
714 Jaehui Park and Sang-Goo Lee © 2016 ETRI Journal, Volume 38, Number 4, August 2016
http://dx.doi.org/10.4218/etrij.16.0115.0229

Considerable attention has been given to processing
graph data in recent years. An efficient method for
computing the node proximity is one of the most
challenging problems for many applications such as
recommendation systems and social networks. Regarding
large-scale, mutable datasets and user queries, top-k query
processing has gained significant interest. This paper
presents a novel method to find top-k answers in a node
proximity search based on the well-known measure,
Personalized PageRank (PPR). First, we introduce a
distribution state transition graph (DSTG) to depict
iterative steps for solving the PPR equation. Second, we
propose a weight distribution model of a DSTG to capture
the states of intermediate PPR scores and their
distribution. Using a DSTG, we can selectively follow and
compare multiple random paths with different lengths to
find the most promising nodes. Moreover, we prove that
the results of our method are equivalent to the PPR results.
Comparative performance studies using two real datasets
clearly show that our method is practical and accurate.

Keywords: Personalized PageRank, Top-k Node
Proximity Search, Path Selection Algorithm, Distribution
State Transition Graph, Graph Search.

Manuscript received Mar. 11, 2015; revised Mar. 15, 2016; accepted Apr. 4, 2016.
This work was supported by the Knowledge Services Industry Core Technology

Development Program (10051028, Development of Predictive Manufacturing System using
Data Analysis of 4M Data in Small and Medium Enterprises) funded By the Ministry of Trade,
Industry & Energy (MI, Korea).

Jaehui Park (corresponding author, jaehui@etri.re.kr) is with the SW & Contents Research
Laboratory, ETRI, Daejeon, Rep. of Korea.

Sang-Goo Lee (sglee@snu.ac.kr) is with the Computer Science and Engineering
Department, Seoul National University, Rep. of Korea.

I. Introduction

1. Motivation

A graph is a fundamental data structure for capturing
relationships among entities, and may represent useful
abstractions of real-world objects. Computing graph data has
become important with the increasing needs of recent
applications, such as social networks, online ads/spam
networks, and protein interaction networks. Traditional studies
have covered many problems regarding the use of graphs, for
example, shortest paths and subgraph isomorphism. One of the
most well-known problems is computing the node proximity.
The node proximity can be applied, for example, to finding
potential friends for a person based on their social network.
Many proximity measures and their computation algorithms
have been proposed in the literature [1]–[7]. Based on such
studies, various applications have emerged, including name
disambiguation [1], spam filtering [2], and friend
recommendations in social networks [3], and others [8], [9].

In this paper, we consider a node proximity measure called
Personalized PageRank (PPR) [2], which is one of the most
well-known graph metrics owing to its utility and solid
theoretical foundation. PPR is defined as the stationary
distribution of random walks; at each step, it follows an
outgoing edge from the current node with a certain probability,
or it jumps to a certain node in accordance with a given
preference distribution. For more information, refer to [4].
However, the computing of PPR poses challenging issues [4],
[10]–[15]. As an example, a power iteration is known to be a
naïve computation method for PPR [4], which converges very
slowly, and the number of iteration steps is excessive for large
graphs. To remedy such inefficiency, several studies have

Finding Top-k Answers in Node Proximity
Search Using Distribution State Transition Graph

Jaehui Park and Sang-Goo Lee

ETRI Journal, Volume 38, Number 4, August 2016 Jaehui Park and Sang-Goo Lee 715
http://dx.doi.org/10.4218/etrij.16.0115.0229

been conducted, including pre-computations [16], matrix
partitioning [5], and Monte Carlo approximations [11].
However, regarding large-scale, mutable datasets and queries
in recent applications, existing studies may not work efficiently.
In some applications, users often want to know the top-most
answers more quickly while ignoring the others. Hence, in this
paper, we try to solve the problem of finding top-k proximity
nodes using the PPR measure. Many top-k approaches have
been introduced in the literature [12], [17], [18]. For more
details, refer to the related works section. The difference
between our approach and existing studies is that, not only do
we reduce the computation time for producing top-k answers,
we also propose a novel and useful computation model for
further extensions, such as parallel processing.

2. Our Approach

The problem dealt with in this paper is finding top-k nodes
with the highest PPR scores, not computing the actual scores of
an entire node set of a given graph. It would be useful to know
the potentials of the nodes at different iteration stages before
their convergence. By comparing such potentials, for example,
the probabilities, we can determine the top-k answers without
computing the PPR equation, which is conducted using a
sparse matrix-vector multiplication in previous studies. Our
approach works as follows: 1) identifying every possible move
of a random surfer at every iteration to compute the PPR
equation, 2) selectively following the paths to note the
probabilities assigned to the nodes at each iteration, 3)
determining promising nodes based on the state of the
probability distribution, and 4) terminating when we guarantee
that the distribution state no longer changes and we have k
promising nodes. However, this idea cannot be easily achieved
using conventional PPR computation models. Therefore, we
introduce a conceptual structure, a distribution state transition
graph (DSTG), to depict the iterative steps for computing the
complete PPR vector, and determine a random surfer’s paths in
reaching the promising candidates. Based on a DSTG, we can
compute the distribution state of a PPR vector of candidate
nodes at different iteration stages. To highlight this, we avoid
the computational cost of whole matrix-vector multiplications,
while maintaining only the top-k promising nodes. In particular,
we developed a greedy algorithm, the path selection algorithm
(PSA), to select nodes having a higher probability to be PPR
scores by tracking paths with different lengths. The partial set
of promising nodes and their different iteration levels are
involved in the PPR computation, and the approach
dramatically decreases the computational time. Herein, we
provide a theoretical analysis showing that our algorithm
produces equivalent results to exact answers, and that in

practice it is better than existing algorithms. To do so, we
conducted experiments on two real-world datasets.

