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This paper proposes a hierarchical roadmap (HRM) and its construction process

to efficiently represent navigable areas in an indoor environment. HRM is adopted

to solve the path‐planning problems of mobile robots in indoor environments.

HRM has a multi‐layered graphical structure that enables it to abstract and cover

navigable areas using a smaller number of nodes and edges than a probabilistic

roadmap. During the incremental process of constructing HRM, information on

navigable areas is abstracted using a sonar gridmap when the mobile robot navi-

gates an unexplored area. The HRM‐based planner efficiently searches for paths

to answer queries by reducing the search space size using the multi‐layered graph-

ical structure. The benefits of the proposed HRM are experimentally verified in

real indoor environments.
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1 | INTRODUCTION

Path planning is essential for mobile robots to perform var-
ious tasks. A path planner uses navigable area information
about an environment to search for appropriate paths.
These areas can be encoded using either a grid‐ or graph‐
based representation. Grid‐based representation is com-
monly used for planning in a bounded two‐dimensional
(2D) indoor environment [1], and is useful for seeking safe
and efficient paths because the navigable areas can be regu-
larly divided and completely covered by rectangular grid
cells. Besides, the navigable areas can be easily updated
when a mobile robot acquires new sensor data. However,

the computational complexity of a path planner using a
grid‐based representation may become too high when it is
used in large environments or when the mobile robot has
limited computational power and time.

A graph‐based representation, such as a probabilistic
roadmap (PRM) or a rapidly exploring random tree (RRT), is
an alternative approach that requires less computation for a
path planner in large environments [2,3]. A PRM is a single‐
layered undirected graphical structure that abstracts naviga-
ble areas efficiently, making it practical for a PRM‐based
path planner to answer multiple queries in less time by reduc-
ing the size of the search space. One node in a PRM corre-
sponds to one unoccupied region of the environment, and
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one edge represents the connection between two adjacent
nodes. A mobile robot can navigate between two nodes with-
out colliding with obstacles if an edge is present between
these nodes. However, there are limitations regarding the use
of PRMs. When a mobile robot explores an unvisited area, a
PRM must be expanded or reconstructed to abstract the navi-
gable areas. Most PRM construction methods do not con-
sider this issue because PRMs are usually applied to search
for collision‐free paths in a bounded high‐dimensional space.
Although a generalized Voronoi graph (GVG) can be used to
construct a PRM incrementally, the GVG construction
method is mainly suited to corridor‐like environments [4].
Furthermore, a PRM cannot completely cover and evenly
divide the navigable areas in an environment because most
of the processes used to construct a PRM adopt random sam-
pling. During the construction process of a PRM, nodes in
unoccupied regions of the environment are generated
through random sampling, and this causes the PRM to have
unevenly distributed nodes. Therefore, it cannot cover the
navigable areas completely, and thus a PRM‐based planner
may fail to find an appropriate path or may result in finding
an inefficient path. Although such incomplete coverage can
be mitigated using multiple nodes, this inevitably increases
the computational complexity.

By extending our preliminary work [5], to overcome the
limitations of a PRM, in this paper, we propose a hierarchi-
cal roadmap (HRM) and its incremental construction pro-
cess using sonar sensors, which are widely used in indoor
or home‐service robots because of their low‐cost and rela-
tively accurate range readings.

Unlike PRM, HRM has a multi‐layered graphical structure.
Thus, it covers navigable areas more efficiently using a smal-
ler number of evenly distributed nodes. In addition, the con-
struction process of this method updates traversable regions
when a mobile robot explores previously unvisited zones.

An HRM consists of two layers, as shown in Figure 1.
The first layer is a region roadmap (RRM) that abstracts the
connectivity of the subregions. In an RRM, a subregion in
the environment is considered a region‐node (RN). The sec-
ond layer consists of a group of local roadmaps (LRMs). An
LRM abstracts navigable areas in the corresponding subre-
gions in an RRM. An LRM consists of three types of nodes:
hub‐nodes (HNs), which briefly abstract navigable areas in
the corresponding subregions, sub‐nodes (SNs) which almost
completely cover navigable areas in the corresponding subre-
gions, and junction nodes (JNs), which provide paths to the
LRMs in neighboring RNs.

An HRM is constructed using the following procedure:
(i) Sonar data are stacked in several consecutive steps, (ii)
A local gridmap is constructed using the stacked sonar
data, (iii) A subregion is extracted using the local gridmap
and added to an RRM as a new RN, and (iv) An LRM is
constructed in the extracted subregion.

