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Considerable attention has been given to processing 
graph data in recent years. An efficient method for 
computing the node proximity is one of the most 
challenging problems for many applications such as 
recommendation systems and social networks. Regarding 
large-scale, mutable datasets and user queries, top-k query 
processing has gained significant interest. This paper 
presents a novel method to find top-k answers in a node 
proximity search based on the well-known measure, 
Personalized PageRank (PPR). First, we introduce a 
distribution state transition graph (DSTG) to depict 
iterative steps for solving the PPR equation. Second, we 
propose a weight distribution model of a DSTG to capture 
the states of intermediate PPR scores and their 
distribution. Using a DSTG, we can selectively follow and 
compare multiple random paths with different lengths to 
find the most promising nodes. Moreover, we prove that 
the results of our method are equivalent to the PPR results. 
Comparative performance studies using two real datasets 
clearly show that our method is practical and accurate. 
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I. Introduction 

1. Motivation 

A graph is a fundamental data structure for capturing 
relationships among entities, and may represent useful 
abstractions of real-world objects. Computing graph data has 
become important with the increasing needs of recent 
applications, such as social networks, online ads/spam 
networks, and protein interaction networks. Traditional studies 
have covered many problems regarding the use of graphs, for 
example, shortest paths and subgraph isomorphism. One of the 
most well-known problems is computing the node proximity. 
The node proximity can be applied, for example, to finding 
potential friends for a person based on their social network. 
Many proximity measures and their computation algorithms 
have been proposed in the literature [1]–[7]. Based on such 
studies, various applications have emerged, including name 
disambiguation [1], spam filtering [2], and friend 
recommendations in social networks [3], and others [8], [9]. 

In this paper, we consider a node proximity measure called 
Personalized PageRank (PPR) [2], which is one of the most 
well-known graph metrics owing to its utility and solid 
theoretical foundation. PPR is defined as the stationary 
distribution of random walks; at each step, it follows an 
outgoing edge from the current node with a certain probability, 
or it jumps to a certain node in accordance with a given 
preference distribution. For more information, refer to [4]. 
However, the computing of PPR poses challenging issues [4], 
[10]–[15]. As an example, a power iteration is known to be a 
naïve computation method for PPR [4], which converges very 
slowly, and the number of iteration steps is excessive for large 
graphs. To remedy such inefficiency, several studies have  
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been conducted, including pre-computations [16], matrix 
partitioning [5], and Monte Carlo approximations [11]. 
However, regarding large-scale, mutable datasets and queries 
in recent applications, existing studies may not work efficiently. 
In some applications, users often want to know the top-most 
answers more quickly while ignoring the others. Hence, in this 
paper, we try to solve the problem of finding top-k proximity 
nodes using the PPR measure. Many top-k approaches have 
been introduced in the literature [12], [17], [18]. For more 
details, refer to the related works section. The difference 
between our approach and existing studies is that, not only do 
we reduce the computation time for producing top-k answers, 
we also propose a novel and useful computation model for 
further extensions, such as parallel processing. 

2. Our Approach 

The problem dealt with in this paper is finding top-k nodes 
with the highest PPR scores, not computing the actual scores of 
an entire node set of a given graph. It would be useful to know 
the potentials of the nodes at different iteration stages before 
their convergence. By comparing such potentials, for example, 
the probabilities, we can determine the top-k answers without 
computing the PPR equation, which is conducted using a 
sparse matrix-vector multiplication in previous studies. Our 
approach works as follows: 1) identifying every possible move 
of a random surfer at every iteration to compute the PPR 
equation, 2) selectively following the paths to note the 
probabilities assigned to the nodes at each iteration, 3) 
determining promising nodes based on the state of the 
probability distribution, and 4) terminating when we guarantee 
that the distribution state no longer changes and we have k 
promising nodes. However, this idea cannot be easily achieved 
using conventional PPR computation models. Therefore, we 
introduce a conceptual structure, a distribution state transition 
graph (DSTG), to depict the iterative steps for computing the 
complete PPR vector, and determine a random surfer’s paths in 
reaching the promising candidates. Based on a DSTG, we can 
compute the distribution state of a PPR vector of candidate 
nodes at different iteration stages. To highlight this, we avoid 
the computational cost of whole matrix-vector multiplications, 
while maintaining only the top-k promising nodes. In particular, 
we developed a greedy algorithm, the path selection algorithm 
(PSA), to select nodes having a higher probability to be PPR 
scores by tracking paths with different lengths. The partial set 
of promising nodes and their different iteration levels are 
involved in the PPR computation, and the approach 
dramatically decreases the computational time. Herein, we 
provide a theoretical analysis showing that our algorithm 
produces equivalent results to exact answers, and that in 

practice it is better than existing algorithms. To do so, we 
conducted experiments on two real-world datasets. 

