
(hereinafter ADB). The ADB provides a command to simulate
an incoming message with a bogus phone number.

The proposed input generator scans all objects on the
view layout [21] of the application and traverses each view
object one by one using emulated valid inputs. This process
can be achieved in a depth-first search data structure which
keeps track of the activities in a stack and visits them
thoroughly, thereby traversing through all the views of the
application. Consider an application with three different
visual activities shown in Figure 5. The proposed algorithm
works by generating appropriate input to its text field and an
event for clicking the button. And then clicking the button
gives rise to new activity, Activity 2 for button 1. If the
next activity gets started, then the same procedure applies
recursively to the activity to explore further. The search flow
path of our depth-first search described so far is represented
as a tree in solid line.

Once the recursive search routine reaches the right-most
leaf node, we can get the search flow back to the previous
activity via an explicit or implicit back button. Before getting
started at every activity’s entry, a loop-check routine is in
place to see if there is a cycle in the already traversed nodes.
To avoid a loop situation, the traversed activity nodes are
maintained in the list and we compare them with the current
node before getting started.

With the help of these two generators, any application
can be tested without any knowledge about the application’s
source code. However, recent mobile applications are imple-
mented with more sophisticated view objects so that the
input generator needs to understand the object’s detailed
information to generate valid input events. This often results
in considerable overhead when writing robust, automatic
black box test cases. Moreover, as privacy sensitive apps tend
to require user authentication, generating valid text for one-
time passcode remains as a challenging problem to emulate
correct user inputs.

4. Experiments

In this section, experimental data sets and results are pre-
sented. With representative real-world Android apps, user’s
awareness of data leaks is measured based on our method-
ology introduced in Section 3. For the underlying virtual
instance layers of operating platform, VirtualBox [22],
QEMU [23], and Dalvik virtual machine are used. The
QEMU-based device emulator and the TaintDroid-ported
Dalvik virtual machine have equipped the runtime logger,
providing application’s operational information. The host
machine for our experiments is based on 64-bit Linux with
3.5 GHz 8 cores and 32 GB memory. The mobile software plat-
form is Android 4.3 Jelly Bean which is the latest applicable
version for the TaintDroid integration. There are several ways
to get Android apps for experiment but downloading from
Google Play, known as a formal Android application market
place, is selected. There are several criteria for selecting apps
to analyze the experiment. First, apps need to be installed and
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FIGURE 5: Depth-first search tree in user inputs emulation.

run successfully on our emulated platform. Some apps check
whether a Subscriber Identification Module (SIM) is inserted
and ready for use. The emulator-based software platform
fails to install those apps due to the difficulty in emulating
the physical SIM card. Second, to examine the relationship
between data leak and user awareness, the app under test
should transmit sensitive data to an external server or a group
of servers. This requires the app to gain the permissions of
full network access and location. Before downloading the
candidate app, a full list of permissions should be checked to
be granted and make sure that the app is likely causing data
leaks. After the candidate meets this screening requirements,
then a measurement sample is selected. Third, data set needs
to represent the same type of services. We mainly focus on
the personal service apps which utilize sensitive data. The
coverage of the finally selected apps ranges from health,
weather, and traffic to chatting messenger services.

Before starting our measurement experiment, an emu-
lator is set up with bogus private data such as IMEI, GPS
location coordinate, and contacts. This will let the app under
test run as normally as in a real phone. The Googles ADB
tool provides a set of commands for developers to configure
the phone’s system information. For example, the emulated
device’s geographic location can be set by the geolocation
command. The power status of the phone can be manipulated
to trigger the phone into a power save mode. Other than
editable system information at the ADB tool, the IMEI
number can be directly inserted into the platform’s source
code. And the contacts and photos are manually filled in and
saved for every experiment. Other delicate issues related with

the emulator testing environment will be addressed later in
the discussion section.

Once an Android app is downloaded from the Google
Play and installed, our analysis process is ready to start
oft. With the help of the TaintDroid notification function,
a data leak can be easily spotted. The pictures of Figure 6
present some screen captures of the notifications informed
by the TaintDroid. When the TaintDroid icon shows up
on the status bar, the icon can be pulled down and show
the detailed information about the corresponding data leak.
The information includes the name of app causing the data
leak, destination IP address, leaked data type, time of this
event, and data itself. Among them, the data type, marked
as tainted, and the timestamp are measured. Eight sample
apps were tested, representing different service families.
The preliminary analysis result shows that the 8 samples
are sending sensitive data to remote server(s) more than
one time. In practice, location-aware apps try to locate the
phone in order to provide neighboring services or location-
dependent information.