We also propose an HRM‐based planner using a divide‐
and‐search (DNS) approach, where it seeks appropriate
paths to reach the given target locations efficiently by
reducing the search‐space size using a multi‐layered graphi-
cal structure of an HRM. A path planner using an HRM
searches for an appropriate path using the following proce-
dure: (i) A global topological path is sought based on an
RRM, (ii) Local metric paths are planned using the LRMs
in the subregions that occur on the topological path, and
(iii) A global metric local path is constructed by connecting
local metric paths.

In a mobile robot path planner, an HRM has the follow-
ing advantages over a PRM:

• In the incremental construction process of an HRM, the
navigable areas are encoded using a sonar gridmap
when a mobile robot navigates unexplored areas.

• An HRM uses a multi-layered graphical structure to rep-
resent the navigable areas efficiently.

• The computational complexity of a path planner is
reduced owing to the smaller search-space size when
using a multi-layered graphical structure.
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FIGURE 1 Region roadmap abstracts the connectivity of
subregions in the environment. Each subregion is represented as a
region‐node in the region roadmap. Local roadmap represents
navigable areas in the corresponding subregion. Hub‐nodes briefly
abstract navigable areas, sub‐nodes almost completely cover navigable
areas in the corresponding subregion, and junction‐nodes provide
paths to local roadmaps in the neighboring region‐nodes
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• An HRM is suitable for human-robot interactions
because a multi-layered graphical representation is simi-
lar to the environmental perception of human beings.

• An incremental HRM construction process can be used
with a wide variety of range sensors.

The remainder of this paper is organized as follows.
Related subregion‐extraction methods and PRM‐based
planning methods are explained in Section 2. Then, the
RRM construction process is showed in Section 3, after
which the construction process of an LRM is presented in
Section 4. Section 5 describes a path planner using an
HRM, and the experimental results are presented in Sec-
tion 6. Section 7 concludes the paper.

2 | RELATED WORKS

2.1 | Subregion extraction

HRMs are constructed based on the extraction of subre-
gions in an environment. These extracted subregions are
then represented as a graphical model in an RRM. Several
researchers have developed different methods of subregion
extraction.

Voronoi diagrams are used to divide gridmaps into sev-
eral subregions, which have been used to construct a topo-
logical graph for efficient planning [6]. Topological
navigation in corridor environments can be achieved using
the eigenvalue ratio of sonar sensor data to detect both
node and edge regions [7]. Contour‐based segmentation
has been used to incrementally divide gridmaps [8]. Spec-
tral clustering and cluster growing were applied to extract
node regions from gridmaps by representing navigable
areas of the environment as a graphical model [9,10].
Machine learning‐based algorithms can be applied to iden-
tify the door, room, and corridor regions [11,12]. Although
the above‐mentioned methods can extract subregions in
various environments, most of them are focused on topo-
logical modeling or localization and are not appropriate for
solving path‐planning problems. In addition, some of them
are suitable only in corridor environments, where a few
distinct locations, such as crossing points, are used as
nodes.

2.2 | PRM‐based planner

The navigable areas in each extracted subregion can be
abstracted using the concept of a PRM to construct the
multi‐layered graphical structure of an HRM.

A PRM‐based path planner solves the global path‐plan-
ning problem. However, random sampling is used to con-
struct a PRM, and thus its coverage becomes incomplete

when a small number of nodes are used. Thus, it may fail
to find an appropriate path.

Several methods have been proposed to improve the cov-
erage of a PRM by replacing or improving the random sam-
pling. Nonuniform sampling was proposed to classify
unoccupied regions in the environment into several subre-
gions and to assign weights to the classified subregions to
increase the number of nodes generated in narrow subregions
[13]. A conditional variational autoencoder was used to learn
a nonuniform sampling distribution strategy from demonstra-
tions [14]. The distribution of nodes can be improved using a
quasi‐random number generator [15]. Incremental roadmap
generation and adaptive sampling were proposed to deter-
mine the appropriate number and arrangement of nodes
[16,17]. As a different approach, post‐processing methods
have been proposed to improve the coverage of a PRM. Use-
ful cycles can be added to improve the coverage of a PRM
by adding nodes and reconnecting them to their neighbor
nodes [18]. Additional local PRMs are constructed to con-
nect narrow passages [19].

Although these methods may improve the coverage,
nodes in the roadmap are still irregularly distributed. More-
over, they do not consider the exploration of unknown
areas; most of the methods are mainly used to solve path‐
planning problems in bounded environments.

