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This paper considers N + 1 series redundancy, where N components are active and 1 component is standby in normal state. The 

active components execute the service, while the standby component is ready to take over the active role if the active components 

fail. When an active component fails, the standby, if available, automatically takes over system operations. However, the automatic 

switchover of the standby component to active mode might not be possible due to hardware or software issues. When a component 

failure or an imperfect switchover occurs, it immediately begins to be repaired. However, the repair process is possible to be inter-

rupted. The most existing literature of redundancy models has focused on Markovian systems with uninterrupted repairs. This pa-

per considers a non-Markovian redundancy model with interrupted repairs, where the repair time, the non-automatic switchover 

time, and the interrupted time are generally distributed. Using supplementary variable method and integro-differential equations, 

we obtain the steady-state availability for the redundancy model.

Keywords: availability, series redundancy, imperfect switchover, interrupted repair, general repair time.

W niniejszym artykule rozważano przypadek redundancji kaskadowej typu N + 1, w której liczba N elementów pozostaje aktyw-

nych, a jeden komponent jest w trybie gotowości w stanie normalnym. Elementy aktywne wykonują usługę, podczas gdy składowa 

rezerwowa pozostaje w stanie gotowości do przejęcia roli aktywnej w przypadku, gdyby składniki aktywne uległy uszkodzeniu. Gdy 

element aktywny przestaje działać, element zastępczy, jeśli jest dostępny, automatycznie przejmuje operacje systemowe. Jednak 

automatyczne przełączenie komponentu zastępczego na tryb aktywny nie zawsze jest możliwe z powodu problemów ze sprzętem 

lub oprogramowaniem. Jeśli wystąpi awaria komponentu lub niedoskonałe przełączenie, natychmiast rozpoczyna się naprawa. 

Proces naprawy może jednak zostać przerwany. Większośćistniejącej literatury na temat modeli nadmiarowości koncentruje się na 

systemach Markowa, w których nie dochodzi do przerwania naprawy. W niniejszym artykule rozważano niemarkowowski model 

nadmiarowości uwzględniający możliwość przerwania naprawy, w którym czas naprawy, czas nieautomatycznego przełączenia 

oraz czas przerwany mają rozkład ogólny. Wykorzystując metodę dodatkowej zmiennej oraz równania całkowo-różniczkowe otrzy-

mano gotowość stacjonarną dla omawianego modelu redundancji.

Słowa kluczowe: gotowość, redundancja kaskadowa, niedoskonałe przełączenie, naprawa przerwana, ogólny 

czas naprawy.

1. Introduction

The availability of a system is defined as the probability that the 

system is operational at a point in time [16, 25]. High availability 

is becoming a must in various domains such as telecommunication 

networks, power plants, and industrial and manufacturing systems [5, 

16, 27]. During the past years, many efforts have been made to im-

prove system availability.

Redundancy is a common approach to improve system availabili-

ty [6]. The redundancy service can offer different levels of availability 

depending on its redundancy model. Availability Management 

Framework [16] defines the following four redundancy models: 2N, 

N+M, N-way, and N-way active. The 2N redundancy model ensures 

one standby replica for each component in active mode. The active 

components execute the service, while the standby components are 

ready to take over the active role if the active components fail. The 

N+M redundancy model extends the 2N redundancy by allowing 

more than two components to be active or standby. In the N+M re-

dundancy, N represents the number of components in active mode 

and M represents the number of components in standby. The 

N-way redundancy model extends the N+M redundancy allowing 

a component to be simultaneously active and standby for different 

services. Lastly, the N-way active redundancy model differs from 

the 2N, N+M, and N-way redundancy, as it does not support standby 

service assignments, but allows a service to be assigned active to 

several components [16].

The availability analysis of a redundancy model is based on ana-

lyzing the various states that the model undergoes during its lifespan 

[21]. The analysis mainly focuses on capturing the failures that cause 

the system to switch to a faulty state and the repairs that shift the sys-

tem back to a healthy state [6]. Since the occurrence of failures is er-

ratic by nature, stochastic models have been used to conduct the avail-

ability analysis [20]. Markovian models have been extensively used 

for this purpose because of their expressiveness and their capability 

of capturing the complexity of real systems [1, 23-25]. One of the 

major problems of using Markovian models is that a large number of 

states are required to represent the model accurately [1]. As an alter-

native, Kanso et al. [6] used Stochastic Reward Nets (SRNs) to model 
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various redundancy models and evaluated the availability by using 

the Stochastic Petri Net Package (SPNP). Kim et al. [9] analyzed the 

networking service availability of 2N redundancy model with non-

stop forwarding by using the SPNP. The analytic-numeric methods 

of SPNP provide the capabilities of solving the Markovian SRNs but 

fail for non-Markovian SRNs. Actually there is no reason to assume 

Markov property in modeling of repairable systems [11]. Recently, 

modeling and analysis of repairable systems with general repair time 

have drawn a lot of attention. Kuznetsov [11] evaluated the availabil-

ity of repairable networks with general repair time distribution by a 

simulation method. However, because of the mathematical complex-

ity of non-Markovian redundancy models, the closed form solutions 

of the models are extremely difficult to obtain.