Given this fact, it is expected that the Glimpse and
Weather Forecast Pro, location-related services, transmit the
location data to the server. Also the personal workout assis-
tant app, RunDouble, transmits the phone’s IMEI, location,
and GPS location multiple times during the test. The person-
alized apps usually transmit devices' IMEI information as well
as location data to the remote server. Likewise, sending IMEI
out is an essential part to personalized or device-oriented
services. As with these 3 samples, other 5 apps provide their
unique information such as device’s IMEI in exchange for
device-identifiable services.
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There are several findings to notice in our experiment
result of Table 1. First, the case of IMEI information leaks
accounts for about 50 percent of all the data leaks. It means
that the counterpart service server requests the phone’s ID
for every service transaction. So, we expect more frequent
IMEI transmissions as an app provides more various services
through communications with its server. Interestingly, the
traffic information app Bey2ollak, a cross platform mobile
application, transmits device’s IMEI 16 times to several serv-
ers as the app starts up. This can show an exemplary behavior
of cross platform app, putting pieces together from crowd-
source. Second, apps with periodic data updates show higher
number of information transmissions. The RunDouble tracks
the distance of the running course and allows the phone user
to calculate the calories. This kind of app should read location
data at a certain time interval while it is in active mode. This is
also shown in the Glimpse app when the function of sharing
location is activated. However, most privacy leaks occur at the
early time of app’s execution and discontinue without explicit
inputs.

Among the leaked data types, the location and GPS
location type seem similar but actually have a delicate dif-
ference in getting the location information. There could be
several ways to find a location of the phone. Among them,
the location means to get the location information through
network instead of the GPS. In particular, when the user is
inside the building or in downtown surrounded by high-rise
buildings, known as GPS Dead Zone, the location should be
resolved by network. In our experiment, the location and GPS
location are both tainted whenever the location data leaks
happen.

For the timing analysis of our experiment result, leaked
information types which are IMEI and location were plotted.
In the measurement methodology, each data leak has a
corresponding input event triggering the leak. The x-axis
represents a time distance from the event to the data leak,
denoted as At in Section 3. Apps may have multiple triggering
input events and corresponding data leaks and so there exists
aset of periods {Py, P,,...,P,} in one app. But others like the
Weather Forecast Pro and My Backup have only one input
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FIGURE 7: Time distance graph for all data leaks.

event, triggering actual data leaks. And then they have one
period, P, and a set of time distances, {At,, Af,,...,At,}, in
P,. The graph in Figure 7 depicts the aggregated time dis-
tances in the periods of all the apps tested.

As for the activation mechanism, clicking the app’s icon
is a common trigger for the data leak to happen. Therefore,
many privacy leaks have been detected during the app’s
launch time. The next common triggering element is button
object. In general, user interaction with mobile application
works by clicking GUI view objects like button. Many
Android apps utilize the button object to get a consent from
its user. In this sense, monitoring the button object in the
screen is crucial to identifying the triggering event correctly.
The last device to activate the privacy leak is timeout events to
get updated information from the server. As explained before,
some mobile applications track location or get updated
as time goes by. Such applications send out privacy data
whenever they keep the local data synchronized with that of
the server. And this update continues until the applications
get deactivated. In all, our data set includes all privacy leaks
activated by these three types of mechanism. According to the
timing graph, we notice that a big group of data leaks comes
within 11 seconds.

In particular, the data leak within 1 second stands at 21
percent. Considering these two facts, we assume that these
apps respond to user events immediately by sending out
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TABLE 1: Privacy leak and information type.
App name App type Transmitted information API calls
IMEI Location GPS location

RunDouble Health ® ® ® 57

Maxim Taxi order (] 4

Trucaller Call ID and block ® 8

Bey2ollak Traffic ® 26

Glimpse Location share ° (] 12

Weather Forcast Pro Weather [ [ 6

My Bakcup Backup ° 1

Hi Communication (] 4
Total 58 30 30 118

necessary privacy data to the server. The next noticeable Virtual phone

group comes around 30 seconds. Looking into this group
further, most of the data leaks come mainly from the Glimpse,
Bey2ollak, and RunDouble. Those apps have common char-
acteristics, keeping the local information updated regularly.
The remaining sporadic data leaks after the second group
are also from those three apps. Therefore, two distinct data
leak patterns, which are triggered by user’s input events and
recurrent timeout events, were discovered.