The contributions of this paper are summarized as follows: 
▪ We introduce a DSTG to depict the iterative steps of 

computing the PPR scores, and determine the path reaching 
the promising nodes. 

▪ We introduce a greedy algorithm to test the candidate nodes 
to be included in the top-k list based on the accumulated 
weights of the intermediate PPR scores. To highlight,      
it avoids the computational cost of matrix-vector 
multiplications. 

▪ We provide a theoretical analysis showing that our algorithm 
produces results equivalent to those of existing studies, and 
that in practice our algorithm is better than existing algorithms. 

3. Organization 

The rest of this paper is structured as follows. In Section II, 
we describe the basic notions and related works. In Section III, 
we introduce a novel model, DSTG, and a top-k processing 
algorithm, PSA. In Section IV, we report the experimental 
results. Finally, some concluding remarks and areas of future 
work are provided in Section V.  

II. Background 

1. Proximity measure: Personalized PageRank 

To describe our idea, we briefly outline the basic concepts 
used throughout this paper. Given a weighted directed graph  
G = (V, E) with n nodes, V(G), and m edges, E(G), the weight 
on each edge, e(u, v)  E(G), is denoted by probability w. For 
the sake of simplifying the presentation of some of the 
formulae, assume for the rest of the paper that the edge weights 
w on the outgoing edges O(u) of each node u will be uniformly 
distributed, that is, 1/|O(u)| = w. PageRank [19] is one of    
the best-known measures of importance of graph nodes 
represented as Web pages. Assume a random surfer moves 
from page u to another page v with a uniform probability of 
1/|O(u)|. PageRank corresponds to a probability distribution of 
a random surfer’s existence in a set of pages under a steady 
state. PageRank adopts the structural information of Web 
graphs to effectively quantify the global importance of Web 
pages. The fact that a Markov chain approximates PageRank 
using reasonable constraints makes the measure useable as a 
theoretical foundation for various applications. In this paper, 
we focus on adding query-specific factors to the metric. 

We investigated its variant, PPR, which considers a given 
node. At the initial stage, once a random surfer is located in 
node s, it iteratively moves to one of its neighbors with a 
certain probability, which sums up to  (transition probability) 
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or jumps to the original node s with a probability of 1 –  
(teleport probability). PPR is the same as PageRank, except for 
the jumps, which can be designed as a probabilistic distribution 
of the user’s preference over the entire nodes. As in the 
probabilistic tendency of returning moves to the user’s (given) 
preferential nodes s, this measure extends PageRank to a 
“personalization.” We refer to node s as a start node, which can 
be multiple nodes represented as vector ,s


 for example, a 

teleport vector. Let s


 be an n × 1 column-normalized vector 

of the preference distribution, that is, ( ) 1,
n

i
s i  

 where 

( )s i


 denotes the i-th elements of vector ,s


 and W be an    

n × n column normalized adjacency matrix, which is referred 
to as a transition matrix, of graph G. Therefore, given the 
distribution s


 and matrix W, the PPR score can be defined as 

a recurrence equation as follows: 

( ) ( 1) (1 ) .t t
s sp W p s     

 
           (1) 

For our purpose, we can use t as a time unit that describes the 

subsequent steps of a random surfer’s movements. Equation 
(1) illustrates the probability distribution of the random surfer’s 

location after t steps. As a result, the vector ( )t
sp


 will be an   

n × 1 vector, where n is the number of nodes, and the i-th 
element ( )t

sp


(i) denotes the probability that the random surfer 

exists at node i. The value ( )t
sp


 will be converged if t becomes 

much larger. The convergence of the equation is guaranteed, as 
proved in [20]. 