In redundancy models with standby components, one of the 

standby components takes over the active role if an active component 

fails [16]. This process is called a switchover from standby mode into 

active mode. However, the switchover process is not always perfect 

[14]. That is, the switchover process may fail during the transition 

of a standby component to active mode. Lewis [14] first brought 

the concept of imperfect switchover in the availability analysis of 

redundancy models. Wang et al. [22] studied the availability of four 

different repairable systems with imperfect switchover. Ke et al. [7] 

used a Laplace transform method to study the availability of a Mark-

ovian repairable system. Hsu et al. [3] considered the profit analysis 

of a repairable system with imperfect switchover. Sadjadi and Soltani 

[18] considered a series-parallel system with the choice of redundan-

cy strategy. In the above-mentioned works, the repair times have been 

assumed to be exponentially distributed. However, the assumption 

of exponential repair time distribution limits its use for solving real 

problems. In this paper, we consider non-Markovian model with 

imperfect switchover.

We consider a N+1 redundancy model. This is a special case 

of the N+M redundancy [16]. The classic “k-out-of-N” model [26], 

which is a very popular type of redundancy in fault-tolerant systems, 

can be seen as a special case of N+M redundancy if it is assumed 

that the switchover is perfect and instantaneous and the failure rate 

of a standby component is equal to the failure rate of an active 

component. Actually, the standby component may be different from 

the active component normally operating and may have a different 

failure rate in the operational mode [6]. In N+1 redundancy model, a 

single component acts as a standby for all components in active mode. 

In operation, the active components provide their service while the 

standby component is prepared to become backup to any of the active 

components, should one of them fails [16]. The N+1 redundancy itself 

has many real-world applications. One of the examples is a network 

device, DSLAM (Digital Subscriber Line Access Multiplexer), which 

connects the customer’s end to the Internet through NICs (Network 

Interface Cards) [4, 10]. There may be multiple primary NICs and one 

standby NIC on DSLAM. When one of the primary NICs is faulty, 

services can be switched to the standby NIC. The switchover of the 

standby NIC to primary mode may fail due to hardware or software 

issues [10]. The failed NICs can be fixed through the remote server, 

which may also function wrongly [10]. Other examples include: 

Servers designed with multiple power supplies with one reserved as a 

cold backup [15]; A bank website deployed to a cloud platform, which 

has a dynamic number of active instances with a running backup 

always ready to replace a failed instance [19]; A factory having 

multiple industrial robots and one backup [17].

When a component failure or an imperfect switchover occurs, it 

immediately begins to be repaired. In realistic environments the repair 

process is possible to be interrupted [10]. Therefore, considering an 

interrupted repair in a repairable system is practical and imperative. 

The most existing literature of redundancy models has focused on 

uninterrupted repairs with exponentially distributed repair time. Lit-

tle attention has been given to redundancy models with interrupted 

repairs and generally distributed repair time. Lee [12] analyzed the 

steady-state availability of a simple parallel 1+1 redundancy model 

with one active and one standby component. Bosse et al. [2] estimated 

the availability of a redundancy model with imperfect switchovers and 

interrupted repairs by using a Petri net Monte Carlo simulation. Kuo 

and Ke [10] and Lee [13] studied the steady-state availability of se-

ries systems with switching failures, interrupted repairs, and generally 

distributed repair time. However, they did not distinguish between the 

repairs of the component failures and the imperfect switchovers.

This paper focuses on the analytical expression of the availability 

for N+1 series redundancy model with imperfect switchovers, gen-

erally distributed repair times, and interrupted repairs. Furthermore, 

we distinguish between the repairs of the component failures and the 

imperfect switchovers. Using supplementary variable method and in-

tegro-differential equations governing the steady-state behavior of the 

model, we obtain the analytical expression of the steady-state avail-

ability. Some numerical examples for the steady-state availability of 

the redundancy model are presented.

2. Models

We describe a redundant system with one repairer and N + 1 com-

ponents, among which N components are active and 1 component 

is standby in normal state. The components in active mode operate 

normally and the component in standby mode is ready to assume the 

active role should the active components fail. The system is avail-

able only when there are N active components. It is assumed that the 

components in active mode operate independently from each other 

and their position in the serial structure of the system is not important. 

When the system is available, each component may fail independ-

ently of the state of the others. When the system is unavailable, it is 

shutdown and the additional failures do not occur. Components are 

repaired on a ‘first come first served’ basis. After the repair of a com-

ponent is completed, the fixed component becomes standby if there 

are already N active components; otherwise, it becomes active. If one 

of the active components fails and there is a standby component, then 

the standby component automatically takes over system operations 

with neglibile switchover time and becomes active. The automatic 

switchover from standby to active may fail due to hardware or soft-

ware issues. In this case, the repairer first switchs over non-automati-

cally the standby component to active, then repairs the failed compo-

nent. Moreover, the repairer may function wrongly or fail sometimes 

in its busy period, i.e., when it is repairing a failed component or it is 

switching over non-automatically a standby component. When the re-

pairer is not available, its ongoing repair or non-automatic switchover 

process is interrupted. Once the repairer becomes available again, it 

resumes the interrupted process.

Let the time-to-failure of the active and the standby components 

be exponentially distributed with rate λ and μ, respectively. The repair 

time X is generally distributed with probability density function (PDF) 

f(x) and cumulative distribution function (CDF) F(x). The automatic 

switchover is assumed to fail with probability p and the non-automatic 

switchover time Y is generally distributed with PDF g(y) and CDF 

G(y). Moreover, the repairer may fail in its busy period with an expo-

nential failure rate δ. The interrupted time Z is generally distributed 

with PDF h(z) and CDF H(z).