3 | REGION ROADMAP
CONSTRUCTION

The first layer of an HRM is an RRM, which abstracts the
connectivity of subregions in the environment, as shown in
Figure 1. Navigable areas of the entire environment are
divided into several subregions, which are used to construct
the RRM. To do this, in the incremental construction pro-
cess of the HRM, subregions are extracted from the local
gridmap, as indicated in Figure 2A, which is generated by
the accumulation of sonar data in several consecutive steps,
and adjacent subregions are then connected to construct the
RRM as a graphical model [20]. The extraction of subre-
gions is achieved by first obtaining a reliable unoccupied
region (RUR) using a local gridmap, and then using a nor-
malized graph cut to extract new subregions.

3.1 | Reliable unoccupied region

3.1.1 | Confident grid‐cell extraction
As shown in Figure 2A, the local gridmap contains noisy
data owing to the multipath effect of sonar sensors, which
need to be suppressed in order to acquire navigable areas
in a reliable manner. To do this, a sonar sensor
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measurement is modeled to evaluate the grid confidence of
each occupied grid cell [5,20]:

Confði; jÞ ¼ ∑
s∈ Soccði;jÞ

Psðr; θÞ; (1)

where s indicates a sensor measurement, Socc(i, j) is a set of
sensor measurements that determine whether grid cell (i,j) is
occupied, and Ps is the sound pressure of a sonar sensor
measurement [21]. The grid confidence assesses the relia-
bility of each occupied grid cell, as shown in Figure 2B.
Grid cells whose confidence values exceed the average are
considered confident grid cells.

3.1.2 | Quadtree decomposition

A quadtree decomposition is applied to extract navigable
areas in confident grid cells [22]. A quadtree decomposi-
tion recursively divides each square into four smaller
squares until every square contains only empty confident
grid cells. Empty confident grid cells in the local gridmap
can be represented using a set of decomposed squares
(DSs) of various sizes after applying a quadtree decomposi-
tion, as shown in Figure 2C.

3.1.3 | RUR Extraction

The RUR of a local gridmap is extracted to represent navi-
gable areas using the confident grid cells and DSs. The
DSs that satisfy the following condition are considered the
RUR:

Sqi ∩E 6¼ ;; (2)

where Sqi is one of the DSs, and E is a set of empty grid
cells within the confident contour, which is defined by con-
necting the confident grid cells, as shown in Figure 2D.

3.2 | Subregion extraction

3.2.1 | Normalized graph cut

A normalized graph cut is used to divide an RUR tentatively
into two subregions [23]. The RUR can be represented as a
graphical model using the results of the quadtree decomposi-
tion. Each DS in the RUR is regarded as a node, and the
edges are then defined according to the connectivity of the
DSs. The weight value for each edge is set to the number of
empty grid cells between adjacent DSs. Applying a normal-
ized graph cut to the RUR divides a reliable region into two
tentative subregions (Figure 2E). A normalized graph cut
splits the RUR into two subgraphs to optimally minimize the
inter similarity between them (3) as follows:

Ncut ¼
∑i∈C1;j∈C2

wij

∑i∈C1;j∈ ðC1∪C2Þwij
þ ∑i∈C1;j∈C2

wij

∑i∈C2;j∈ ðC1∪C2Þwij
; (3)

where C1 and C2 are clusters, and wij is a weight value
between node i and node j.

3.2.2 | New subregion extraction

Using the tentative subregions divided by the normalized
graph cut, convexity measures are computed to determine
whether the RUR can be considered a single subregion, or
whether it can be divided into two subregions. The convexities
are calculated as shown in (4) and (5), respectively [5, 20]:

C1 ¼ nðo∈Conv(RUR)Þ
∑
n

i¼1
Sqi

; (4)

where o is an occupied confident grid cell, and Conv(RUR)
is a convex hull of the RUR.

C1 ¼ nðo∈ConvðCl1ÞÞ þ nðo∈ConvðCl2ÞÞ
∑
n

i¼1
Sqi

; (5)

where Cl1 and Cl2 are divided tentative subregions. The above
convexity measures are defined as the ratio of the number of
occupied confident grid cells to the total number of confident
grid cells in each convex hull. RURs with a large convexity
are more concave than those with a small convexity.

A new subregion is extracted when the following condi-
tions are satisfied [5,20]:

C1 > ct & C2 <
C1

2
; (6)

where ct is a threshold value; otherwise, the robot contin-
ues to accumulate sonar data to generate a local gridmap.