The contributions of this paper are summarized as follows:
▪ We introduce a DSTG to depict the iterative steps of

computing the PPR scores, and determine the path reaching
the promising nodes.

▪ We introduce a greedy algorithm to test the candidate nodes
to be included in the top-k list based on the accumulated
weights of the intermediate PPR scores. To highlight,
it avoids the computational cost of matrix-vector
multiplications.

▪ We provide a theoretical analysis showing that our algorithm
produces results equivalent to those of existing studies, and
that in practice our algorithm is better than existing algorithms.

3. Organization

The rest of this paper is structured as follows. In Section II,
we describe the basic notions and related works. In Section III,
we introduce a novel model, DSTG, and a top-k processing
algorithm, PSA. In Section IV, we report the experimental
results. Finally, some concluding remarks and areas of future
work are provided in Section V.

II. Background

1. Proximity measure: Personalized PageRank

To describe our idea, we briefly outline the basic concepts
used throughout this paper. Given a weighted directed graph
G = (V, E) with n nodes, V(G), and m edges, E(G), the weight
on each edge, e(u, v)  E(G), is denoted by probability w. For
the sake of simplifying the presentation of some of the
formulae, assume for the rest of the paper that the edge weights
w on the outgoing edges O(u) of each node u will be uniformly
distributed, that is, 1/|O(u)| = w. PageRank [19] is one of
the best-known measures of importance of graph nodes
represented as Web pages. Assume a random surfer moves
from page u to another page v with a uniform probability of
1/|O(u)|. PageRank corresponds to a probability distribution of
a random surfer’s existence in a set of pages under a steady
state. PageRank adopts the structural information of Web
graphs to effectively quantify the global importance of Web
pages. The fact that a Markov chain approximates PageRank
using reasonable constraints makes the measure useable as a
theoretical foundation for various applications. In this paper,
we focus on adding query-specific factors to the metric.

We investigated its variant, PPR, which considers a given
node. At the initial stage, once a random surfer is located in
node s, it iteratively moves to one of its neighbors with a
certain probability, which sums up to  (transition probability)

716 Jaehui Park and Sang-Goo Lee ETRI Journal, Volume 38, Number 4, August 2016
http://dx.doi.org/10.4218/etrij.16.0115.0229

or jumps to the original node s with a probability of 1 – 
(teleport probability). PPR is the same as PageRank, except for
the jumps, which can be designed as a probabilistic distribution
of the user’s preference over the entire nodes. As in the
probabilistic tendency of returning moves to the user’s (given)
preferential nodes s, this measure extends PageRank to a
“personalization.” We refer to node s as a start node, which can
be multiple nodes represented as vector ,s


 for example, a

teleport vector. Let s


 be an n × 1 column-normalized vector

of the preference distribution, that is, () 1,
n

i
s i  

 where

()s i


 denotes the i-th elements of vector ,s


 and W be an

n × n column normalized adjacency matrix, which is referred
to as a transition matrix, of graph G. Therefore, given the
distribution s


 and matrix W, the PPR score can be defined as

a recurrence equation as follows:

() (1) (1) .t t
s sp W p s     

 
 (1)

For our purpose, we can use t as a time unit that describes the

subsequent steps of a random surfer’s movements. Equation
(1) illustrates the probability distribution of the random surfer’s

location after t steps. As a result, the vector ()t
sp


 will be an

n × 1 vector, where n is the number of nodes, and the i-th
element ()t

sp


(i) denotes the probability that the random surfer

exists at node i. The value ()t
sp


 will be converged if t becomes

much larger. The convergence of the equation is guaranteed, as
proved in [20].

2. Related Works

To compute the exact PPR score in a straightforward way,

the power iteration method updates ()t
sp


 recursively in (1)

until the convergence is reached efficiently computing matrix

is key techniques to other areas, such as [21]. However, the

repetitive matrix-vector multiplication incurs an excessive

computational cost for large graphs. There are many previous

studies on alleviating the processing cost of the PPR

computation. As a seminal work, Jeh and Widom [4] compute

and store the scores of the chosen nodes. PPR scores can be

computed using a linear combination of pre-computed scores.

A linear algebraic solution [22] introduces the state of

convergence by deducing (1) to consider the infinite time (t ≈ t

– 1), as in the following equation:

(1) .s sp W p s     
 

 (2)

Equation (2) can be solved if its inverse matrix exists (proved
in [4]), as follows:

1(1)() .sp I W s      


 (3)

If we obtain the inverse matrix (I – ·W)–1 in (3) at the pre-
computation time, sp


 can be computed online. However, this

method also requires a quadratic space for storing the inverse
matrix. Although the approach is faster than the original
approach, the convergence of the linear algebraic approach is
not stationary.