For mathematical analysis, we define some supplementary vari-

ables. The random process X_(t) denotes the amount of repair time 

already received by a failed component in repair at time t. We call 

X_(t) the elapsed repair time. The random processes Y_(t) and Z_(t) 

denote the elapsed non-automatic switchover time and the elapsed in-

terrupted time, respectively, at time t. We also introduce:

 α( ) ( )
( )

,                                       
1

f x
x

F x
a ≡

−
 (1)
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 β( )
( )
( )

,                                       
1

g y
y

G y
b ≡

−
 (2)

 γ( ) ( )
( )

.                                       
1

h z
z

H z
g ≡

−
 (3)

The function α(x) is the PDF for the repair time X on condition 

that X > x:

 α( ) { }P .                                      x dx x X x dx X xa = < < + >  (4)

Note that the function α( )xa  is called the hazard rate or the age-

specific failure rate in renewal theory. The functions β( )yb  and γ( )zg  

are the hazard rates of the random variables Y  and Z , respectively:

 β( ) { }P ,                                      y dy y Y y dy Y yb = < < + >  (5)

 γ( ) { }P .                                      z dz z Z z dz Z zg = < < + >  (6)

Throughout this paper, b*(s) is the Laplace transform of a func-

tion b(t).

3. Availability analysis

Let ( ) 0M t  and ( )K t  be the state of the N+1 components and the 

state of the repairer, respectively, at time t:

0 if there are 1 active and 2 failed components at time ,

1 if there are 1 active,1 standby, and 1 failed component at time ,

2 if there are active and 1 failed component at time ,

3 if there are active and 1standy component

( )

N t

N t

N t

N

M t =

−

−

at time .t






 ,

(7)

 

( )
0 if the repairer is idle at time ,                  

1 if the repairer is busy at time ,                

2 if the repairer is in failed state at time ,  

t

K t t

t




= 

 .

 (8)

Note that when ( ) 0M t = , the system is unavailable and the repair-

er, if available, is repairing one of the two failed components; when 

( ) 1M t = , the system is unavailable and the repairer, if available, is 

switching over non-automatically the standby component to active; 

when ( ) 2M t = , the system is available and the repairer, if available, 

is repairing the failed component; and when ( ) 3M t = , the system is 

available and the repairer is idle. Let us define

( ) ( ){ ( ) ( ) ( ) }0 , lim P 0, 2, , ,
t

P x z dxdz M t K t x X t x dx z Z t z dz− −
→∞

≡ = = < < + < < +

( ) ( ){ ( ) ( ) ( ) }1 , lim P 1, 2, , ,
t

P x z dxdz M t K t x Y t x dx z Z t z dz− −
→∞

≡ = = < < + < < +

( ) ( ){ ( ) ( ) ( ) }2 , lim P 2, 2, , ,
t

P x z dxdz M t K t x X t x dx z Z t z dz− −
→∞

≡ = = < < + < < +

 ( ) ( ) ( ) ( ){ }0 lim P 0, 1, ,                               
t

Q x dx M t K t x X t x dx−
→∞

≡ = = < < +
 

 ( ) ( ) ( ) ( ){ }1 lim P 1, 1, ,                               
t

Q x dx M t K t x Y t x dx−
→∞

≡ = = < < +  

 ( ) ( ) ( ) ( ){ }2 lim P 2, 1, ,                               
t

Q x dx M t K t x X t x dx−
→∞

≡ = = < < + . 

 
( ) ( ){ }3 lim P 3, 1 ,

t
Q M t K t

→∞
≡ = =

 
( )

0 0

, , 0,1,2,                                m mP P x z dxdz m
∞∞

≡ =∫ ∫

 ( )
0

, 0,1,2.                                 m mQ Q x dx m
∞

≡ =∫

Fig. 1. State transition diagram

We construct the following integro-differential equations govern-

ing the steady-state behavior of the model by using supplementary 

variables:

 
dP x z

dz
z P x z N P x z

0
0 2

,
, , ,������

( )
= − ( ) ( ) + ( )γ λ  (9)

 
dP x z

dz
z P x z

1
1

,
, ,�����

( )
= − ( ) ( )γ  (10)

 
dP x z

dz
N z P x z

2
2

,
, ,�����

( )
= − + ( )  ( )λ γ  (11)

dQ x

dx
x Q x N Q x z P x z dz

0
0 2

0

0

( )
= − + ( )  ( ) + ( ) + ( ) ( )

∞

∫δ α λ γ , ,�����  (12)

 
dQ x

dx
x Q x z P x z dz

1
1

0

1

( )
= − + ( )  ( ) + ( ) ( )

∞

∫δ β γ , ,����� (13)
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dQ x

dx
N x Q x z P x z dz

2
2

0

2

( )
= − + + ( )  ( ) + ( ) ( )

∞

∫λ δ α γ , ,�����    (14)

 0 3

0

2= − +( ) + ( ) ( )
∞

∫N Q x Q x dxλ µ α .����� (15)

We solve the above equations with boundary conditions:

 P x Q x mm m, , , , ,�����0 0 1 2( ) = ( ) =δ  (16)