2. Related Works  

To compute the exact PPR score in a straightforward way, 

the power iteration method updates ( )t
sp


 recursively in (1) 

until the convergence is reached efficiently computing matrix 

is key techniques to other areas, such as [21]. However, the 

repetitive matrix-vector multiplication incurs an excessive 

computational cost for large graphs. There are many previous 

studies on alleviating the processing cost of the PPR 

computation. As a seminal work, Jeh and Widom [4] compute 

and store the scores of the chosen nodes. PPR scores can be 

computed using a linear combination of pre-computed scores. 

A linear algebraic solution [22] introduces the state of 

convergence by deducing (1) to consider the infinite time (t ≈ t 

– 1), as in the following equation: 

(1 ) .s sp W p s     
 

             (2) 

Equation (2) can be solved if its inverse matrix exists (proved 
in [4]), as follows:  

1(1 )( ) .sp I W s      


           (3) 

If we obtain the inverse matrix (I – ·W )–1 in (3) at the pre-
computation time, sp


 can be computed online. However, this 

method also requires a quadratic space for storing the inverse 
matrix. Although the approach is faster than the original 
approach, the convergence of the linear algebraic approach is 
not stationary. 

The Monte Carlo approaches [11], [18] assume that a 
number of random surfers move from a given start node and 
stop according to a geometric distribution. The Monte Carlo 
approaches can approximately compute the top-k nodes in an 
ad-hoc style because they perform random walks on a given 
graph on the fly. The approach in [18] applies the Monte Carlo 
method to mathematically conclude that the number of random 
walks has a Poisson distribution, and the expected number of 
random walks can be evaluated with a given error bound. 
However, a Monte Carlo approach requires the number of 
random walks to be set, which induces a trade-off between 
efficiency and approximation quality. After repetitive runs, the 
PPR scores can be evaluated for nodes based on the number of 
random surfers in them. Bahmani and others [10] proposed a 
disk-based approach, which may consume high I/O operations. 
The study [23] presented a local algorithm that computes the 
PPR answers by adaptively considering a small set of nodes 
near a given node. The method in [5] reduces the storage cost 
for a matrix inversion. It divides the transition matrix into 
several small matrices using graph partitioning, and pre-
computes the inversions of smaller matrices.  

Instead of computing the entire PPR scores, there are some 
researches that have concentrated on finding the top-k    
nodes efficiently. They only require the top-k values 

( ){ ( )|1 ,1 }t
sp i i n t  


 for given query ,s


 which is referred 
to as the top-k PPR computation problem. The approach in [13] 
modifies the bookmark coloring algorithm [17] to answer top-k 
queries in an entity-relation graph. The phenomenon of 
propagation of a coloring substance is observed in such graphs. 
During the computation of the PPR scores, this method 
compares the current k-th value with the upper bound of the  
(k + 1)-th value, and terminates the process when the top-k 
nodes are completely determined. These methods, however, 
are restricted to either a specific graph model or a theoretical 
point of view, and thus are difficult to be used in real problems. 
The k-dash algorithm (KDA) [12], [24], which is a state-of-the-
art algorithm, was proposed with two main ideas, a sparse 
matrix computation and a tree estimation. The work in [24] is 
based on the same rooted work of [12], and thus we consider 
the two algorithms to be the same (as in KDA) with minor 
variants. KDA first reorders nodes to make the inverse matrix 
from (2) sparse during the pre-computation phase, and 
constructs a breadth-first search tree rooted at the given node. 
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KDA efficiently and precisely finds the top-k highest proximity 
nodes by computing the proximities of the nodes in ascending 
order of distance from the root node. The authors of [25] 
identify a uniform property over many PPR measures in which 
each node has at least one adjacent node having a lower (or 
higher) proximity. This relationship is utilized to find the top-k 
nodes satisfying the no-local-optimum property. A novel 
problem, reverse top-k proximity, is proposed in [26] to suggest 
an another measure for understanding the distance between 
nodes in a graph. 