The extraction of new subregions, which is shown in Fig-
ure 3, proceeds as follows. If the tentative subregions do not
satisfy the extraction conditions in (6), the robot continues to

(A) (B) (C)

(D) (E)

FIGURE 2 (A) Local gridmap, (B) confident grid cells (green),
(C) decomposed squares (blue), (D) confident contour (green), and
(E) tentative clusters (blue and green cells)
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accumulate sonar data to generate the local gridmap, as shown
in Figure 3). A new subregion is extracted when the extraction
conditions are satisfied, and the new subregion is then added
to the RRM as a new RN, as shown in Figure 3B.

4 | LOCAL ROADMAP
CONSTRUCTION

An LRM is constructed in each RN of an RRM, and is
composed of three types of nodes: HNs, SNs, and JNs
(Figure 1).

Hub‐nodes briefly represent navigable areas in the cor-
responding RN. SNs cover navigable areas almost com-
pletely, and are connected with the nearest HNs to
constitute a hub‐and‐spoke topology, and JNs provide paths
to neighboring RNs in the RRM. An LRM is constructed
using the following procedure: (i) generate and rearrange
nodes to cover navigable areas in the corresponding RN,
(ii) classify the nodes into HNs and SNs, (iii) connect HNs
and SNs to construct hub‐and‐spoke topologies, and (iv)
add JNs to connect neighboring RNs.

4.1 | Node generation

The first step in the construction of an LRM in an RN is
to generate nodes to cover navigable areas in the RN. We
initially used the information of an RUR to generate nodes
and then rearranged the positions of the nodes to increase
the uniformity of their distribution. The nodes are initially
generated using the DSs in RUR, and the positions of these
nodes are set as centroids of the DSs.

Centroidal Voronoi tessellation (CVT) is used to rearrange
the generated nodes in order to improve their distribution [24].
CVT is a particular type of general Voronoi tessellation
(GVT). A Voronoi region in GVT is defined as follows [5]:

Vi ¼ fx∈ΩC
occ : Dðx; niÞ � Dðx; njÞ; i 6¼ jg; (7)

where ni is the Voronoi node of Vi, nj is another Voronoi
node not included in vj, D(x, ni) is the distance between x
and ni, and Ωocc is the occupied region in the environment.
CVT is defined only when every node satisfies the follow-
ing equation [5]:

ni ¼
R
Vi
xdxR

Vi
dx

: (8)

General Voronoi tessellation is converted into CVT by
iteratively updating the positions of the nodes. The position
of a node is updated in each iteration using the following
equation [5,25]:

n�i ¼
ðð1� αÞ � ji þ ð1� βÞÞ

ji þ 1
� ni þ ðα� ji þ βÞ

ji þ 1
� �wi; (9)

where n�i is the updated position of ni, ji is the number of
iterations, α and β are damping coefficients, and �w is the
centroid of a group of nearest neighbors of ni, namely,
W(ni), which is defined as follows [5]:

WðniÞ ¼ fy∈Y:Dðy; niÞ � Dðy; njÞ; i 6¼ jg; (10)

where Y is a set of random samples, and is expressed as
follows:

Y ¼ fyqk¼1 ∈Ωc
occg: (11)

These random samples are used to estimate the Voronoi cen-
ter of each node without calculating the area of the Voronoi
region. Ideally, the nodes remain stationary after several iter-
ations. However, the movements of the nodes do not stop
because of the inaccurate estimation of the Voronoi centroid
using the unevenly distributed random samples.

To mitigate this problem, Halton sampling was adapted to
generate better evenly distributed random samples [26, 27]:

yk ¼ ½Sr � Φp1ðkÞ; Sc � Φp2ðkÞ�T ; (12)

where sr and sc are the row and column sizes of the local
gridmap of the RN, respectively, and Φp(k) is a function to
determine a random number, which is expressed as fol-
lows:

ΦpðkÞ ¼ ∑
r

i¼0

ai
piþ1 ; (13)

where p is a prime number, and k is a nonnegative integer
that can be expanded using the prime base p, and is
expressed as follows:

k ¼ ∑
r

i¼0
a0 � pi: (14)

The initially generated nodes are iteratively moved until
their positions are converged [5]. The initial position is set

TAT

(B)(A)

FIGURE 3 Example of incremental subregion extraction for
region roadmap construction. (A) If the tentative subregions (blue and
green cells in green boxes) do not satisfy the extraction conditions in
(6), the robot continues to accumulate sonar data. (B) New subregion is
extracted when the extraction conditions are satisfied. This subregion is
added to the RRM as a new node (red cells in the red box)
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using the DSs in the RUR, as shown in Figure 4A. The
nodes are then rearranged, as shown in Figure 4B. The
rearranged nodes almost completely cover and regularly
divide the navigable areas in an RN. The mean distance
updates of the nodes in each iteration using the random
samples generated by pseudorandom and Halton sampling
are shown in Figure 5. The nodes updated using Halton
sampling converged smoothly, as opposed to the nodes
using the pseudorandom method, which continued to move
even after numerous iterations.