Getting a closer look at the first group, two separate
subgroups were also discovered. The front subgroup within 3
seconds looks normal in that the data leaks in that group stem
from the immediate responses from the user input events.
But, the rear subgroup forming around 7 seconds needs
more explanation. When an app get started or triggered into
activation, it usually changes the screen for next activities.
This screen change is a time-consuming job, compared to
arithmetic operations or network communications, and leads
to delays. Therefore, the seeming delayed date leak in the
rear subgroup is attributed to the screen change and network
connection latency. Overall, the time distance of data leak can
depend on the applications programming design as well as
activating event types.

Getting back to our design principal, we manage to cor-
relate the privacy leak and user inputs events. That is con-
sidered to be a way to measure how much the user is aware
of what the application is doing, especially leaking sensitive
data. Our experiment shows that about 40% of the IMEI
leaks and 33% of the location transmission happen within
around 10 seconds right after user input events. All these
data leaks respond to user willingness to get services by
providing the personal data to external server. Meanwhile,
the remaining 60% of the IMEI and 67% of the location leaks
seem to take place far away from user’s inputs. However, all
these data leaks occur while the apps under test are running
foreground with visual activities. In other words, the user
assumes to be interacting with the apps without explicit user
inputs. In this situation, the visual presentation shown on the
screen is considered as a user’s implicit intention. To be more
quantitative argument, we need to devise a method to gauge
the data leaks implicitly knowledgeable to the user. This will
be a challenging topic and we leave it as future work.

[Virtual host machine |

[ Virtual host machine| [Virtual host machine |

Virtual switch (0 0 0 0 L) T
Network traffic| |Mirrored traffic R
Internet [
Traffic analyzer

FIGURE 8: Cloud-based dynamic traffic analysis framework.

5. Case Study: Cloud-Based Analysis

To put the whole system into the cloud, the host machine as
well as the mobile device under test should be virtualized.
When an application is installed and activated by the input
generator shown in Figure 4, the application will try to com-
municate with a remote server to send sensitive information.
In that case, the traffic between the application running
on the mobile device and the remote counterpart server
can be analyzed with the traffic analyzer. For the network
traffic analysis [24], the traffic analyzer can receive aggregated
traffic from multiple instances of emulated mobile device.
The overall traffic allows us to detect various traffic behavior
which can only be shown in a group of mobile devices
combined. For the traffic analyzer to exercise an extensive
analysis over multiple devices, the traffic analyzer residing
on a physical machine could be separated. With the isolated
traffic analyzer, a scalable framework consisting of multiple
virtual host machines is shown in Figure 8. A virtual host
machine represents a host machine instance of Figure 4. The
instance of host machine can connect to other virtual host
machines, joining a huge virtual network which encompasses
all virtual phones.

The overall framework of Figure 8 shows the traffic
analyzer residing on the switch where all traffic from virtual
phones merges. With this the analysis model, traffic coming
from all virtual phones can be examined by a single traffic
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analyzer. This architecture has the following advantages
against the traffic analysis running on each host machine.

(i) Analysis on the Logical Network. The traffic analyzer
inspects the aggregated traffic pattern as well as a
single stream of traffic from a device. For example, vir-
tual devices of the same affiliation can construct a
logical network. This model allows us to apply the
traffic analysis to a logical user group without regard
to their actual physical location.

(ii) Efficient Policy Management. Single check point
model at gateway is efficient to deploy consistent pol-
icy over all virtual devices. This obviates the need for
replicating identical policy to each host machine
whenever policy changes.

(iii) Flexible Traffic Analyzer Implementation. No design
constraints on the traffic analyzer allow using a dedi-
cated hardware with special accelerator(s) in analyz-
ing packets. Or we can deploy software-based traftic
analyzer on general-purpose host machine.