3. Problem Statement  

In this paper, we consider the problem of a top-k PPR 

computation: Given a weighted directed graph G = (V, E) and 

teleport vector ,s


 find the k nodes with the largest values in 

the PPR score vector .sp


 A PPR score is the steady-state 

probability of a node computed by (1). Under a steady state, the 

probability distribution over the entire set of nodes determines 

the final order of the nodes. Because we focus on the top-k 

nodes, we only need the probability distribution of a partial set 

of nodes sufficient to be on the final list, instead of computing 

all nodes. To illustrate our method, we transform the problem 

as follows: 

Problem Definition. Given a graph G = (V, E), a teleport 

vector ,s


 a restart probability parameter , and a constant k, 

find k nodes whose scores in vector ( )t
sp


 are expected to be 

the largest with respect to the nodes in .s


 

III. Top-k Personalized PageRank with Distribution 
State Transition Graph 

1. Data Model  

Our idea starts from observing the changing probability 

distribution over vector ,s


 and then trying to find the most 

promising nodes at early stage t. To do so, we need to trace the 

changing states of the probability distribution at each recursion 

of (1). However, it is difficult to identify the nodes to eventually 

be in the final list, and detect the right time to stop the recursive 

operations. We translate the recursive equation to a set of 

iterative equations that can identify a random surfer’s 

movements and corresponding changes in the distribution 

states. As a visible interpretation of the iteration results and 

changes, we use a trellis graph. A trellis graph is a directed 

graph with nodes and directed edges that satisfy the following 

conditions: 1) the node set is partitioned into subsets L = {l0, l2, 

… , ln}, and 2) the edges connect nodes only of consecutive  

 

Fig. 1. Trellis graph with |L| = 6 and |li| = 5.  
 
subsets lt, and lt+1, for 0 ≤ t ≤ n. A trellis graph is useful for 
representing the subsets as an ordered time sequence to 
formulate many problems arising in the field, such as in 
communications or information theory. Figure 1 illustrates an 
example of a trellis graph with six subsets. Based on the 
structure, we define a novel data model, DSTG, with useful 
properties for representing the PPR semantics. 
Definition 1. (distribution state transition graph) With respect 
to graph G = (V, E), DSTG DG(n, L) is a modified trellis graph 
satisfying the following properties: 
1) State: There exists a one-to-one and onto function from 

each state lt (1 ≤ t ≤ n) of DG to V(G). Every node ( )t
iv  in lt 

corresponds to vi  V(G). 
2) Transition: An edge ( ) ( 1),( )t t

ij i je v v  exists from node ( )t
iv  

to nodes ( 1)t
jv   if the corresponding edge eij(vi, vj)  E(G) 

exists. 
3) Distribution: An edge ( ) (0),( )t

ii i ie v v  exists from node ( )t
iv  

to nodes (0)
iv . There exists a one-to-one and onto function 

from state l0 of DG to V(G). There are no outgoing edges 
from the nodes in l0. 

A DSTG depicts a stochastic process of a random surfer’s 
location over node set V(G) at a certain time t using the state 
property. The probabilities of the surfer’s movements are 
described by the properties, transition and distribution. To 
simplify the notations, we use the same labels on the nodes of 
graph G and subset lt (0 ≤ t ≤ n) in DG. At a certain time t, the 
edges directing to the nodes in the next state lt+1 describe the 
possibility of a transition, and those to the nodes in the zeroth 
state l0 describe the possibility of a jump. Figure 2 illustrates an 
example graph G and its corresponding DSTG. A probabilistic 
path p → q → r of a random surfer is denoted by a double red 
line in both graphs, G and DG. The edges with the transition 
property are denoted by the solid lines. The edges with the 
distribution property to state l0 are denoted by a dotted line only 
for the top nodes, and those for the other nodes are omitted for 
a simple presentation. As a result, all probabilistic movements 
of a random surfer are modeled in DSTG iteratively according 
to the subsequent states L. We consider state l0 as a special case 
for the surfer’s movements. Because the nodes in state l0 have  
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Fig. 2. (a) Directed graph G with a random path p → q → r, 
and (b) corresponding DSTG, DG. 

(b) 

p 

q 
r 

l1 l2 l3l0 

p 

q 

r 

…

ln

(a) 

 
 
no outgoing edges, the surfer always stays in a special state 
once they jump in. 

2. Weight Distribution Model  

In the previous section, we proposed a novel model, the 
DSTG, to depict the probabilistic movements of a random 
surfer on a graph. In this section, we try to explain the weight 
assignment model that represents the probability of existence 
of a random surfer on node vi at time t. Based on the proposed 
model, we can discuss its equality to the PPR score. 