 ( )0 0 0,                                     Q =  (17)

 Q N pQ1 30( ) = λ ,����� (18)

 Q N p Q x Q x dx x Q x dx2 3

0

0

0

10 1( ) = −( ) +  + ( ) ( ) + ( ) ( )
∞ ∞

∫ ∫λ µ α β .����� (19)

Solving the above integro-differential equations, we obtain

 P x z e H z Q xN z
2 2, ,( ) = ( ) ( )−δ λ  (20)

 P x z H z Q x1 1, ,�( ) = ( ) ( )δ  (21)

 
P x z H z Q x e H z Q xN z

0 0 21, .( ) = ( ) ( ) + −( ) ( ) ( )−δ δ λ

 (22)

Note that:

 H z H z( ) ≡ − ( )1 � (23)

for CDF ( )H z . Then, we get:

 

 Q x e F x Q
C xN

2 2 0( ) = ( ) ( )− λ ,  (24)

 Q x G x Q1 1 0( ) = ( ) ( ),� (25)

 Q x e F x Q
C xN

0 21 0( ) = −( ) ( ) ( )− λ ,  (26)

where F x F x( ) ≡ − ( )1  and:

 C N h NNλ λ δ δ λ≡ + − ( )*
.����� (27)

Thus, we obtain:

 Q
N

f C QN3 2

1
0=

+
( ) ( )

λ µ λ
*

,������ (28)

 Q
N p

N
f C QN1 20 0( ) =

+
( ) ( )λ

λ µ λ
*

.������ (29)

From (20)–(29), ( ),mP x z , ( )mQ x , 0,1,2m = , and 3Q  can be clearly 

expressed by ( )2 0Q . Now we need to find the expression of ( )2 0Q . 

 From (26), we obtain:

Q Q x dx e F x Q dx X F C Q
C x

N
N

0

0

0

0

2 21 0 0≡ ( ) = −( ) ( ) ( ) = ( ) − ( )





∞ ∞
−∫ ∫ λ

λE * (( ).�

(30)

From (25) and (29),

Q Q x dx G x Q dx1

0

1

0

1 0≡ ( ) = ( ) ( )
∞ ∞

∫ ∫ ������

   

= ( )
+

( ) ( ) = ( )
+

( ) ( )
∞

∫
0

2 20 0G x
N p

N
f C Q dx Y

N p

N
f C QN N

λ
λ µ

λ
λ µλ λ

* * .E

(31)

From (24),

 

Q Q x dx e F x Q dx F C Q
C x

N
N

2

0

2

0

2 20 0≡ ( ) = ( ) ( ) = ( ) ( )
∞ ∞

−∫ ∫ λ
λ

*
.������

   (32)

From (22), (30), and (32),

P P x z dxdz H z Q x e H z Q xN z
0

0 0

0

0 0

0 21≡ ( ) = ( ) ( ) + −( ) ( ) ( )
∞∞ ∞∞

−∫ ∫ ∫ ∫, δ δ λ





dxdz��

     

= ( ) ( ) + −( ) ( ) ( )
∞ ∞ ∞

−
∞

∫ ∫ ∫ ∫
0 0

0

0 0

21δ δ λH z dz Q x dx e H z dz Q x dxN z

     = ( ) + ( ) − ( )



δ δ λE EZ Q Z H N Q0 2

*
.����� (33)

Similarly, from (20), (21), (31), and (32), we obtain:

P H z Q x dxdz H z dz Q x dx Z Q1

0 0

1

0 0

1 1= ( ) ( ) = ( ) ( ) = ( )
∞∞ ∞ ∞

∫ ∫ ∫ ∫δ δ δE ,����� (34)

P e H z Q x dxdz H N QN z
2

0 0

2 2= ( ) ( ) = ( )
∞∞

−∫ ∫δ δ λλ *
.������ (35)

By normalization condition:

 ( )
2

3
0

1,                                       m m
m

P Q Q
=

+ + =∑  (36)

we obtain:

Q
N

f C E Z E X N E Y N pf CN N

2 0
1

( ) = +

( ) + + ( )  ( ) +( )+ ( ) ( )



λ µ

δ λ µ λλ λ
* *



,�����

(37)

from which mQ , 0,1,2,3m = , and mP , 0,1,2m = , are obtained. 

Then, the steady-state availability 1NAv +  can be obtained as:
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1 2 3 2NAv Q Q P+ = + +

=
( ) + +( ) ( ) + ( )





( ) + + ( )  ( )

f C N F C H N

f C E Z E X N

N N

N

* * *

*

λ λ

λ

λ µ δ λ

δ1 λλ µ λ λ+( ) + ( ) ( )
 E Y N pf CN

* ]
.�����

(38)

4. Numerical examples

For numerical examples, we consider three different models: 1 ac-

tive and 1 standby(1 1+ ); 2 active and 1 standby( 2 1+ ); and 3 active 

and 1 standby( 3 1+ ). As shown in Table 1, nine cases are provided 

for illustration purposes. We consider three different distributions: 

Exponential (M), Deterministic (D), and Weibull (W) with shape 

parameter 2 . We will compare the steady-state availability among 

three different redundancy models with five different triads of the 

repair time, the non-automatic switchover time, and the interrupted 

time distribution: MMM, DDD, DDW, WWD, and WWW, where the 

notation ABC represents that the repair time distribution is A, the non-

automatic switchover time distribution is B, and the interrupted time 

distribution is C. For example, MMM represents that the three random 

variables are all exponentially distributed and WWD represents that 

the repair time and the non-automatic switchover time follow a 

Weibull distribution with shape parameter 2  and the interrupted time 

is deterministic. Note that all parameters can be modified to reflect 

other situations.