The Monte Carlo approaches [11], [18] assume that a
number of random surfers move from a given start node and
stop according to a geometric distribution. The Monte Carlo
approaches can approximately compute the top-k nodes in an
ad-hoc style because they perform random walks on a given
graph on the fly. The approach in [18] applies the Monte Carlo
method to mathematically conclude that the number of random
walks has a Poisson distribution, and the expected number of
random walks can be evaluated with a given error bound.
However, a Monte Carlo approach requires the number of
random walks to be set, which induces a trade-off between
efficiency and approximation quality. After repetitive runs, the
PPR scores can be evaluated for nodes based on the number of
random surfers in them. Bahmani and others [10] proposed a
disk-based approach, which may consume high I/O operations.
The study [23] presented a local algorithm that computes the
PPR answers by adaptively considering a small set of nodes
near a given node. The method in [5] reduces the storage cost
for a matrix inversion. It divides the transition matrix into
several small matrices using graph partitioning, and pre-
computes the inversions of smaller matrices.

Instead of computing the entire PPR scores, there are some
researches that have concentrated on finding the top-k
nodes efficiently. They only require the top-k values

(){ ()|1 ,1 }t
sp i i n t  


 for given query ,s


 which is referred
to as the top-k PPR computation problem. The approach in [13]
modifies the bookmark coloring algorithm [17] to answer top-k
queries in an entity-relation graph. The phenomenon of
propagation of a coloring substance is observed in such graphs.
During the computation of the PPR scores, this method
compares the current k-th value with the upper bound of the
(k + 1)-th value, and terminates the process when the top-k
nodes are completely determined. These methods, however,
are restricted to either a specific graph model or a theoretical
point of view, and thus are difficult to be used in real problems.
The k-dash algorithm (KDA) [12], [24], which is a state-of-the-
art algorithm, was proposed with two main ideas, a sparse
matrix computation and a tree estimation. The work in [24] is
based on the same rooted work of [12], and thus we consider
the two algorithms to be the same (as in KDA) with minor
variants. KDA first reorders nodes to make the inverse matrix
from (2) sparse during the pre-computation phase, and
constructs a breadth-first search tree rooted at the given node.

ETRI Journal, Volume 38, Number 4, August 2016 Jaehui Park and Sang-Goo Lee 717
http://dx.doi.org/10.4218/etrij.16.0115.0229

KDA efficiently and precisely finds the top-k highest proximity
nodes by computing the proximities of the nodes in ascending
order of distance from the root node. The authors of [25]
identify a uniform property over many PPR measures in which
each node has at least one adjacent node having a lower (or
higher) proximity. This relationship is utilized to find the top-k
nodes satisfying the no-local-optimum property. A novel
problem, reverse top-k proximity, is proposed in [26] to suggest
an another measure for understanding the distance between
nodes in a graph.

3. Problem Statement

In this paper, we consider the problem of a top-k PPR

computation: Given a weighted directed graph G = (V, E) and

teleport vector ,s


 find the k nodes with the largest values in

the PPR score vector .sp


 A PPR score is the steady-state

probability of a node computed by (1). Under a steady state, the

probability distribution over the entire set of nodes determines

the final order of the nodes. Because we focus on the top-k

nodes, we only need the probability distribution of a partial set

of nodes sufficient to be on the final list, instead of computing

all nodes. To illustrate our method, we transform the problem

as follows:

Problem Definition. Given a graph G = (V, E), a teleport

vector ,s


 a restart probability parameter , and a constant k,

find k nodes whose scores in vector ()t
sp


 are expected to be

the largest with respect to the nodes in .s


III. Top-k Personalized PageRank with Distribution
State Transition Graph

1. Data Model

Our idea starts from observing the changing probability

distribution over vector ,s


 and then trying to find the most

promising nodes at early stage t. To do so, we need to trace the

changing states of the probability distribution at each recursion

of (1). However, it is difficult to identify the nodes to eventually

be in the final list, and detect the right time to stop the recursive

operations. We translate the recursive equation to a set of

iterative equations that can identify a random surfer’s

movements and corresponding changes in the distribution

states. As a visible interpretation of the iteration results and

changes, we use a trellis graph. A trellis graph is a directed

graph with nodes and directed edges that satisfy the following

conditions: 1) the node set is partitioned into subsets L = {l0, l2,

… , ln}, and 2) the edges connect nodes only of consecutive

Fig. 1. Trellis graph with |L| = 6 and |li| = 5.

subsets lt, and lt+1, for 0 ≤ t ≤ n. A trellis graph is useful for
representing the subsets as an ordered time sequence to
formulate many problems arising in the field, such as in
communications or information theory. Figure 1 illustrates an
example of a trellis graph with six subsets. Based on the
structure, we define a novel data model, DSTG, with useful
properties for representing the PPR semantics.
Definition 1. (distribution state transition graph) With respect
to graph G = (V, E), DSTG DG(n, L) is a modified trellis graph
satisfying the following properties:
1) State: There exists a one-to-one and onto function from

each state lt (1 ≤ t ≤ n) of DG to V(G). Every node ()t
iv in lt

corresponds to vi  V(G).
2) Transition: An edge () (1),()t t

ij i je v v  exists from node ()t
iv

to nodes (1)t
jv  if the corresponding edge eij(vi, vj)  E(G)

exists.
3) Distribution: An edge () (0),()t

ii i ie v v exists from node ()t
iv

to nodes (0)
iv . There exists a one-to-one and onto function

from state l0 of DG to V(G). There are no outgoing edges
from the nodes in l0.

