
In this letter, we present a new algorithm for the harmonic 
and percussive separation of jazz music. Using a short-time 
Fourier transform and nonnegative matrix factorization, the 
signal is decomposed into rank components. Each component 
is then split into harmonic and percussive parts using masks 
calculated based on their tonalities. Finally, the harmonic and 
percussive parts are separated after applying the masks and a 
summation. We evaluate the algorithm based on real audio 
examples using both objective and subjective assessments. The 
proposed algorithm performs well for the separation of 
harmonic and percussive parts of jazz excerpts. 
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I. Introduction 
There has been a significant amount of research on the 

problem of source separation of music signals, which leads to a 
diverse range of applications, interactive music service [1], and 
so on. In particular, this letter introduces an algorithm for 
harmonic and percussive separation. 

For source separation, nonnegative matrix factorization 
(NMF) has been recognized as a suitable machine learning 
technique in much previous research since [2]. Particularly for 
harmonic-percussive separation, significant research was 
conducted in [3], wherein Helen and Virtanen proposed an 
NMF-based approach with a support vector machine, and in 
[4], wherein Kim and others adopted nonnegative matrix 
partial co-factorization.  
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On the other hand, there has been other research that has 
focused on the property of the time-frequency domain. Ono 
and others introduced a separation algorithm based on the 
assumptions of a spectrogram, whose smooth temporal 
envelopes with parallel ridges can be considered harmonic 
parts and wideband spectral envelopes concentrated within a 
short time period can be considered percussive instruments [5]. 
Fitzgerald introduced a faster harmonic and percussive 
separation algorithm using a median filter based on the same 
assumption [6]. While those algorithms provide a good 
separation performance for pop music, they are inappropriate 
for jazz music, which consists of the frequent use of ride 
cymbals and brushes, as such sounds result not in impulsive 
envelopes but noise-like energy distributions.  

This letter, therefore, introduces a new harmonic and 
percussive separation algorithm for jazz music. The algorithm is 
based on both NMF and tonality masks. In section II, the details 
of the algorithm are introduced. Experiments and the results are 
presented in section III, and the conclusion follows in section IV. 

II. Separation Algorithm 

Using NMF, the audio signal is first decomposed into 
multiple bases. Then, two kinds of masks, that is, harmonic and 
percussive, are generated depending on the tonality of each 
spectral band and applied to every base. Figure 1 describes a 

 

 

Fig. 1. Block diagram of proposed algorithm. 
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block diagram of the proposed algorithm explained so far. By 
grouping the partial bands of the components, the harmonic 
and percussive parts are then separated.  

1. Extraction of Bases Using NMF 

The NMF algorithm introduced in [7] decomposes an L-by-
K nonnegative matrix V into an L-by-R matrix W and R-by-K 
matrix H, which yield V≈W·H. The decomposition is 
performed in a way that minimizes the approximated 
reconstruction error between V and W·H. 

Given that V is the magnitude for short-time Fourier 
transformed spectrum X of input signal x(n), W and H come to 
represent the frequency and time envelope, respectively. 

In the calculation of NMF, the decomposed matrices W and 
H are updated using Lee and Seung’s multiplicative update 
algorithm [7]. 

As a distance measure of the reconstruction error, the 
Kullback-Leibler divergence, defined as (1), is used. 
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where vlk and (wh)lk represent the elements at the l-th row and 
k-th column, that is, the k-th frequency component at the l-th 
time frame of matrix V and W·H, respectively. Here, l, k, and r 
represent the time frame index, frequency index, and basis 
index to be decomposed, respectively. After calculating W and 
H, the element of base Vr is computed as (2). 

               ( ) .               (2) r lk lr rkv w h= ×

The components decomposed using the NMF are considered 
the bases of a mixed signal. As a result, it provides temporal and 
spectral information, which will be utilized when calculating the 
tonality. However, NMF does not provide an identically 
separated signal for the following reasons. First, the spectrum of 
the basis yielded by NMF tends to be fragments of a single note 
spectrum or a mixture of note spectrums rather than one 
complete note spectrum. Second, interference exists, which is an 
inevitable problem of the separate and detect approach, as 
pointed out in [8]. To solve these problems, an additional mask is 
applied to classify each spectral band into harmonic or 
percussive parts, depending on their respective tonalities.  