4.2 | Node classification

Rearranged nodes are classified into HNs and SNs, and are
connected to construct hub‐and‐spoke topologies.

To classify these rearranged nodes, affinity propagation
clustering (APC) [28] was applied to group them into sev-
eral subsets and identify the representatives of those sub-
sets. The representative of each subset is set as its HN, and
the other nodes are considered SNs. The APC identifies the
HNs and SNs by measuring the similarities between the
rearranged nodes. Each rearranged node exchanges mes-
sages with other rearranged nodes recursively until the
HNs and SNs are identified.

In each iteration, a rearranged node exchanges two
types of messages with its counterparts; each node sends a
responsibility message to every other node individually,
which responds with an availability message. A responsi-
bility message r(ni, ni) is sent from a node ni to a neighbor-
ing node nk, and is used to measure whether ni can be a
representative for nk, which is expressed as follows [28]:

rðni; nkÞ ¼ sðni; nkÞ �maxðfaðni; n0kÞ þ sðni; n0kÞgÞ;
ni; n0k ∈NðniÞ; n0k 6¼ nk;

(15)

where s(ni, nk) is a similarity between ni and nk, and N(ni)
represents ni's neighboring nodes. This similarity is defined
as follows [28]:

sðni; nkÞ ¼ �jni � nkj2: (16)

An availability message a(nk, ni) is sent from a neighboring
node nk to a node ni, and is a value that is used to measure
whether ki can be a member of a subset represented by nk
[28]:

aðni; nkÞ ¼ min
�
0; rðnk; nkÞ þ ∑

n0i∉ðni;nkÞ
max 0; rðn0i; nkÞ

� ��
;

(17)

where r(nk, nk) is a self‐availability message, and is
expressed as follows [28]:

aðni; nkÞ ¼ ∑
n0i 6¼nk

max 0; rðn0i; nkÞ
� �

: (18)

The responsibility and availability messages are exchanged
to identify representative nodes and their subsets among all
rearranged nodes. After classifying the HNs, SNs are con-
nected with their HN to make a hub‐and‐spoke topology,
as shown in Figure 6.

4.3 | Junction node

After constructing the hub‐and‐spoke topology, JNs are
added to provide passages to the neighboring RNs. The
location of a JN is set on the boundary between two subre-
gions, as shown in Figure 6.

5 | HIERARCHICAL PATH
PLANNING

5.1 | Divide‐and‐Search Approach

A PRM‐based path planner uses various graph‐search algo-
rithms to find a path for a given query. When the PRM

(B)(A)

FIGURE 4 Example of a node rearrangement: (A) 17 initial
nodes are generated in the extracted RN and (B) Updated nodes after
20 iterations. Blue and red dots represent the initial and updated
nodes, respectively, and the green dots represent random samples
generated using Halton sampling
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FIGURE 5 Halton sampling generates unbiased random samples
to update the positions of initial nodes. Blue and red lines show the
mean distance updates using pseudorandom and Halton samplings,
respectively, over various iterations
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has a large number of nodes and edges, the computational
complexity of finding the minimum‐cost path increases
because this complexity depends on the number of nodes
and edges considered in the PRM. If the PRM has a large
number of nodes and edges, or if the computing power of
a mobile robot is limited, then queries may not be
answered promptly owing to the high computational com-
plexity.

An HRM‐based planner can seek a path for a given
query with less computational complexity than a PRM‐
based planner by using the multi‐layered graphical structure
of HRM. The multi‐layered structure helps to reduce the
number of nodes and edges that are touched by a graph‐
search algorithm using a DNS approach. This approach
seeks a global topological route using an RRM, and local
metric paths are then sought using LRMs.

The RNs, which include the initial and target loca-
tions, are set as the initial and target RNs, respectively.

A global topological route from the initial RN to the tar-
get RN, as shown in Figure 7A, is sought based on the
RRM.

After finding the global topological path, local metric
paths in the RNs on the topological route are sought in the
LRMs. To search for the local metric paths, local initial
and target locations are set in each RN. In the initial RN,
as shown in Figure 7B, the JN connected to the next RN
on the global topological route is set as the local target
location. In the target RN, the JN connected to the previous
RN is set as the local initial location, as shown in Fig-
ure 7D. In the intermediate RNs on the global topological
route, the JNs connected to the previous and next RNs on
the global topological route are set as the local initial loca-
tion and the local target location, respectively. Unlike the
initial and target RNs, only HNs are considered to search
for the metric paths in the intermediate RNs, as shown in
Figure 7C.