A DSTG depicts a stochastic process of a random surfer’s
location over node set V(G) at a certain time t using the state
property. The probabilities of the surfer’s movements are
described by the properties, transition and distribution. To
simplify the notations, we use the same labels on the nodes of
graph G and subset lt (0 ≤ t ≤ n) in DG. At a certain time t, the
edges directing to the nodes in the next state lt+1 describe the
possibility of a transition, and those to the nodes in the zeroth
state l0 describe the possibility of a jump. Figure 2 illustrates an
example graph G and its corresponding DSTG. A probabilistic
path p → q → r of a random surfer is denoted by a double red
line in both graphs, G and DG. The edges with the transition
property are denoted by the solid lines. The edges with the
distribution property to state l0 are denoted by a dotted line only
for the top nodes, and those for the other nodes are omitted for
a simple presentation. As a result, all probabilistic movements
of a random surfer are modeled in DSTG iteratively according
to the subsequent states L. We consider state l0 as a special case
for the surfer’s movements. Because the nodes in state l0 have

718 Jaehui Park and Sang-Goo Lee ETRI Journal, Volume 38, Number 4, August 2016
http://dx.doi.org/10.4218/etrij.16.0115.0229

Fig. 2. (a) Directed graph G with a random path p → q → r,
and (b) corresponding DSTG, DG.

(b)

p

q
r

l1 l2 l3l0

p

q

r

…

ln

(a)

no outgoing edges, the surfer always stays in a special state
once they jump in.

2. Weight Distribution Model

In the previous section, we proposed a novel model, the
DSTG, to depict the probabilistic movements of a random
surfer on a graph. In this section, we try to explain the weight
assignment model that represents the probability of existence
of a random surfer on node vi at time t. Based on the proposed
model, we can discuss its equality to the PPR score.

Now, we introduce computational factors to represent the
weights for the nodes and edges in a DSTG. The node weights
represent the probability of arrival at a certain node at a certain
time. The edge weights represent the probability of departure
from a certain node at a certain time. As we know, state l0 has
no outgoing edges, and represents the terminal state of a
random surfer’s movements. It is worth noting that an update
of the node weights at state l0 during the processing of a DSTG
is similar to the recurrence of solving (1). We introduce a
weight distribution model of DG as follows:

Definition 2. The weight distribution model of DG is defined to

compute the probabilistic distribution of a random surfer’s

existence in node set V(G) of G at a certain time t. This

probabilistic distribution explains the approximation of the

PPR score vector () .t
sp


 With respect to (1), the model is

defined as follows:
1) Edge Weight: Given parameter , an outgoing edge

eij from nodes ()t
iv in state lt, the edge weight

() (1)((,))t t
ij i jW e v v  is assigned as ((,))ij i jW e v v  of G.

As a special case, that is, an incoming edge eii to nodes
(0)
iv in state l0, the edge weight () (0)((,))t

ii i iW e v v is

assigned as 1 – .
2) Node Weight: For every node ()t

iv in lt, the node weight

W ()()t
iv is assigned as

Fig. 3. (a) Random paths starting from v1, and (b) the first and (c)
second runs of the PSA.

(a)
l1 l2 l3 l0

v0

v1

v2

v3

v4

0.8

0.2

0.6

0.3

0.1

0.25

t v0 v1 v2 v3 v4

1 1

2 0.6 0.15

l0 0.25

Top-k
list

[v1, 0.25] Queue [(v2, 2), 0.6]

[(v4, 2), 0.15]

(b)

t v0 v1 v2 v3 v4

1 1
2 0.6 0.15

3 0.27 0.135 0.045

Top-k
list

[v1, 0.25]

[v2, 0.15]

Queue [(v0, 3), 0.27]

[(v4, 2), 0.15]

[(v1, 3), 0.135]

[(v3, 3), 0.045]

l0
 0.25 0.15

(c)

 (1) (1) ()() (,) ,t t t
j ji j i

j

W v W e v v  (4)

and at the same time, node weight W (0)()iv is assigned as

 (0) () (0)() (,) .t
i ii i iW v W e v v (5)

In this model, the weights of the edges are assigned to
consider the transition probability with a given parameter 
and the teleport probability with 1 – . Similar to the original
problem of the PPR score computation, the edge weights are
typically given as a parameter, for example, a transition matrix.
However, the node weights should represent the chronological
order, as in (4), of random movements based on the modified
trellis graph form DG. Each subset lt represents the probabilistic
distribution state of a certain time t, and its node weight

(1)()t
iW v  should be computed before computing ()()t

jW v .

Moreover, equation (5) describes the updating weight for the
nodes in the zeroth state by () (0)((,))t

ii i iW e v v at each move.

ETRI Journal, Volume 38, Number 4, August 2016 Jaehui Park and Sang-Goo Lee 719
http://dx.doi.org/10.4218/etrij.16.0115.0229

Owing to the probabilistic settings, the sum of the weights
()()t

i iW v reach closer to zero, and (0)()
i iW v reaches

closer to 1. Figure 3(a) illustrates an example of random moves
starting from node v1. The edge with the distribution property is
denoted by a dotted line. When we consider the steps from