Table 2 shows the effect of parameter λ on the steady-state 

availability for three different models with five different triads of the 

repair time, the non-automatic switchover time, and the interrupted 

time distribution. Under our numerical environments given in Case 

1, we find that:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >
.

Table 3 shows the effect of parameter δ on the steady-state 

availability for Case 2.

For the 1 1+  model:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if δ 0.6d ≤ ;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if 0.7 ≤ δ ≤ 1.0.

For the 2 1+  and 3 1+  models:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if δ ≤ 0.5;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if 0.6 ≤ δ ≤ 1.0.

Table 4 shows the effect of parameter ( )E Z  on the steady-state 

availability for Case 3. For the 1 1+  model:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if ( )1.0 E 1.5Z≤ ≤ ;

Table 1. Values of parameters

Case Parameters Variables

1 λ∈[0,1], μ=.2λ, δ=.5,   p=.1, E(X)=1, E(Y)=.5,   E(Z)=1 λ, μ

2 λ=.5, μ=.2λ,   δ∈[0,1], p=.1, E(X)=1, E(Y)=0.5, E(Z)=1 δ

3 λ=.5, μ=.2λ,   δ=.5,   p=.1,   E(X)=1, E(Y)=.5, E(Z)∈[1,5] E(Z)

4 λ=.2, μ=.2λ,   δ=.2,   p∈[0,1], E(X)=1, E(Y)=.5, E(Z)=.2 p

5 λ=.7, μ=.2λ,   δ=.7,   p∈[0,1], E(X)=1, E(Y)=.5, E(Z)=4 p

6 λ=.2, μ=.2λ,  δ=.2,   p=.1,   E(X)∈[1,5], E(Y)=.5, E(Z)=.2  E(X)

7 λ=.7, μ=.2λ,   δ=.7,   p=.1,   E(X)∈[1,5], E(Y)=.5, E(Z)=4 E(X)

8 λ=.2, μ=.2λ,   δ=.2,   p=.1,  E(X)=1, E(Y)∈[.1,1], E(Z)=.2 E(Y)

9 λ=.7, μ=.2λ,   δ=.7,   p=.1,   E(X)=1, E(Y)∈[.1,1], E(Z)=  4 E(Y)

Table 2. Steady state availability versus λ for Case 1

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .9788 .9399 .8930 .8440 .7958 .7501 .7075 .6681 .6320 .5989

DDD .9858 .9614 .9305 .8960 .8597 .8231 .7869 .7517 .7180 .6858

DDW .9851 .9592 .9264 .8900 .8519 .8137 .7762 .7400 .7055 .6727

WWD .9811 .9460 .9024 .8559 .8095 .7651 .7235 .6849 .6493 .6166

WWW .9804 .9436 .8981 .8495 .8013 .7553 .7124 .6728 .6365 .6033

2

+

1

MMM .9426 .8495 .7569 .6752 .6057 .5472 .4978 .4559 .4201 .3891

DDD .9628 .8992 .8272 .7560 .6898 .6300 .5769 .5299 .4885 .4520

DDW .9607 .8934 .8181 .7445 .6769 .6165 .5633 .5167 .4759 .4401

WWD .9482 .8605 .7705 .6901 .6213 .5630 .5135 .4712 .4347 .4031

WWW .9460 .8544 .7610 .6783 .6082 .5493 .4999 .4580 .4222 .3913

3

+

1

MMM .8989 .7594 .6415 .5495 .4780 .4218 .3767 .3400 .3095 .2840

DDD .9338 .8286 .7236 .6313 .5536 .4892 .4359 .3916 .3544 .3230

DDW .9299 .8196 .7114 .6178 .5402 .4766 .4244 .3813 .3454 .3151

WWD .9073 .7725 .6561 .5645 .4927 .4357 .3896 .3517 .3201 .2934

WWW .9033 .7631 .6436 .5509 .4793 .4232 .3782 .3416 .3112 .2856
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( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if ( )2.0 E 4.0Z≤ ≤ ;

( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if ( )4.5 E 5.0Z≤ ≤ .

For the 2 1+  model,

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if ( )E 1.0Z = ;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if ( )1.5 E 2.5Z≤ ≤ ;

( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if ( )3.0 E 5.0Z≤ ≤ .