5.2 | Post‐processing
Although an HRM‐based planner efficiently searches for
an appropriate path, it has redundant sections that
increase the total path length, and has sharp curves that
may cause unstable motion or slippage [29]. To
improve the quality of the path‐planning result, iterative
path‐pruning and path‐smoothing techniques are applied.
The iterative path‐pruning [30] approach eliminates
redundant sections by searching for shortcuts based on
the path‐planning result. This method randomly selects
two waypoints on the planned path to iteratively search
for shortcuts; then, if it is possible to generate between
two selected waypoints a shortcut that does not cause a
collision with obstacles, it removes all waypoints
between the two selected waypoints. continuous cubic
Bézier curve (G1CBC) path smoothing was adopted to
eliminate abrupt directional changes or slippage [31].

6 | EXPERIMENTAL RESULTS

We tested our proposed HRM construction and path‐plan-
ning method using a self‐acquired indoor environment data-
set, as shown in Figure 8. The size of the environment was
11.4 m × 8.4 m. In addition, the gridmap resolution was
5 cm × 5 cm. The dataset was acquired using a Pioneer
3DX robot with 12 sonar sensors.

6.1 | HRM construction

An HRM represents the navigable areas incrementally
when a mobile robot navigates unknown areas using sonar
gridmaps [32].

FIGURE 6 LRM construction in an RN. The large blue dots
represent HNs, the small blue dots represent SNs, the red dots
represent JNs, and the green lines represent edges

(A) 

(C) (D)(B)

A B C

Topological route 

FIGURE 7 HRM‐based divide‐and‐search approach: (A) global
topological route from RN A to RN C (the black arrows represent the
global topological route), (B) local metric path in the initial RN (the
yellow star is the initial location), (C) local metric path in RN B, and
(D) local metric path in the target RN (the yellow star is a target
location, and the black lines represent local metric paths)
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The RRM was constructed using incremental topologi-
cal modeling, as shown in Figure 9. The RURs were suc-
cessfully obtained by removing noisy sonar data, as shown

in Figures 9A,D. The environment was segmented into 10
subregions: three rooms were extracted as three different
subregions, and the living room was extracted into several
subregions (because the sofa and table were located in the
center of the living room).

The extracted subregions were encoded in RRM, as
shown in Figures 9E–H, in which each extracted subregion
was set as an RN. Tentative subregions are represented by
green circles in these RRMs, and do not satisfy the extrac-
tion conditions in (6). Edges in these RRMs represent the
connectivity of adjacent RNs.

For each RN of every RRM, an LRM was constructed
to cover navigable areas, as shown in Figures 10A–D. The
LRM abstracted navigable areas very efficiently because
the connectivity of navigable areas in each RN was repre-
sented by a sparse graphical structure. Nodes of these
LRMs were almost evenly distributed in the navigable
areas, and they helped to improve the coverage of the

8.
7 

m
 

11.4 m

FIGURE 8 Home environment

(A) (B) (C) (D)

(G) (H)(E) (F)
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EGTTT C 

F D H F D
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J 

C
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FIGURE 9 Region roadmap construction: (A) sequence 23, (B) sequence 49, (C) sequence 69, and (D) sequence 122 autonomous subregion
extraction (each subregion is shown in a different color, and the blue and green cells are tentative subregions). A single sequence consists of 30
consecutive odometry and sonar readings. (E) sequence 23, (F) sequence 49, (G) sequence 69, (H) sequence 122 constructed RRMs (the greed
and grey circles represent tentative and added RNs, respectively)

(A) (B) (C) (D)

FIGURE 10 Local roadmap construction: (A) sequence 23, (B) sequence 49, (C) sequence 69, and (D) sequence 122 local roadmaps are
constructed in the corresponding subregions, as shown in Figure 9. The blue dots and green dots represent HNs and SNs, respectively, and the
red dots represent JNs. The positions of the JNs are set on the boundary between two adjacent RNs
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HRM and increase the chance of finding efficient paths to
solve arbitrary queries. JNs are equivalent to the edges of
the RRM and are used to connect two LRMs of adjacent
RNs.

The incremental process of constructing the HRM
responds to changes in a sonar gridmap when a mobile robot
revisits the previously extracted subregion. If the sonar
gridmap of the revisited subregion changes, the LRM of the
corresponding RN is reconstructed. The LRM in RN A, as
shown in Figure 10A, was reconstructed, as indicated in
Figure 10D, when the mobile robot revisited RN A because
the sonar gridmap of the subregion had changed. However,
the RRM did not change as the RN A was already encoded
to it previously. Hence, the topological relationship between
the RN A and its neighboring RNs remained intact. The
total number of nodes in the HRM was 208.