(1)
1v to the next state l1, state l0 is updated at the same time. As

a result, the node weights are updated in the time-vertex tables
in Fig. 3. State l0 accumulates the visiting probability of the
nodes. Detailed examples in both Figs. 3(b) and 3(c) are
described in the next section. By computing node weights in a
DSTG, we can derive the stationary distribution. Noting that
we construct a DSTG and a weight distribution model to
interpret the random surfer’s movements, the distribution state
can approximate the PPR. To make our interpretation more
concrete, we prove that the weight distribution in l0 is identical
to the PPR score vector. The following theorem claims the
equality through a proof.
Theorem 1. The probability distribution of a random surfer at
state l0 at time t is identical to PPR score vector () ,t

sp


 where

t ≈ ∞.
Proof. Assume that a random surfer begins at state l1 with a
given start distribution. The surfer can move to the second state
with probability  or can move to state l0 with a probability of
1 – . If the surfer moves to the third state, the probabilistic
move is to the next state or state l0 with probability  or 1 – ,
respectively. The same process is repeated each time. If the
surfer moves to state l0, there are no outgoing edges. Hence, the
probability distribution of the surfer arriving at each node in
state l0 is determined at every intermediate state lt (0 < t < n). If
we use ()()t

iP v to represent the probability of a random surfer
arriving at node vi at time t, the probability of the surfer arriving
at node vi in state l0,

)0(()iP v , is computed as follows:

(0) () 1() () (1 .)i i
i i

i

P v P v  


   (6)

Because (6) is identical to the inverse P-distance [4], if a jump
to state l0 is regarded as a stop, it is concluded that the
stationary distribution of a random surfer in state l0 is exactly
the same with the PPR. ■

Now, we note that the problem we defined in section 2.3 can

be solved by traversing a DSTG. Based on Theorem 1, we can

obtain the exact PPR scores by accumulating the weight
(0)().iW v In other words, we can observe the changes in

distribution state in l0 for all moves of the surfer. Actually,

traversing an entire DSTG is infeasible because the size n is

infinite. However, the advantage of using a DSTG is that we

can compare the probabilities at different times t and t + c.

Because this model presents every separate path at every state,

it allows a search algorithm to easily determine which paths are

promising. Moreover, we can proceed with more steps on

some paths having a high potential and defer some

unpromising paths. Now, we need an algorithm to determine

when random moves stop because we are confident that the

distribution state no longer changes. To be more specific, the

order of some nodes in l0 with respect to the node weights

undergoes no further changes. We denote “some” nodes as top-

k nodes.

Algorithm 1. Path Selection Algorithm.

Input: graph G(V, E), teleport vector r, constant eps, a
Output: top-k list S
Q : = empty priority queue
R : = 1
for i = 0 to |V| do

Update Q with[(1, i), r[i]]
end for
while Q is not empty do

Pop an element u = [(t, i), w] with the largest w from Q
S(u) = S(u) + (1 – a)* w
R = R – (1 – a)* w

for each v = V(j) adjacent to u = V(i) do
if[(t + 1, j), x] is in Q then

Update [(t + 1, j), x] by [(t + 1, j), x + a * W(E(u, v))]
else

Update Q with[(t + 1, j), a * W(E(u, v))]
end if
end for
if stop-condition(R) < eps
for i = 0 to |V| do

Update S with the ordered x > 0 from [(0, i), x]
break

end if
end while
return S

3. Path Selection Algorithm

In this section, we propose an efficient algorithm to find
which nodes will be the top-k answers at an early stage. To
show the benefit of our approach, we introduce a baseline
method in advance. Initially, a random surfer starts from a node
specified in the given vector s


 from the first state l1. The total

probability mass, which is specified as a remainder, is
initialized as 1. The algorithm operates as a repetitive update of
the node weights, which is the same as the random surfer’s
movements in the PPR model, in that the surfer moves to the
next state or jumps to the special state l0. The node weights are
distributed and collected at each iteration. At the same time, the
remainder value decreases with the amount of node weight
assignments. The algorithm stops if the node weights in l0 are

720 Jaehui Park and Sang-Goo Lee ETRI Journal, Volume 38, Number 4, August 2016
http://dx.doi.org/10.4218/etrij.16.0115.0229

sufficiently stationary. To be specific, the algorithm stops when
the remainder value is smaller than the truncation constant, ε.
Because this is a probabilistic model, the initial probability
mass is distributed to consecutive nodes with increasing time t.
The sum of all node weights should be 1. This is called a brute-
force algorithm (BFA), and is the baseline algorithm used.

The idea of this algorithm comes from the observance that if
we know the stop condition earlier than confirmation of the full
convergence of the node weights in l0, we can obtain the top-k
answers faster than the baseline BFA. The top-k query
algorithm, called the PSA, maintains three values to check its
termination based on the state of l0, priority queue Q, top-k list
S, and remainder R. Initially, a query node-set s


 is given. In

the first state, l1, each node obtains an initial node weight
according to the probability distribution over vector ,s


 and

the remainder r is initialized as 1. The nodes whose node
weights are over zero are then queued up to Q. To process each
state, the node whose weight is the largest is removed out from
the queue. Some portions of its node weight are distributed to
nodes in the next state, and some portion is accumulated into
the zeroth state, l0. The moving portions are determined by the
edge connecting to other nodes and their edge weights.
Specifically, the node weight of node ()t

iv is divided into
the neighboring nodes in the next state, lt+1. The portion

 () () (1)())(,t t t
i ij i jW v W e v v  is assigned to the next nodes,

(1) .t
jv  For the (1 – ) part, the node weight ()(1) ()t

iW v is

accumulated to the corresponding node,
(0) .iv All neighboring

nodes are updated and inserted into queue Q. The PSA repeats
this process until a stop condition is satisfied. In the BFA, the
stop condition is satisfied if there is no considerable change in
the order of the top-k nodes in Q. In the PSA, we compare the
k-th node with the (k + 1)-th node in l0 at each iteration. If the
weight of the k-th node is larger than the upper bound of that of
the (k + 1)-th node, then we can terminate the algorithm
immediately. The upper bound is easily estimated based on
the remainder. The remainder is defined as the remaining
probability mass from the given initial vector. This portion
should decrease over time, and the jumps of the surfer make
the portion smaller. We can use the fact that if the k-th node
weight is larger than the sum of the remainder and the
(k + 1)-th node weight, further computations cannot change the
order of the nodes. In this context, the epsilon value should be
zero. For example, consider the graph with |V| = 5 with