Now, we introduce computational factors to represent the 
weights for the nodes and edges in a DSTG. The node weights 
represent the probability of arrival at a certain node at a certain 
time. The edge weights represent the probability of departure 
from a certain node at a certain time. As we know, state l0 has 
no outgoing edges, and represents the terminal state of a 
random surfer’s movements. It is worth noting that an update 
of the node weights at state l0 during the processing of a DSTG 
is similar to the recurrence of solving (1). We introduce a 
weight distribution model of DG as follows: 

Definition 2. The weight distribution model of DG is defined to 

compute the probabilistic distribution of a random surfer’s 

existence in node set V(G) of G at a certain time t. This 

probabilistic distribution explains the approximation of the 

PPR score vector ( ) .t
sp


 With respect to (1), the model is 

defined as follows: 
1) Edge Weight: Given parameter , an outgoing edge     

eij from nodes ( )t
iv  in state lt, the edge weight 

( ) ( 1)( ( , ))t t
ij i jW e v v   is assigned as ( ( , ))ij i jW e v v   of G. 

As a special case, that is, an incoming edge eii to nodes 
(0)
iv  in state l0, the edge weight ( ) (0)( ( , ))t

ii i iW e v v  is 

assigned as 1 – . 
2) Node Weight: For every node ( )t

iv  in lt, the node weight 

W ( )( )t
iv  is assigned as 

 

Fig. 3. (a) Random paths starting from v1, and (b) the first and (c) 
second runs of the PSA. 
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 ( 1) ( 1) ( )( ) ( , ) ,t t t
j ji j i

j

W v W e v v            (4) 

and at the same time, node weight W (0)( )iv  is assigned as 

 (0) ( ) (0)( ) ( , ) .t
i ii i iW v W e v v              (5) 

In this model, the weights of the edges are assigned to 
consider the transition probability with a given parameter  
and the teleport probability with 1 – . Similar to the original 
problem of the PPR score computation, the edge weights are 
typically given as a parameter, for example, a transition matrix. 
However, the node weights should represent the chronological 
order, as in (4), of random movements based on the modified 
trellis graph form DG. Each subset lt represents the probabilistic 
distribution state of a certain time t, and its node weight 

( 1)( )t
iW v   should be computed before computing ( )( )t

jW v . 

Moreover, equation (5) describes the updating weight for the 
nodes in the zeroth state by ( ) (0)( ( , ))t

ii i iW e v v  at each move. 
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Owing to the probabilistic settings, the sum of the weights  
( )( )t

i iW v  reach closer to zero, and (0)( )
i iW v  reaches  

closer to 1. Figure 3(a) illustrates an example of random moves 
starting from node v1. The edge with the distribution property is 
denoted by a dotted line. When we consider the steps from  

(1)
1v  to the next state l1, state l0 is updated at the same time. As 

a result, the node weights are updated in the time-vertex tables 
in Fig. 3. State l0 accumulates the visiting probability of the 
nodes. Detailed examples in both Figs. 3(b) and 3(c) are 
described in the next section. By computing node weights in a 
DSTG, we can derive the stationary distribution. Noting that 
we construct a DSTG and a weight distribution model to 
interpret the random surfer’s movements, the distribution state 
can approximate the PPR. To make our interpretation more 
concrete, we prove that the weight distribution in l0 is identical 
to the PPR score vector. The following theorem claims the 
equality through a proof. 
Theorem 1. The probability distribution of a random surfer at 
state l0 at time t is identical to PPR score vector ( ) ,t

sp


 where  

t ≈ ∞. 
Proof. Assume that a random surfer begins at state l1 with a 
given start distribution. The surfer can move to the second state 
with probability  or can move to state l0 with a probability of 
1 – . If the surfer moves to the third state, the probabilistic 
move is to the next state or state l0 with probability  or 1 – , 
respectively. The same process is repeated each time. If the 
surfer moves to state l0, there are no outgoing edges. Hence, the 
probability distribution of the surfer arriving at each node in 
state l0 is determined at every intermediate state lt (0 < t < n). If 
we use ( )( )t

iP v  to represent the probability of a random surfer 
arriving at node vi at time t, the probability of the surfer arriving 
at node vi in state l0, 

)0(( )iP v , is computed as follows: 

(0) ( ) 1( ) ( ) (1 .)i i
i i

i

P v P v  


             (6) 

Because (6) is identical to the inverse P-distance [4], if a jump 
to state l0 is regarded as a stop, it is concluded that the 
stationary distribution of a random surfer in state l0 is exactly 
the same with the PPR.                              ■ 

Now, we note that the problem we defined in section 2.3 can 

be solved by traversing a DSTG. Based on Theorem 1, we can 

obtain the exact PPR scores by accumulating the weight 
(0)( ).iW v  In other words, we can observe the changes in 

distribution state in l0 for all moves of the surfer. Actually, 

traversing an entire DSTG is infeasible because the size n is 

infinite. However, the advantage of using a DSTG is that we 

can compare the probabilities at different times t and t + c. 