The construction results of the HRM were compared
with those of the PRM, which has a single‐layered graphi-
cal structure, to verify whether HRM covered and evenly
divided most of the navigable areas in an environment.
PRM takes the number of nodes as a hyperparameter,
whereas HRM optimizes it automatically. In our experi-
ments, for PRM, this number was directly taken from the
output of HRM; hence, for all of our results, the coverage
and the regularity of an environment are obtained in both
methods using the same number of nodes.

The coverage C of the PRM and HRM was calculated
as follows:

C ¼
∑k

i¼1

R
VisVðniÞ xdxR

ΩC
occ
xdx

; (19)

where VisV is the visible region [33] of each node, which
is the area that can be reached from the node without
encountering obstacles, and is calculated as follows:

VisVðniÞ ¼ fx∈VðniÞ∩VisðniÞg: (20)

HRM almost completely (99.6%) covered navigable
areas in the environment, whereas PRM covered 98.0%, as
shown in Table 1.

TABLE 1 Results of map construction using a single‐layered
PRM and an HRM method (average of 100 runs)

Statistic Coverage (%) Regularity

PRM 98.0 60.1

HRM 99.6 8.2
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(B) (C)

(E) (F)
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FIGURE 11 Experimental results: (A,D) apartment and guesthouse environments, (B,E) region roadmaps, and (C,F) local roadmaps
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The distributions of nodes in HRM and PRM are very
different. To measure these distributions, the regularity χ in
a d‐dimensional space was measured [34].

χ ¼ max
i¼1;...;k

χðniÞ
� �

� 1; χðniÞ ¼
ffiffiffiffiffi
dh

p ðniÞ
γðniÞ ; (21)

where

hðniÞ ¼ max
x∈VisV

ðniÞDðx; niÞ (22)

is the point distribution norm, and

γðniÞ ¼ min
ni 6¼nj

Dðni; njÞ (23)

is the point covariance. The regularity decreases when the
nodes are evenly distributed and increase otherwise. It
should be noted that the regularity of the HRM was much
smaller than that of the PRM, as shown in Table 1, which
verifies that HRM was much more efficient in distributing
the nodes evenly.

The experimental results in two different indoor environ-
ments also show that the incremental HRM construction pro-
cess appropriately abstracted the navigable areas, as shown
in Figures 11. The process yielded 142 and 101 nodes for
apartment and guesthouse environments, respectively.

6.2 | Path planning the hierarchical roadmap

An HRM‐based planner uses the DNS approach to seek an
appropriate path for given initial and target locations, as
shown in Figure 12A.

Region‐nodes H and B were set as initial and target
RNs, respectively, to search for a global topological path.
The topological path was searched in the order of
H→I→G→A→B, as shown in Figure 12B, according to the
approximated edge costs of the RRM.

Local metric paths were sought in the RNs falling on the
global topological path. Within the initial and target RNs,
LRMs were used to seek the local metric paths. Meanwhile,
for the other RNs, only the HNs were used because the local
metric paths in these RNs have only a small effect on the
total path length. SNs were not considered for these computa-
tions. The local metric paths that were found were connected
to make the global metric path. To remove redundancy and
sharp turns in the global metric path, iterative path pruning
and G1CBS path‐smoothing techniques were applied, as in
Figure 12C.

Benefits of the DNS approach using the multi‐layered
graphical structure of HRM were verified by comparing it
to a single‐layered PRM with the same number of nodes,
as shown in Figure 12D.

Figures 13 and 14 also show path planning results using
both planners in the apartment and guesthouse environments.

Start (100, 220) 

Goal (280, 90) 

H 

H 

J 

G

A B

F

E C

D

(B)(A)

(D)(C)

FIGURE 12 Planning result of the example query: (A) initial
(yellow star, upper left) and target (yellow star, lower right) locations,
(B) global topological path (H is the initial RN. I, G, and A are
intervening RNs. B is the destination RN.), (C) global metric path,
and (D) global metric path sought based on the single‐layered PRM

(B)(A)

FIGURE 13 Planning results in the apartment environment: (A)
HRMbased planner, and (B) PRM‐based planner. Total number in the
PRM is the same as that in the HRM: 142