T[0100]s 


 and  = 0.75 in Fig. 3. Node v1 is given as a start
node, and is assigned the probability mass 1 in the first state l1.
Initially, node v1 in the first state is inserted into the queue in the
form of [(node, state), weight]. The element [(v1, 1), 1] is
removed from Q, and its weight is then distributed over the

neighboring nodes following the outgoing edges. Figure 3(b)
shows a snapshot of the end of the first iteration. The nodes in
the second state, v2 and v4, obtain 0.8 × 0.75 and 0.2 × 0.75,
respectively. In addition, node v1 in state l0 obtains 0.25. The
same amount will be subtracted from the remainder R to
denote the remaining portion of the total probability to be
distributed over all nodes. The priority queue Q is updated with
[(v1, 2), 0.6] and [(v1, 4), 0.15] maintaining the descending
order of the node weights. The top-k list S is updated with
[v1, 0.25]. As a subsequent step, Fig. 3(c) illustrates the updates
and changes in Q, S, and R for the second iteration. From the
queue, the element [(v2, 2), 0.6] is removed. Following the
outgoing edges of v1, the portions 0.27, 0.135, and 0.045 are
distributed to the nodes v0, v1, and v3 in state l3, respectively. In
the priority queue, the order is changed owing to the incoming
node v0 with a weight of 0.27. The remainder will decrease
from 0.75 to 0.6. In this setting, we only need to observe the
remainder constant and k-th element in the top-k list.
Furthermore, we can easily extend the algorithm using tighter
stop conditions or path finding algorithms.

IV. Evaluation

In this section, we present the results of experiments
assessing the efficiency and accuracy of the proposed
algorithms. We compare the PSA with two competitive
algorithms, a basic push algorithm (BPA) [13] and a KDA [12],
as described earlier.

1. Experimental Settings

We used two real-world datasets, the Astrophysics dataset
and LiveJournal dataset provided by the Stanford Large
Network Dataset Collection (snap.stanford.edu/data). An
Astrophysics graph was collected from arXiv and it covers
papers submitted to the astrophysics category. This graph
consists of 18,772 nodes and 198,110 edges. The LiveJournal
dataset is a friend network extracted from an online community
maintaining journals and group blogs. This graph consists of
3,137,571 million nodes and 29,552,850 edges. We randomly
selected 1,000 nodes, each of which is used as a test query.
Based on the linearity theorem [4], multiple query nodes can be
easily adopted. For each algorithm, we conducted 1,000
evaluations for each query, and obtained the average
performance values. Each algorithm was executed to retrieve
the top-k nodes according to the PPR scores. We used the
execution time as the metric of efficiency. To measure the
accuracy, we used the fraction of answer nodes among the top-
k answers from each method that match those of the BFA that
produce the exact answers. We varied constant k as 10,

ETRI Journal, Volume 38, Number 4, August 2016 Jaehui Park and Sang-Goo Lee 721
http://dx.doi.org/10.4218/etrij.16.0115.0229

20, 30, 40, and 50, and used the restart probability 1 –  = 0.05,
as in previous works [5], [12]. For BPA, 20%, 25%, and 30%
of the nodes were randomly selected as hub nodes, and
truncation constant ε was fixed at 10–5. For accuracy
assessments of BFA and PSA, we varied ε as 0.01, 0.05, 10–3,
5 × 10–3, 10–4, 5 × 10–4, 10–5 and 5 × 10–5. All of our
experiments were conducted on a 3.0 GHz Intel Xeon X5472
machine with 32 GB of memory running Ubuntu 10. Each
method was implemented using C++. A binomial heap [27] is
used as the priority queue in the PSA and BFA.

2. Results

Table 1 shows the pre-computation times of the different
algorithms. The BPA needs to select hub nodes to estimate the
upper bounding proximities. A recent approach, the KDA,
proposes an efficient decomposition method to compute the
inverse matrices. However, it still needs several hours of pre-
computation time. It is important to note that the BPA is an
approximate algorithm and the KDA is an exact algorithm. The
KDA, which derives an inverse matrix at the pre-computation
time, is infeasible for a large graph. Note that the PSA does not
require any pre-computations compared to the other algorithms.
This benefit is critical for online algorithms with large graphs.

Figures 4 and 5 show the performance results for the
Astrophysics dataset, which is a smaller dataset than the
LiveJournal dataset. Figure 4 shows that the PSA outperforms
the BPA with respect to the execution time. If we exclude the
pre-computation time from the BPA, which computes the hub
nodes, the PSA operates much more quickly than the BPA
because it requires additional time to compute the PPR scores
for non-hub nodes. Moreover, the BPA processes all of the
paths evenly, whereas the PSA processes the important paths in
a greedy fashion. Although the KDA is the fastest algorithm for
online use, the PSA is comparable. However, if the pre-
computation time is considered as the total computation time,
the PSA is the fastest. Figure 5 shows the accuracy of
the approximate algorithm, BPA, compared to the exact

Table 1. Pre-computation time (s).