2. Tonality Calculation of Decomposed Components 

To separate the harmonic and percussive components, we 
find that the tonality introduced in [9] is an appropriate analysis 
parameter, as the percussive parts tend to be more noise-like 
than the harmonic parts tend to be.  

To estimate the tonality, the chaos measure matrix cr is 
calculated first, in which the chaos measure is defined as the 

prediction error in the complex domain. Then, the tonality 
matrix Tr is calculated using a limitation function and 
logarithmic mapping of the chaos measure as (3) and (4) (for 
more details, see [9]). As a result, the tonality in [9] is a 
property of a time-frequency bin X(l,k), describing how 
predictable the bin is in terms of amplitude and phase. 

(( )( , ) max 0.05, min 0.5, ( , )rL rl k l k=c c .       (3) 

( )10( , ) 0.43 log ( , ) 0.299r rLl k l k= − × −T c .       (4) 
We find that within each basis of NMF, a spectral band (with 

whole length in time) X(l, :) is a proper unit for the tonality 
calculation, rather than a time-frequency bin X(l,k). This 
approach assumes that either the harmonic or percussive part 
dominates even though the basis of NMF is still a mixture of 
both parts. For a tonality calculation of the spectral bands, 
therefore, we propose the normalized weighted average of the 
tonality based on the magnitude, shown in (5), to take the 
significance of each bin into account. Note that the tonality 
matrix of the r-th basis Tr becomes vector Tr with frequency 
index k after the normalized weighted average.  
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3. Separation Using a Mask 

Based on the tonality, some of the basis matrix Vr bands are 
determined to be harmonic, while the rest are determined to be 
percussive. As a decision function, binary-type masks are used 
in the proposed algorithm. The masks used for the harmonic 
parts, Mr

H(k), and percussive parts, Mr
P(k), of the r-th basis are 

defined as (6) and (7), respectively. 
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The harmonic and percussive spectra XH and XP are 

synthesized using (8), applying the masks for the respective 
bases, the summation of the harmonic or percussive parts, and 
the use of the phase information of the mixture. 
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Finally, time domain signals xH(n) and xP(n) are 
reconstructed using an inverse short-time Fourier transform. 

III. Experiments and Discussion 

In our evaluations, the median-filter-based separation 
algorithm proposed in [6] is implemented using the same 
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parameters and is compared with the proposed algorithm. Note 
that it assumes a high impulsiveness for percussive sources, 
whereas the proposed algorithm focuses on the noise-like 
characteristics, which shows that the performance of a jazz  
excerpt is different from that of a non-jazz excerpt. 

1. Outline 

In the experiments, 44.1 kHz sampled signals with a length 
of 20 seconds are used as test excerpts. Jz1 is “A Cat” by 
Casual Visit, and Jz2 is mixed by the authors using samples on 
Apple Logic Pro 9. NJz1 and NJz2 are “Mixtape” and 
“Wreck,” respectively, from BASS-dB [10]. 

In the implementation of the proposed algorithm, the input 
signal is analyzed using a Fourier transform with a frame 
length of 2,048, double zero padding, and an overlap factor of 
0.875. These parameter settings provide sufficient information, 
a frequency resolution of 10.8 Hz, and a time resolution of    
6 ms. The rank R of NMF is set to 40, which is large enough to 
represent the notes in the test excerpts, and W and H are 
updated for seventy iterations. The threshold of the tonality is 
set empirically to 0.  

Figure 2 illustrates the true source and its estimation by the 
proposed and compared algorithms of excerpt Jz1. It can be 
seen in Fig. 2(f) that the noise-like components, for example, 
the ride cymbals and the brush-rolled snare, are separated into 
the harmonic part for the compared algorithm. On the other 
hand, Fig. 2(e) shows that the proposed algorithm does not 
miss such components, extracting the ride cymbals. For the  
hi-hats, the peaks are slightly clearer in the compared  
algorithm. The separation results can be heard at 
http://keunwoochoi.blogspot.com/p/sound-examples.html. 