Through the network analysis in the experiment, personally
sensitive data are transmitted through the network in a plain
text form. Only 16 out of 182 data leaks have been secured by
the SSL encryption. IMEI and location information might be
less sensitive than personal messages and contacts. And send-
ing data through mobile data communications is relatively
secure due to the closed cellular network. However, they can
have a harmful impact on the user when compromised with
criminal purposes. Likewise, network-level analysis helps to
understand the security vulnerabilities and come up with the
measures mitigating them.

6. Discussion

In this paper, the privacy data leaks transmitted through IP
network are traced. However, SMS and MMS message may
also be used for a mobile app to send user’s sensitive data to
external server. The purpose of our analysis methodology is
to measure user awareness of the privacy leak and discern
useful apps against malicious apps leaking personal data by
stealth. While the outgoing SMS and MMS without user’s
explicit consent are likely to be malicious and harmful, it is
obvious to make a line between normal messages transmis-
sion and anomalous behavior with bad intention. Also, our
methodology can facilitate detecting malware which targets
premium-rate messages. Another applicable use case is lost
phone services. These applications have built-in functions for
the user to make a remote control over the phone. When
the user lost the phone, the GPS location information is
transmitted to the management server so that the user can
locate the phone. In this case, the location-related privacy
data leaks take place without user’s input onto phone’s view
object. However, we make an assumption that the phone users
are already conscious about the data transmission from the
lost phone. For this reason, we exclude this case from the
experimental data set.

When planning our experiment in the beginning, certain
types of apps were expected to cause privacy leak. Particularly,

map location services are expected to yield personal data
leaks frequently. However, they have rarely produced privacy
leak during the test. Downloading map information before
starting the navigation services explains this situation. Map
and the geographic information obtained by GPS module
can provide the finding-location services without incurring
any data leak. As a side effect, our experiment result helps to
understand mobile application’s internal operation.

To test real-world applications, the emulator should be set
up with experimental configuration for an application under
test to feel like a real phone. Even though we put some bogus
personal data into the emulator, there are still more issues to
be addressed. For example, whenever Android SDK makes an
instance of mobile device emulator, the MAC and IP address
of the instance are allocated all the same. Malicious apps use
this information to circumvent the emulated system featuring
our measurement module. Fortunately, normal apps do not
check their emulator information to see if they are running
on the emulator or real phone.

More apps tend to require robust user authentication
or device authentication instead of simply requesting email
address or IMEI number. As a common user authentication
method, the sever checks if the email address given by the
user is effective or not by confirming reply email from the
user. For device authentication, pass code validation is used
in several apps. This strict authentication process is the most
challenging issue for our automatic analysis approach.

7. Related Work

With the increase in sales of smartphones, there also has
been a steep rise in the number of malicious applications
entering the online market. Given the enormous growth of
the malware, security researchers and vendors must analyze
more and more applications in a given period of time to
understand the purpose of the software and to develop
countermeasures. Until recently, analysis is done by using
tools like decompilers and runtime debuggers. This process
can be very time-consuming and error-prone depending on
the skill set of the analyst. On the other hand, an automatic
analysis [25] investigates the downloaded application without
human intervention. Main technique that the automatic
analysis applies is binary forensics including decompilation,
decryption, pattern matching, static system call analysis,
and control flow analysis. However, malware developers also
put their efforts in finding new ways for the malware to
circumvent the detection mechanism (1, 26].

As one of best well-known analysis approaches, Taint-
Droid [2] tracks runtime data flow through variables and
intercomponent communication to detect privacy data leaks.
However, this fine-grained tracking technique only covers the
Dalvik’s Java byte codes. So, it bears limitation in identifying
the data leaks occurring in the native library written in C and
C++. The Mobile-Sandbox [19] integrates the TaintDroid into
a virtualized phone and extends the coverage of code into
native libraries written in programming languages other than
Java. However, the limitation of the taint tracking lies in the
lack of understating of surrounding circumstances including
the user’s intent. To improve the runtime taint tracking,
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the VetDroid [27] analyzes permission use behavior to
detect malicious information leaks. As an integrated frame-
work model, AppsPlayground [28] combines several analysis
approaches such as dynamic taint tracking, API monitor-
ing, and kernel level monitoring to supplement individual
approach. Pegasus [29] uses formal method in specifying
permissions and APIs property. By enforcing a permission
event graph constructed from model checking, the formal
method detects malicious behavior. However, the permission
misuse and abnormal API call patterns only focus on the
application’s internal operations, not considering the user’s
interaction with the application. Even when a data leak is
detected, determining whether the leak is maliciousness or
not requires additional information.