For the 3 1+  model,

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if ( )E 1.0Z = ;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

Table 4. Steady state availability versus E(Z) for Case 3

E(Z) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1

+

1

MMM .7958 .7583 .7193 .6815 .6460 .6131 .5828 .5549 .5293

DDD .8597 .8290 .7937 .7569 .7204 .6851 .6515 .6199 .5905

DDW .8519 .8167 .7781 .7393 .7018 .6663 .6332 .6024 .5740

WWD .8095 .7719 .7324 .6930 .6551 .6191 .5855 .5543 .5255

WWW .8013 .7587 .7156 .6740 .6350 .5990 .5659 .5356 .5079

2

+

1

MMM .6057 .5590 .5152 .4760 .4415 .4112 .3845 .3609 .3399

DDD .6898 .6411 .5908 .5437 .5012 .4637 .4306 .4015 .3759

DDW .6769 .6253 .5750 .5292 .4887 .4531 .4218 .3942 .3698

WWD .6213 .5716 .5231 .4788 .4396 .4052 .3752 .3489 .3259

WWW .6082 .5555 .5069 .4640 .4267 .3943 .3661 .3415 .3198

3

+

1

MMM .4780 .4333 .3934 .3592 .3299 .3048 .2830 .2641 .2474

DDD .5536 .5009 .4509 .4073 .3703 .3389 .3122 .2893 .2695

DDW .5402 .4876 .4398 .3986 .3636 .3339 .3084 .2863 .2672

WWD .4927 .4428 .3970 .3577 .3245 .2965 .2728 .2526 .2351

WWW .4793 .4295 .3859 .3489 .3178 .2915 .2690 .2496 .2328

Table 3. Steady state availability versus δ for Case 2

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .8312 .8228 .8152 .8082 .8017 .7958 .7903 .7852 .7805 .7761 .7719

DDD .8829 .8774 .8724 .8678 .8636 .8597 .8562 .8529 .8498 .8470 .8443

DDW .8829 .8756 .8688 .8627 .8571 .8519 .8472 .8427 .8386 .8348 .8313

WWD .8652 .8519 .8398 .8288 .8187 .8095 .8012 .7936 .7866 .7803 .7746

WWW .8652 .8501 .8362 .8235 .8119 .8013 .7916 .7827 .7746 .7672 .7603

2

+

1

MMM .6462 .6360 .6270 .6191 .6120 .6057 .6000 .5948 .5901 .5858 .5818

DDD .7154 .7088 .7031 .6981 .6937 .6898 .6862 .6831 .6802 .6775 .6752

DDW .7154 .7055 .6969 .6894 .6828 .6769 .6716 .6668 .6625 .6585 .6549

WWD .6888 .6709 .6555 .6424 .6310 .6213 .6129 .6056 .5993 .5938 .5891

WWW .6888 .6676 .6494 .6337 .6200 .6082 .5979 .5889 .5810 .5741 .5680

3

+

1

MMM .5123 .5034 .4958 .4891 .4832 .4780 .4734 .4693 .4655 .4621 .4590

DDD .5717 .5669 .5628 .5593 .5563 .5536 .5513 .5492 .5473 .5456 .5440

DDW .5717 .5633 .5563 .5502 .5449 .5402 .5361 .5324 .5291 .5262 .5235

WWD .5479 .5324 .5196 .5090 .5001 .4927 .4864 .4812 .4767 .4730 .4698

WWW .5479 .5290 .5132 .4999 .4888 .4793 .4713 .4644 .4585 .4534 .4490
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if ( )1.5 E 2.0Z≤ ≤ ;

( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if ( )2.5 E 5.0Z≤ ≤ .

Table 5, 7, and 9 show the effect of p , ( )E X , and ( )E Y , re-

spectively, on the steady-state availability when λ, δ, and ( )E Z  are 

small: λ 0.2l = , δ 0.2d = , and ( )E 0.2Z = . Under our numerical environ-

ments given in Case 4, 6, and 8, we find that:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > > .

Table 6, 8, and 10 show theeffect of p , ( )E X , and ( )E Y
 
, 

respectively, on the steady-state availability when λ, δ, and ( )E Z  

are large: λ 0.7l = , δ 0.7d = , and ( )E 4Z = . Under our numerical 

environments given in Case 5, we find the followings:

For the 1 1+  model:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if 0.9p ≥ ;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if 0.3 0.8p≤ ≤ ;

Table 5. Steady state availability versus p for Case 4

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .9627 .9551 .9476 .9402 .9329 .9257 .9186 .9117 .9048 .8980 .8914

DDD .9788 .9710 .9634 .9559 .9485 .9413 .9341 .9271 .9201 .9133 .9065

DDW .9787 .9710 .9634 .9559 .9485 .9412 .9341 .9270 .9201 .9132 .9065

WWD .9729 .9652 .9576 .9502 .9429 .9356 .9285 .9215 .9146 .9078 .9011

WWW .9728 .9652 .9576 .9501 .9428 .9356 .9285 .9215 .9146 .9078 .9011

2

+

1

MMM .8916 .8804 .8696 .8589 .8486 .8385 .8286 .8189 .8095 .8003 .7913

DDD .9308 .9194 .9084 .8975 .8870 .8766 .8665 .8567 .8470 .8376 .8284

DDW .9307 .9193 .9082 .8974 .8868 .8765 .8664 .8565 .8469 .8375 .8283

WWD .9148 .9036 .8927 .8820 .8716 .8614 .8515 .8417 .8322 .8230 .8139

WWW .9146 .9034 .8925 .8818 .8714 .8613 .8513 .8416 .8321 .8228 .8138

3

+

1

MMM .8119 .7998 .7881 .7767 .7656 .7549 .7444 .7343 .7244 .7147 .7053

DDD .8681 .8560 .8443 .8328 .8217 .8109 .8004 .7901 .7801 .7703 .7608

DDW .8678 .8557 .8440 .8326 .8214 .8106 .8001 .7898 .7798 .7701 .7605

WWD .8431 .8312 .8196 .8084 .7974 .7868 .7764 .7663 .7565 .7469 .7375

WWW .8428 .8309 .8193 .8081 .7971 .7865 .7761 .7660 .7562 .7466 .7373

Table 6. Steady state availability versus p for Case 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .4501 .4409 .4322 .4237 .4156 .4078 .4003 .3931 .3861 .3794 .3729