FIGURE 14 Planning results the guesthouse environment : (A)
HRM-based planner and (B) PRM-based planner. Total number in the
PRM is the same as that in the HRM: 101
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The query times, as shown in Table 2, for the HRM
and single‐layered PRM were recorded to measure the
computational complexity. Dijkstra's graph‐search algo-
rithm was used on top of the HRM and PRM to search for
an appropriate path using one example query. The overhead
of the PRM‐based planner involved connecting the given ini-
tial and target locations to the PRM. However, to search for
an appropriate path using an HRM, local initial and target
locations must first be set, after which they are then con-
nected to the corresponding LRMs. Notwithstanding its
higher number of operations, an HRM‐based planner requires
a similar amount of time as does a PRM‐based planner
because the HRM‐based planner considers fewer nodes and
edges to connect the initial and target locations. Post‐proces-
sing times of an HRM‐based planner are similar to those of
a PRM‐based planner. The graph‐searching time of an
HRM‐based planner is much shorter because of the use of
the DNS approach. Nodes and edges of the LRMs, which
are not included in the topological path, are also not touched
by the graph‐search algorithm. This exclusion reduces the
computational complexity of the HRM‐based planner, com-
pared with the PRM‐based planner, which touches all nodes
and edges between the initial and target locations.

Figure 15 shows total query times of the HRM‐ and
PRM‐based planners in home, apartment, and guesthouse
environments. In each environment, 10 different queries
were used to measure the query times. It should be noted that
the query times of the HRM‐based planner did not increase
much, even after the number of nodes was increased with the
increase in size or structural complexity of an environment.
However, the query times of the PRM‐based planner
increased with the expansion in the environment. The stan-
dard deviation of the total query times of the PRM‐based
planner is much higher than that of an HRM‐based planner.
The coverage and distribution of nodes are different each
time a PRM is constructed, especially when a limited number
of nodes are used, whereas the HRM does not change much
for any number of reconstructions.

As shown in Table 3, the success rates and planning
times for 10 queries in each environment were measured to
compare the robustness of the HRM‐ and PRM‐based plan-
ners. The success rate is defined as the number of times
that a path planner successfully retrieved results to solve
given queries. The HRM‐based planner searched for

appropriate paths more robustly than the PRM‐based plan-
ner because of its better coverage and regularity.

The total path lengths that resulted from the HRM‐ and
PRM‐based planners were also measured in the three envi-
ronments, as shown in Figure 16. The total path lengths
output by the HRM‐based planner were slightly longer than

TABLE 2 Query times (ms) of the example query shown in
Figure 14 using a single‐layered PRM and HRM (average of 100
runs)

Overhead Search Postprocess Total

PRM 0.57 75.21 3.14 78.91

HRM 1.09 8.68 3.51 13.28

Note. The total number in the PRM is the same as that in the HRM: 208.
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FIGURE 15 Query time (ms) for 10 queries using a single‐
layered PRM and an HRM (average of 100 runs): (A) HOME
environment (208 nodes), (B) apartment environment (142 nodes),
and (C) guesthouse environment (101 nodes)

TABLE 3 Success rates (%) for 10 queries using a single‐layered
PRM and HRM (average of 100 runs for each query)

Environment Home Apartment Guesthouse

Number of nodes 208 142 101

PRM 89.8 91.4 92.6

HRM 100.0 100.0 100.0
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those of the PRM‐based planner because the DNS
approach in these planners only considers HNs in RNs on
global topological routes.

In summary, our experimental results verify that the
HRM efficiently abstracts the navigable areas. In addition,
the HRM‐based planner efficiently searches for appropriate
paths for the given queries using a multi‐layered graphical
structure and the DNS approach to reduce the size of the
search space.

7 | CONCLUSIONS

This paper proposed an HRM and its incremental construc-
tion process. The proposed HRM efficiently represents nav-
igable areas using a multi‐layered graphical structure and
comprises an RRM and a set of LRMs. The RRM abstracts
the connectivity of subregions in the environment, whereas
LRMs represent navigable areas within the corresponding

subregions. The construction process incrementally repre-
sents the navigable areas when a mobile robot visits
unknown areas by autonomously extracting new subregions
using sonar data.

The HRM‐based planner using the DNS approach can
seek appropriate paths to rapidly solve arbitrary queries.
The DNS approach reduces the size of the search space
using the multi‐layered graphical structure of an HRM.

The advantages of the HRM were experimentally veri-
fied in real environments. Compared to a single‐layered
PRM, an HRM covered nearly all navigable areas in the
indoor environments, and they were divided evenly. More-
over, a method for constructing the HRM can be used with
a wide variety of range sensors. In addition, we developed
a method for constructing an HRM for sonar sensors; our
proposed HRM can also be applied to any sensor that can
be used to build a gridmap, such as a laser rangefinder.
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