Because this model presents every separate path at every state, 

it allows a search algorithm to easily determine which paths are 

promising. Moreover, we can proceed with more steps on 

some paths having a high potential and defer some 

unpromising paths. Now, we need an algorithm to determine 

when random moves stop because we are confident that the 

distribution state no longer changes. To be more specific, the 

order of some nodes in l0 with respect to the node weights 

undergoes no further changes. We denote “some” nodes as top-

k nodes. 
 

Algorithm 1. Path Selection Algorithm. 

Input: graph G(V, E), teleport vector r, constant eps, a 
Output: top-k list S 
Q : = empty priority queue 
R : = 1 
for i = 0 to |V| do 

Update Q with[(1, i), r[i]] 
end for 
while Q is not empty do 

Pop an element u = [(t, i), w] with the largest w from Q 
S(u) = S(u) + (1 – a)* w 
R = R – (1 – a)* w 

for each v = V(j) adjacent to u = V(i) do 
if[(t + 1, j), x] is in Q then 

Update [(t + 1, j), x] by [(t + 1, j), x + a * W(E(u, v))] 
else 

Update Q with[(t + 1, j), a * W(E(u, v))] 
end if 
end for 
if stop-condition(R) < eps 
for i = 0 to |V| do 

Update S with the ordered x > 0 from [(0, i), x] 
break 

end if 
end while 
return S 

3. Path Selection Algorithm 

In this section, we propose an efficient algorithm to find 
which nodes will be the top-k answers at an early stage. To 
show the benefit of our approach, we introduce a baseline 
method in advance. Initially, a random surfer starts from a node 
specified in the given vector s


 from the first state l1. The total 

probability mass, which is specified as a remainder, is 
initialized as 1. The algorithm operates as a repetitive update of 
the node weights, which is the same as the random surfer’s 
movements in the PPR model, in that the surfer moves to the 
next state or jumps to the special state l0. The node weights are 
distributed and collected at each iteration. At the same time, the 
remainder value decreases with the amount of node weight 
assignments. The algorithm stops if the node weights in l0 are 
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sufficiently stationary. To be specific, the algorithm stops when 
the remainder value is smaller than the truncation constant, ε. 
Because this is a probabilistic model, the initial probability 
mass is distributed to consecutive nodes with increasing time t. 
The sum of all node weights should be 1. This is called a brute-
force algorithm (BFA), and is the baseline algorithm used. 

The idea of this algorithm comes from the observance that if 
we know the stop condition earlier than confirmation of the full 
convergence of the node weights in l0, we can obtain the top-k 
answers faster than the baseline BFA. The top-k query 
algorithm, called the PSA, maintains three values to check its 
termination based on the state of l0, priority queue Q, top-k list 
S, and remainder R. Initially, a query node-set s


 is given. In 

the first state, l1, each node obtains an initial node weight 
according to the probability distribution over vector ,s


 and 

the remainder r is initialized as 1. The nodes whose node 
weights are over zero are then queued up to Q. To process each 
state, the node whose weight is the largest is removed out from 
the queue. Some portions of its node weight are distributed to 
nodes in the next state, and some portion is accumulated into 
the zeroth state, l0. The moving portions are determined by the 
edge connecting to other nodes and their edge weights. 
Specifically, the node weight of node ( )t

iv  is divided into   
the neighboring nodes in the next state, lt+1. The portion 