2. Objective Evaluation  

In an objective evaluation, we measure the standard signal-
to-distortion ratio (SDR), signal-to-interference ratio (SIR), and 
signal-to-artifact ratio (SAR), which were introduced in [11]. 
The median values are calculated on local frames [12].  

The objective evaluation results are presented in Table 1, in 
which values for all pairs of the better evaluated algorithm are 
in bold. Table 2 summarizes Table 1 as the ratio of winning 
items for each genre and algorithm, in which the total 
comparison includes 12 stands for 2×3×2, two excerpts (Jz1 
and Jz2 or NJz1 and NJz2), three metrics (SDR, SIR, and SIR), 
and two parts (harmonic and percussive). According to Table 2, 
the proposed algorithm shows a better performance than that of 
the compared algorithm in 75% of the jazz excerpts (9 out of 
12). In particular, the SIR shows the most advanced 
performance of all criteria, 6.8 dB on average. On the other 
hand, it shows a worse performance for non-jazz excerpts in 

 

Fig. 2. Results of Jz1 for harmonic part (left) and percussive part 
(right), respectively: (a),(d) true source, (b),(e) estimation 
using proposed algorithm, and (c),(f) estimation using 
compared algorithm. 
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Table 1. Evaluation results of proposed (P) and compared (C) 
algorithms for jazz (Jz) and non-jazz (NJz) excerpts. 

Harmonic part (dB) Percussive part (dB) 
ID 

SDR SIR SAR SDR SIR SAR

P 12.6 29.9 12.8 0.4 7.6 3.5 
Jz1 

C 14.2 20.1 16.5 –1.0 5.8 2.9 

P 15.6 30.6 16.3 –2.2 9.7 0.2 
Jz2 

C 12.8 26.9 14.5 –7.5 –1.4 1.2 

P 7.6 20.0 9.2 –6.5 –1.0 0.8 
NJz1

C 10.3 21.1 11.3 –6.1 –2.5 3.8 

P 7.2 20.8 8.5 –5.7 3.7 1.0 
NJz2

C 8.6 14.9 11.1 –3.6 –2.1 4.3 

Table 2. Comparison between proposed and compared algorithms
based on objective evaluation. 

Performance achievement 
 

Jazz Non-jazz 

Proposed 75% (9/12) 33% (4/12) 

Compared 25% (3/12) 67% (8/12) 

 

 
66% of the pairs compared (8 out of 12).  

3. Subjective Evaluation  

In a subjective test, seven experienced listeners from Seoul 
National University and the Electronics and 
Telecommunications Research Institute (ETRI), both of the 
Republic of Korea, participate. Experiments are conducted 
using Sennheiser HD650 reference headphones. 

Using an integer grading scale of 1 to 5, the listeners are 
asked to evaluate the overall quality of separation, including 
interference and artifacts, compared with the reference signal 
(true source). The process and interface used for the listening  
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Fig. 3. Result of subjective evaluation. H and P indicate harmonic
and percussive parts. Bar represents 95% confidence
interval. Mean(Jz) and Mean(NJz) indicate total average
score of jazz and non-jazz excerpts, respectively. 
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test are equivalent to ITU-R BS.1116 [13]. 

Figure 3 plots the results of the subjective evaluation, the 
mean, and the 95% confidence interval. For the jazz excerpts, 
the proposed algorithm acquires 3.4 on average, while the 
compared algorithm acquires 2.4 on average. These results 
agree with the objective evaluation results and indicate that the 
proposed algorithm performs better than the compared 
algorithm for jazz music. 

IV. Conclusion 

We introduced an algorithm for the blind separation of 
harmonic and percussive parts based on NMF and tonality, on 
the assumption that the tonality would be high in the harmonic 
part and low in the percussive part. We performed NMF to 
obtain the separated bases and then calculated their tonality and 
respective masks. The harmonic and percussive parts were 
acquired after applying the masks and summations. 

During the experiments, the proposed algorithm showed a 
better performance for jazz excerpts in both objective and 
subjective evaluations. As a result, we show that the tonality 
can be used as a measure of percussive sources. 

Future works will aim to increase the separation 
performance, reducing the calculation complexity and 
extending the algorithm to deal with various signals. The 
perceived quality of source separation will also be studied. 
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