 LiveJournal Astrophysics

BFA 0 0

BPA20 12,128 2,506

BPA25 28,300 3,165

BPA30 40,899 13,487

KDA N/A 76,493

PSA 0 0

algorithm, KDA. Although the PSA produces approximate
results, it has a slight loss of accuracy for an increasing k
compared to the BPA. The KDA consistently outperforms the
PSA in terms of efficiency and accuracy after pre-computing
the matrix inversion. The exact algorithm, KDA, guarantees
exact answers for the PPR, but requires O(n2) time and space
for computing all node proximities, and is bounded by O(n +
m) for the top-k answers. In some cases with a large ratio of the
number of non-zero elements in the matrix, the efficiency of
the KDA worsens. In addition, the PSA consistently performs
well without depending on the element structures.

Figures 6 and 7 show the results of the same evaluations
described previously on the larger LiveJournal dataset. The
pre-computation of the KDA is infeasible. Therefore, it cannot
be applied to large graphs. The PSA consistently outperforms
the BPA in both efficiency and accuracy.

Fig. 4. Efficiency (Astrophysics).

3.0

2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0

E
xe

cu
ti

on
 ti

m
e

(s
)

k

BFA
BPA20
BPA25
BPA30
KDA
PSA

Fig. 5. Accuracy (Astrophysics).

0.998

0.995

0.992

0.989

0.986

0.983

0.980

10 20 30 40 50

k

A
cc

ur
ac

y

BFA
BPA20
BPA25
BPA30
KDA
PSA

722 Jaehui Park and Sang-Goo Lee ETRI Journal, Volume 38, Number 4, August 2016
http://dx.doi.org/10.4218/etrij.16.0115.0229

Fig. 6. Efficiency (LiveJournal).

142

122

102

82

62

42

22

2

E
xe

cu
ti

on
 ti

m
e

(s
)

10 20 30 40 50

k

BPA20
BPA25
BPA30
PSA

10 20 30 40 50

k

0.995

0.987

0.980

0.973

0.965

0.957

0.950

A
cc

ur
ac

y

Fig. 7. Accuracy (LiveJournal).

BPA20
BPA25
BPA30
PSA

Figure 8 shows that the accuracy of the PSA improves with
smaller truncation constants. The PSA takes more paths into
consideration as ε is smaller, but the paths have little influence
on the top-k node determination. Hence, it is important to
choose an appropriate ε because the performance relies on it. If
ε is too small, the PSA will derive a small accuracy gain but
consume a large amount of computational time. On the other
hand, if ε is too large, the PSA will operate very quickly with a
huge loss of accuracy.

V. Conclusion

In this paper, we presented a novel method to find the top-k
answers in a node proximity search based on the PPR model.
To compare the random paths with different time stages to
promising nodes, we extended a given graph to a novel

Fig. 8. Truncation of PSA.

10 20 30 40 50

k

1.000

0.975

0.945

0.915

0.885

0.855

0.825

0.800

A
cc

ur
ac

y

PSA_1e-5
PSA_5e-5
PSA_1e-4
PSA_5e-4
PSA_1e-3
PSA_5e-3
PSA_1e-2
PSA_5e-2

structure, a DSTG. Based on the notions of time sequences and
weight distribution models, the top-k answers were efficiently
computed without pre-computations. We proposed an
algorithm, the PSA, to maintain a promising node list and test
the upper bounds for an early determination. We proved that
our answers determined through a DSTG guarantee
equivalence with the results of the PPR. A performance study
using two real datasets clearly shows that our method is
practical and accurate. As future work, we plan to parallelize
the PSA to handle data on the Spark framework. Moreover, we
are considering applying our method to other random walk-
based measures [6], [28].

References

[1] B.-W. On et al., “Comparative Study of Name Disambiguation

Problem using a Scalable Blocking-Based Framework,”

ACM/IEEE-CS Joint Conf. Digi. Libraries, NY, USA, June 711,

2005, pp. 344353.

[2] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating

Web Spam with Trustrank,” Int. Conf. Very Large Databases,

Toronto, Canada, Aug. 29Sept. 3, 2004, pp. 576587.

[3] H. Yanagimoto and M. Yoshioka, “Relationship Strength

Estimation for Social Media Using Folksonomy and Network

Analysis,” IEEE Int. Conf. Fuzzy Syst., Brisbane, Austrailia, June

1015, 2012, pp. 18.

[4] G. Jeh and J. Widom, “Scaling Personalized Web Search,” Int.

Conf. World Wide Web, Budapest, Hungary, May 2024, 2003,

pp. 271279.

[5] H. Tong, C. Faloutsos, and J.Y. Pan, “Fast Random Walk with

Restart and its Applications,” IEEE Int. Conf. Data Mining, Hong

Kong, Dec. 1822, 2006, pp. 613622.

ETRI Journal, Volume 38, Number 4, August 2016 Jaehui Park and Sang-Goo Lee 723
http://dx.doi.org/10.4218/etrij.16.0115.0229

[6] G. Jeh and J. Widom, “SimRank: A Measure of Structural-

Context Similarity,” ACM Int. Conf. Knowl. Discovery Data

Mining, Alberta, Canada, July 2326, 2002, pp. 538543.

[7] X. Ye and T. Sakurai, “Robust Similarity Measure for Spectral

Clustering Based on Shared Neighbors,” ETRI J., vol. 38, no. 3,

June 2016. pp. 540–550.