DDD .5123 .5033 .4946 .4862 .4780 .4702 .4626 .4552 .4481 .4412 .4345

DDW .4954 .4867 .4783 .4702 .4623 .4547 .4474 .4403 .4334 .4267 .4202

WWD .4400 .4346 .4293 .4241 .4191 .4141 .4093 .4046 .4000 .3955 .3911

WWW .4224 .4172 .4121 .4071 .4023 .3975 .3929 .3884 .3840 .3796 .3754

2

+

1

MMM .2731 .2683 .2637 .2593 .2550 .2509 .2469 .2430 .2392 .2356 .2320

DDD .3021 .2989 .2958 .2927 .2897 .2867 .2838 .2810 .2782 .2755 .2728

DDW .2970 .2939 .2908 .2877 .2848 .2819 .2790 .2762 .2735 .2708 .2682

WWD .2582 .2559 .2537 .2515 .2493 .2472 .2452 .2431 .2411 .2391 .2372

WWW .2531 .2508 .2487 .2465 .2444 .2423 .2403 .2383 .2363 .2344 .2325

3

+

1

MMM .1938 .1910 .1883 .1857 .1832 .1807 .1782 .1759 .1736 .1714 .1692

DDD .2090 .2079 .2067 .2056 .2044 .2033 .2022 .2011 .2000 .1989 .1979

DDW .2073 .2061 .2049 .2038 .2027 .2016 .2005 .1994 .1983 .1972 .1962

WWD .1824 .1813 .1801 .1790 .1779 .1769 .1758 .1747 .1737 .1727 .1716

WWW .1806 .1795 .1784 .1773 .1762 .1751 .1741 .1730 .1720 .1710 .1700
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( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if 0.2p ≤ .

For the 2 1+  model:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if p =1.0;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if 0.7 ≤ p ≤ 0.9;

( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if p ≤ 0.6.

For the 3 + 1 model:

( ) ( ) ( ) ( ) ( )DDD DDW WWD WWW MMMAv Av Av Av Av> > > >

if p =1.0;

( ) ( ) ( ) ( ) ( )DDD DDW WWD MMM WWWAv Av Av Av Av> > > >

if 0.8 ≤ p ≤ 0.9;

( ) ( ) ( ) ( ) ( )DDD DDW MMM WWD WWWAv Av Av Av Av> > > >

if p ≤ 0.7.

Under our numerical environments given in Case 7 and 9, we find 

that:

Av(DDD)>Av(DDW)>Av(MMM)>Av(WWD)>Av(WWW).