 ( ) ( ) ( 1)() )( ,t t t
i ij i jW v W e v v   is assigned to the next nodes, 

( 1) .t
jv   For the (1 – ) part, the node weight ( )(1 ) ( )t

iW v  is 

accumulated to the corresponding node, 
(0) .iv  All neighboring  

nodes are updated and inserted into queue Q. The PSA repeats 
this process until a stop condition is satisfied. In the BFA, the 
stop condition is satisfied if there is no considerable change in 
the order of the top-k nodes in Q. In the PSA, we compare the 
k-th node with the (k + 1)-th node in l0 at each iteration. If the 
weight of the k-th node is larger than the upper bound of that of 
the (k + 1)-th node, then we can terminate the algorithm 
immediately. The upper bound is easily estimated based on  
the remainder. The remainder is defined as the remaining 
probability mass from the given initial vector. This portion 
should decrease over time, and the jumps of the surfer make 
the portion smaller. We can use the fact that if the k-th node 
weight is larger than the sum of the remainder and the       
(k + 1)-th node weight, further computations cannot change the 
order of the nodes. In this context, the epsilon value should be 
zero. For example, consider the graph with |V| = 5 with 

T[0100]s 


 and  = 0.75 in Fig. 3. Node v1 is given as a start 
node, and is assigned the probability mass 1 in the first state l1. 
Initially, node v1 in the first state is inserted into the queue in the 
form of [(node, state), weight]. The element [(v1, 1), 1] is 
removed from Q, and its weight is then distributed over the  

neighboring nodes following the outgoing edges. Figure 3(b) 
shows a snapshot of the end of the first iteration. The nodes in 
the second state, v2 and v4, obtain 0.8 × 0.75 and 0.2 × 0.75, 
respectively. In addition, node v1 in state l0 obtains 0.25. The 
same amount will be subtracted from the remainder R to 
denote the remaining portion of the total probability to be 
distributed over all nodes. The priority queue Q is updated with 
[(v1, 2), 0.6] and [(v1, 4), 0.15] maintaining the descending 
order of the node weights. The top-k list S is updated with   
[v1, 0.25]. As a subsequent step, Fig. 3(c) illustrates the updates 
and changes in Q, S, and R for the second iteration. From the 
queue, the element [(v2, 2), 0.6] is removed. Following the 
outgoing edges of v1, the portions 0.27, 0.135, and 0.045 are 
distributed to the nodes v0, v1, and v3 in state l3, respectively. In 
the priority queue, the order is changed owing to the incoming 
node v0 with a weight of 0.27. The remainder will decrease 
from 0.75 to 0.6. In this setting, we only need to observe the 
remainder constant and k-th element in the top-k list. 
Furthermore, we can easily extend the algorithm using tighter 
stop conditions or path finding algorithms.  

IV. Evaluation 

In this section, we present the results of experiments 
assessing the efficiency and accuracy of the proposed 
algorithms. We compare the PSA with two competitive 
algorithms, a basic push algorithm (BPA) [13] and a KDA [12], 
as described earlier.  

1. Experimental Settings 

We used two real-world datasets, the Astrophysics dataset 
and LiveJournal dataset provided by the Stanford Large 
Network Dataset Collection (snap.stanford.edu/data). An 
Astrophysics graph was collected from arXiv and it covers 
papers submitted to the astrophysics category. This graph 
consists of 18,772 nodes and 198,110 edges. The LiveJournal 
dataset is a friend network extracted from an online community 
maintaining journals and group blogs. This graph consists of 
3,137,571 million nodes and 29,552,850 edges. We randomly 
selected 1,000 nodes, each of which is used as a test query. 
Based on the linearity theorem [4], multiple query nodes can be 
easily adopted. For each algorithm, we conducted 1,000 
evaluations for each query, and obtained the average 
performance values. Each algorithm was executed to retrieve 
the top-k nodes according to the PPR scores. We used the 
execution time as the metric of efficiency. To measure the 
accuracy, we used the fraction of answer nodes among the top-
k answers from each method that match those of the BFA that 
produce the exact answers. We varied constant k as 10,  
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20, 30, 40, and 50, and used the restart probability 1 –  = 0.05, 
as in previous works [5], [12]. For BPA, 20%, 25%, and 30% 
of the nodes were randomly selected as hub nodes, and 
truncation constant ε was fixed at 10–5. For accuracy 
assessments of  BFA and PSA, we varied ε as 0.01, 0.05, 10–3, 
5 × 10–3, 10–4,  5 × 10–4, 10–5 and 5 × 10–5. All of our 
experiments were conducted on a 3.0 GHz Intel Xeon X5472 
machine with   32 GB of memory running Ubuntu 10. Each 
method was implemented using C++. A binomial heap [27] is 
used as the priority queue in the PSA and BFA. 