To make all tests happen without human intervention, the
input generator should control the application under exami-
nation by generating events which trigger all activities inside.
Therefore, the accuracy of the input generator determines
the overall performance of an automatic analysis system. The
widely used Monkey tool [30] with which Android SDK
comes simulates user inputs without the knowledge about
the application’s source code. However, this tool generates
random events automatically regardless of the application’s
actual view layouts. Therefore, incorrect inputs sometimes
lead to a crash due to input format mismatch or invalid values.
Similarly, the MonkeyRunner [31] is an automatic input
generator with more valid input creation. However, this tool
is made to test a device at the functional or framework level
and so it tends to be more application-specific in nature.
SmartDroid [32] manages to find effective user inputs that
trigger sensitive behavior. This approach uses both static
analysis [33] constructed from function call graph and
dynamic analysis exploring the UI elements to reach the
sensitive APIs. Like our approach, AppIntent [20] manages
to discern user intended data leak from unintended one by
providing efficient sequence of GUI interactions to result
in privacy data leaks. The event-space constraints model of
Applntent reduces the search space with the similar code
coverage to other approaches. Unlike the above tools, Brah-
mastra [34] and the TriggerMetric of [35] use static anal-
ysis to construct execution paths to invoke sensitive APIs.
Rather than focusing on GUI elements, Brahmastra rewrites
the application to trigger the callback functions that reach
privacy-sensitive APIs. Instead of instrumentation profiling,
A’E [36] improves coverage by using a static, taint-style,
dataflow analysis on the bytecode.

In addition to the data leakage analysis, traffic analysis
for mobile platform has been proposed in some literatures.
A hacked cellular station provides a chance of identifying
traffic with the malware signature [16]. That is a fundamental
concept of wired network-based intrusion detection system
(NIDS). Routing all the traffic from the mobile device to
VPN server allows monitoring the packets the same way as
the NIDS [37]. By emulating the virtualized network envi-
ronment, we can apply a network-level detection to screen
all traffic coming from or to the mobile device. In addition,
the virtual network constructed from individual devices can
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provide an overall traffic behavior from the logical network
perspective. This will let the traffic analyzer identify the
potential threats from the network perspective as well as a
single device perspective. Similar to the dynamic analysis
framework proposed in the paper, Andlantis [5] provides a
good scalability in a clustered environment, being capable of
processing 3000 Android applications per hour. But Andlan-
tis uses MonkeyRunner to generate user input events.

8. Conclusion

Given the pervasiveness of mobile device in modern life,
proactive prevention measures against malicious applications
should be put in place along with existing security solutions.
In this paper, we have presented a methodology and an
architecture for measuring user awareness of sensitive data
leakage, which features runtime application analysis over
timing distance between the user input event and actual
privacy data leak. Mobile apps may request privacy data in
exchange for useful services. And this seemingly voluntary
data leak leads to difficulty making a clear line over whether
the intention of the data leaks is malicious or not. From our
experiment on real-world Android apps, we discover that the
IMEI and location information are used for device identifi-
cation and location-aware services. For normal apps, most
data leaks stem from user’s direct input events or implicit
interaction with visual presentation on the screen. Moreover,
the proposed methodology helps understand the mobile
application’s internal operations. Combined with existing
malware detection systems, we expected the user awareness
measurement can assist in reducing the false positive in a
delicate situation by measuring the app’s malicious intent.

To overcome the limited resource and computing power
of mobile device, cloud computing is a great platform upon
which we can build a solution free of resource constraints.
Another main contribution of the paper is to employ the
network-based monitoring in mobile traffic analysis. The vir-
tual network constructed from individual phone emulators
can provide a more complete network landscape the same as
in physical network. From the network-perspective analysis
in our experiment, we observed the vulnerable practices of
transmitting the IMEI and location information in a plain text
form.
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