Table 7. Steady state availability versus E(X) for Case 6

E(X) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1

+

1

MMM .9551 .9164 .8734 .8291 .7855 .7436 .7040 .6671 .6327

DDD .9710 .9562 .9417 .9266 .9108 .8942 .8767 .8584 .8393

DDW .9710 .9562 .9417 .9266 .9108 .8942 .8767 .8584 .8393

WWD .9652 .9339 .8972 .8577 .8172 .7770 .7380 .7007 .6654

WWW .9652 .9338 .8972 .8576 .8171 .7770 .7380 .7007 .6654

2

+

1

MMM .8804 .7957 .7156 .6445 .5830 .5302 .4849 .4458 .4120

DDD .9194 .8754 .8302 .7835 .7360 .6883 .6413 .5957 .5522

DDW .9193 .8752 .8301 .7834 .7359 .6882 .6412 .5956 .5521

WWD .9036 .8266 .7487 .6763 .6117 .5552 .5062 .4638 .4270

WWW .9034 .8264 .7486 .6762 .6116 .5551 .5061 .4637 .4270

3

+

1

MMM .7998 .6842 .5885 .5119 .4506 .4012 .3608 .3273 .2992

DDD .8560 .7786 .7027 .6300 .5623 .5011 .4468 .3996 .3589

DDW .8557 .7784 .7025 .6298 .5622 .5009 .4467 .3995 .3588

WWD .8312 .7174 .6175 .5353 .4687 .4148 .3709 .3346 .3044

WWW .8309 .7171 .6173 .5351 .4685 .4147 .3707 .3345 .3043

Table 8. Steady state availability versus E(X) for Case 7

E(X) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1

+

1

MMM .4409 .3223 .2531 .2081 .1765 .1531 .1352 .1210 .1095

DDD .5033 .3890 .3149 .2614 .2211 .1900 .1655 .1461 .1304

DDW .4867 .3775 .3059 .2541 .2149 .1846 .1608 .1418 .1266

WWD .4346 .2999 .2267 .1815 .1511 .1294 .1131 .1004 .0903

WWW .4172 .2876 .2172 .1738 .1447 .1239 .1082 .0961 .0864

2

+

1

MMM .2683 .1874 .1435 .1161 .0974 .0839 .0737 .0656 .0592

DDD .2989 .2127 .1621 .1297 .1076 .0919 .0802 .0711 .0639

DDW .2939 .2092 .1595 .1276 .1059 .0904 .0788 .0699 .0629

WWD .2559 .1727 .1297 .1037 .0864 .0740 .0647 .0575 .0517

WWW .2508 .1692 .1271 .1016 .0846 .0725 .0634 .0563 .0507

3

+

1

MMM .1910 .1311 .0995 .0801 .0670 .0576 .0505 .0449 .0405

DDD .2079 .1425 .1071 .0855 .0711 .0609 .0533 .0473 .0426

DDW .2061 .1413 .1062 .0848 .0705 .0604 .0528 .0469 .0422

WWD .1813 .1216 .0913 .0730 .0608 .0521 .0456 .0405 .0365

WWW .1795 .1204 .0904 .0723 .0602 .0516 .0451 .0401 .0361
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As expected, we also find in the tables that Av1+1>Av2+1>Av3+1 for 

all parameter values given in Case 1–9.

4. Conclusions

By using supplementary variables and integro-differential equa-

tions, we have obtained the analytical expression of the steady-state 

availability for series redundancy model with imperfect switchovers, 

generally distributed repair times, and interrupted repairs. Numerical 

examples have been provided for 1+1, 2+1, and 3+1 models.

The drawback of this paper is to focus only on computing steady-

state availability due to non-Markovian assumptions. Although the 

study of steady-state availability is important to understand the char-

acteristics of redundancy models, it is more interesting to have the 

system availability at any time than steady state availability. How-

ever, it is difficult to obtain a transient solution in explicit form for 

Table 9. Steady state availability versus E(Y) for Case 8

E(Y) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .9612 .9597 .9581 .9566 .9551 .9536 .9521 .9506 .9491 .9476

DDD .9772 .9757 .9741 .9726 .9710 .9695 .9680 .9665 .9649 .9634

DDW .9772 .9756 .9741 .9725 .9710 .9695 .9679 .9664 .9649 .9634

WWD .9713 .9698 .9683 .9667 .9652 .9637 .9622 .9607 .9591 .9576

WWW .9713 .9698 .9682 .9667 .9652 .9636 .9621 .9606 .9591 .9576

2

+

1

MMM .8894 .8871 .8849 .8827 .8804 .8783 .8761 .8739 .8717 .8696

DDD .9285 .9262 .9240 .9217 .9194 .9172 .9150 .9128 .9106 .9084

DDW .9284 .9261 .9238 .9215 .9193 .9171 .9148 .9126 .9104 .9082

WWD .9125 .9103 .9080 .9058 .9036 .9014 .8992 .8970 .8948 .8927

WWW .9124 .9101 .9079 .9057 .9034 .9012 .8990 .8968 .8947 .8925

3

+

1

MMM .8095 .8070 .8046 .8022 .7998 .7975 .7951 .7928 .7904 .7881

DDD .8656 .8632 .8608 .8584 .8560 .8536 .8513 .8489 .8466 .8443

DDW .8653 .8629 .8605 .8581 .8557 .8533 .8510 .8486 .8463 .8440

WWD .8407 .8383 .8359 .8335 .8312 .8288 .8265 .8242 .8219 .8196

WWW .8404 .8380 .8356 .8332 .8309 .8285 .8262 .8239 .8216 .8193

system availability of the N+1 model because of complex structure 

due to non-Markovian assumptions. The analysis considering tran-

sient availability may constitute a challenging research topic and 

draw research interests. Steady-state analysis for availability of N+M 

redundancy models with more than one standby component is also 

not an easy task. Further studies are necessary in order to obtain the 

transient availability of N+M redundancy models.
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Table 10. Steady state availability versus E(Y) for Case 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1

+

1

MMM .4482 .4464 .4445 .4427 .4409 .4391 .4374 .4356 .4339 .4322

DDD .5105 .5086 .5068 .5050 .5033 .5015 .4998 .4980 .4963 .4946

DDW .4937 .4919 .4902 .4884 .4867 .4850 .4833 .4816 .4800 .4783

WWD .4389 .4379 .4368 .4357 .4346 .4335 .4325 .4314 .4303 .4293

WWW .4214 .4203 .4193 .4182 .4172 .4162 .4151 .4141 .4131 .4121

2

+

1

MMM .2721 .2711 .2702 .2692 .2683 .2674 .2665 .2655 .2646 .2637

DDD .3015 .3008 .3002 .2995 .2989 .2983 .2976 .2970 .2964 .2958

DDW .2964 .2958 .2951 .2945 .2939 .2932 .2926 .2920 .2914 .2908

WWD .2577 .2573 .2568 .2564 .2559 .2555 .2550 .2546 .2541 .2537

WWW .2526 .2522 .2517 .2513 .2508 .2504 .2500 .2495 .2491 .2487

3

+

1

MMM .1933 .1927 .1921 .1916 .1910 .1905 .1900 .1894 .1889 .1883

DDD .2088 .2086 .2083 .2081 .2079 .2076 .2074 .2072 .2069 .2067

DDW .2070 .2068 .2066 .2063 .2061 .2059 .2056 .2054 .2052 .2049

WWD .1822 .1819 .1817 .1815 .1813 .1810 .1808 .1806 .1804 .1801

WWW .1804 .1802 .1799 .1797 .1795 .1793 .1790 .1788 .1786 .1784
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