2. Results 

Table 1 shows the pre-computation times of the different 
algorithms. The BPA needs to select hub nodes to estimate the 
upper bounding proximities. A recent approach, the KDA, 
proposes an efficient decomposition method to compute the 
inverse matrices. However, it still needs several hours of pre-
computation time. It is important to note that the BPA is an 
approximate algorithm and the KDA is an exact algorithm. The 
KDA, which derives an inverse matrix at the pre-computation 
time, is infeasible for a large graph. Note that the PSA does not 
require any pre-computations compared to the other algorithms. 
This benefit is critical for online algorithms with large graphs. 

Figures 4 and 5 show the performance results for the 
Astrophysics dataset, which is a smaller dataset than the 
LiveJournal dataset. Figure 4 shows that the PSA outperforms 
the BPA with respect to the execution time. If we exclude the 
pre-computation time from the BPA, which computes the hub 
nodes, the PSA operates much more quickly than the BPA 
because it requires additional time to compute the PPR scores 
for non-hub nodes. Moreover, the BPA processes all of the 
paths evenly, whereas the PSA processes the important paths in 
a greedy fashion. Although the KDA is the fastest algorithm for 
online use, the PSA is comparable. However, if the pre- 
computation time is considered as the total computation time, 
the PSA is the fastest. Figure 5 shows the accuracy of      
the approximate algorithm, BPA, compared to the exact  
 

Table 1. Pre-computation time (s). 

 LiveJournal Astrophysics 

BFA 0 0 

BPA20 12,128 2,506 

BPA25 28,300 3,165 

BPA30 40,899 13,487 

KDA N/A 76,493 

PSA 0 0 

 

algorithm, KDA. Although the PSA produces approximate 
results, it has a slight loss of accuracy for an increasing k 
compared to the BPA. The KDA consistently outperforms the 
PSA in terms of efficiency and accuracy after pre-computing 
the matrix inversion. The exact algorithm, KDA, guarantees 
exact answers for the PPR, but requires O(n2) time and space 
for computing all node proximities, and is bounded by O(n + 
m) for the top-k answers. In some cases with a large ratio of the 
number of non-zero elements in the matrix, the efficiency of 
the KDA worsens. In addition, the PSA consistently performs 
well without depending on the element structures.  

Figures 6 and 7 show the results of the same evaluations 
described previously on the larger LiveJournal dataset. The 
pre-computation of the KDA is infeasible. Therefore, it cannot 
be applied to large graphs. The PSA consistently outperforms 
the BPA in both efficiency and accuracy. 

 

 

Fig. 4. Efficiency (Astrophysics). 
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Fig. 5. Accuracy (Astrophysics). 

0.998

0.995

0.992

0.989

0.986

0.983

0.980

10 20 30 40 50

k 

A
cc

ur
ac

y 
 

BFA
BPA20
BPA25
BPA30
KDA 
PSA 

 



722   Jaehui Park and Sang-Goo Lee ETRI Journal, Volume 38, Number 4, August 2016 
http://dx.doi.org/10.4218/etrij.16.0115.0229 

 

Fig. 6. Efficiency (LiveJournal). 
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Fig. 7. Accuracy (LiveJournal). 
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Figure 8 shows that the accuracy of the PSA improves with 
smaller truncation constants. The PSA takes more paths into 
consideration as ε is smaller, but the paths have little influence 
on the top-k node determination. Hence, it is important to 
choose an appropriate ε because the performance relies on it. If 
ε is too small, the PSA will derive a small accuracy gain but 
consume a large amount of computational time. On the other 
hand, if ε is too large, the PSA will operate very quickly with a 
huge loss of accuracy. 

V. Conclusion 

In this paper, we presented a novel method to find the top-k 
answers in a node proximity search based on the PPR model. 
To compare the random paths with different time stages to 
promising nodes, we extended a given graph to a novel 

 

Fig. 8. Truncation of PSA. 
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structure, a DSTG. Based on the notions of time sequences and 
weight distribution models, the top-k answers were efficiently 
computed without pre-computations. We proposed an 
algorithm, the PSA, to maintain a promising node list and test 
the upper bounds for an early determination. We proved that 
our answers determined through a DSTG guarantee 
equivalence with the results of the PPR. A performance study 
using two real datasets clearly shows that our method is 
practical and accurate. As future work, we plan to parallelize 
the PSA to handle data on the Spark framework. Moreover, we 
are considering applying our method to other random walk-
based measures [6], [28]. 
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