[8] S. Govindaraj and K. Gopalakrishnan, “Intensified Sentiment

Analysis of Customer Product Reviews Using Acoustic and

Textual Features,” ETRI J., vol. 38, no. 3, June 2016, pp. 494–501.

[9] H. Jeon and S. Lee, “Language Model Adaptation Based on

Topic Probability of Latent Dirichlet Allocation,” ETRI J., vol. 38,

no. 3, June 2016, pp. 487–493.

[10] B. Bahmani, A. Chowdhury, and A. Goel, “Fast Incremental and

Personalized Pagerank,” Int. Conf. Very Large Databases,

Singapore, Sept. 1317, 2010, pp. 173184.

[11] D. Fogaras et al., “Towards Scaling Fully Personalized Pagerank:

Algorithms, Lower Bounds, and Experiements,” Internet Math.,

vol. 2, no. 3, 2005, pp. 333358

[12] Y. Fujiwara et al., “Efficient Personalized Pagerank with

Accuracy Assurance,” ACM SIGKDD Int. Conf. Knowl.

Discovery Data Mining, Beijing, China, Aug. 1216, 2012, pp.

1523.

[13] M. Gupta, A. Pathak, and S. Chakrabarti, “Fast Algorithms for

Top-k Personalized Pagerank Queries,” Int. Conf. World Wide

Web, Beijing, China, Apr. 2125, 2008, pp. 12251226.

[14] F. Zhu et al., “Incremental and Accuracy-Aware Personalized

Pagerank through Scheduled Approximation,” Proc. VLDB

Endowment, vol. 6, no. 6, Apr. 2013, pp. 481492.

[15] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast Personalized

Pagerank on Mapreduce,” ACM Int. Conf. Manag. Data, Athens,

Greece, June 1216, 2011, pp. 973984.

[16] T.H. Haveliwala, “Topic-Sensitive Pagerank,” Int. Conf. World

Wide Web, Honolulu, HI, USA, May 711, 2002, pp. 517526.

[17] P. Berkhin, “Bookmark-Coloring Algorithm for Personalized

Pagerank Computing,” Internet Math., vol. 3, no. 1, 2006, pp.

4161.

[18] K. Avrachenkov et al., “Quick Detection of Top-k Personalized

Pagerank Lists,” Int. Workshop Algorithms Models Web-Graph,

Atlanta, GA, USA, May 2729, 2011, pp. 5061.

[19] S. Brin and L. Page. “The Anatomy of a Large-Scale

Hypertextual Web Search Engine,” Int. Conf. World Wide Web,

Brisbane, Australia, Apr.1418, 1998, pp. 107117.

[20] G. Strang. “Introduction to Linear Algebra,” Welleselly, MA,

USA: Wellesley-Cambridge Press, 2009.

[21] J. Huang, X. Zhang, Y. Zhang, X. Zou, and L. Zeng, “Speech

Denoising via Low-Rank and Sparse Matrix Decomposition,”

ETRI J., vol. 36, no. 1, Feb. 2014, pp. 167–170.

[22] S.D. Kamvar et al., “Extrapolation Methods for Accelerating

Pagerank Computations,” Int. Conf. World Wide Web, Budapest,

Hungary, May 2024, 2003, pp. 261270.

[23] R. Andersenet al., “Local Computation of Pagerank

Contributions,” Int. Conf. Algorithms Models Web-Graph, San

Diego, CA, USA, Dec. 11–12, pp. 150–165.

[24] Y. Fujiwara et al., “Fast and Exact Top-k Search for Random

Walk with Restart,” Proc. VLDB Endowment, vol. 5, no. 3, 2012,

pp. 442453.

[25] Y. Wu et al., “Fast and Unified Local Search for Random Walk

Based k-Nearest-Neighbor Query in Large Graphs,” ACM Int.

Conf. Manag. Data, Snowbird, UT, USA, June 2227, 2014, pp.

11391150.

[26] A.W.Yu, N. Mamoulis, and H. Su, “Reverse Top-k Search Using

Random Walk with Restart,” Proc. VLDB Endowment, vol. 7, no.

5, 2014, pp. 401412.

[27] J. Vuillemin, “A Data Structure for Manipulating Priority

Queues,” Commun. ACM, vol. 21, no.4, Apr. 1978, pp. 309315.

[28] Y. Sun et al., “PathSim: Meta Path-Based Top-k Similarity

Search in Heterogeneous Information Networks,” Int. Conf. Very

Large Databases, Seattle, WA, USA, Aug. 29–Sept. 3, 2011, pp.

992–1003.

Jaehui Park received his BS degree in

computer science from Korea Advanced

Institute Science and Technology, Daejeon, Rep.

of Korea in 2005, and his PhD in computer

science and engineering from Seoul National

University, Rep. of Korea. He is currently a

senior research engineer at ETRI, Daejeon, Rep.

of Korea. His research interests include keyword searches in relational

databases, information retrieval, and text mining.

Sang-Goo Lee received his BS degree in

computer science and statistics from Seoul

National University, Rep. of Korea in 1985, and

his MS and PhD degrees at the Department of

Computer Science from Northwestern

University, Evanston, IL, USA, in 1987 and

1990, respectively. He is currently a professor of

computer science at Seoul National University. His research interests

are in semantic technology, context-aware personalization, e-catalogs,

and database design.

	I. Introduction
	II. Background
	III. Top-k Personalized PageRank with DistributionState Transition Graph
	IV. Evaluation
	V. Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

