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This paper deals with the sampled-data synchronization problem for complex dynamical networks (CDNs) with time-varying
coupling delay. To get improved results, two-sided free-weighting stabilization method is utilized with a novel looped functional
taking the information of the present sampled states and next sampled states, which can more precisely account for the sawtooth
shape of the sampling delay. Also, the quadratic generalized free-weighting matrix inequality (QGFWMI), which provides
additional degree of freedom (DoF), is utilized to calculate the upper limit of the integral term. Based on the novel looped functional
and QGFWMI, improved conditions of stability are derived from forms of linear matrix inequalities (LMIs). The numerical
examples show the validity and effectiveness.

1. Introduction

Complex dynamical networks (CDNs) are an attempt to
model a set of interconnected dynamic properties of nodes
with specific contents. For example, there are human interac-
tionnetworks, ad hoc networks, secure communications, har-
monic oscillations, biological systems, and chaotic systems,
financial systems, social networks, and neural networks.
CDNs are faced with the problems of expressing struc-
tural complexity and connection diversity at the same time.
Furthermore, the dynamic characteristics of the network
make it difficult to provide a solution to the real world
because modeling should be done with the node’s insufficient
information from the network. Nevertheless, CDNs have
attracted lots of attention in various fields of engineering
[1–4]. Especially, the problem of synchronization has been
focused by many researchers [5–7], as the synchronization
of CDNs is a fundamental phenomenon. In nature, complex
networks in the synchronization encounter time delay in
biological and physical networks, because of the limited speed
of network transmission, traffic jams, and signal propagation.
The time delay is a source of degradation synchronization
performance and instability, and thus complex networks with
time-varying delay are of importance and generality [8, 9].

The design of control has been developed including pin-
ning control [10], impulsive control [11], hybrid control [12],
fuzzy adaptive output feedback control [13], and sampled-
data control [5] to accomplish stable synchronization. Among
these methods, sampled-data control for the synchronization
of CDNs has been studied extensively with the develop-
ment of digital communication since sampled-data offers
many benefits in modern control systems. The advantages
of sampled-data control are as follows: Firstly, the sampled-
data control is more realistic than continuous control in
that it can be implemented in practical systems. Secondly,
in the case of the signal in the form of pulse data, the
information is supplied immediately with a small outlay.
Lastly, the control system for better performance is generally
achieved by a sampled-data control. For continuous systems,
the differentiator not only improves the existing noise but also
generate additional noise. In the sampled-data system, the
differential operation can be implemented without increas-
ing noise problem. For that reason, sampled-data control
was used because of these benefits: practicality, immediacy,
economics, and accuracy. In sampled-data control systems,
it is the main issue to design controllers that can get larger
sampling interval. Increasing maximum sampling interval is
very important because it not only enlarges the stable region
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but also improves performance when considered with other
aspects:𝐻∞ [14] and dissipativity [15].

Several criteria for CDNs with time delay are developed
to derive stability conditions on sampled-data intervals.
Sampled-data signals which are discontinuous at every sam-
pling time can be treated as continuous time-varying delayed
signals. In [5], the problem of sampled-data synchroniza-
tion control for a class of general complex networks with
time-varying coupling delay is firstly handled using Jensen’s
inequality found in the input delay approach. The time-
dependent Lyapunov functional and convex combination
techniques are used in [16] to derive a less conservative
condition for the sampled-data synchronization. The syn-
chronization in memory neural networks with time-varying
delays was studied in [2, 17, 18]. In [17], a sampled-data
feedback controller was proposed by using the Lyapunov
function theory and Jensen’s inequality method to guarantee
the synchronization of memristive Bidirectional Associative
Memory (BAM) neural networks with leakage and two
additive time-varying delays. The authors in [18] obtained
less conservative results by constructing a Lyapunov function
and using the stochastic differential inclusions and some
inequality techniques. Recently, Wirtinger’s inequality is
used in [19, 20]. Also, the augmented Lyapunov function
approach and Lyapunov function with triple integral have
been reported in the literature [15, 21, 22]. In [23], a looped-
functional-based approach was proposed for the stability
analysis of linear impulsive systems. This approach easily
formulates sampling interval result for discrete time sta-
bility using a continuous time’s approach. In [24], a new
looped-functional for stability analysis was proposed. This
functional entirely uses the information on both interval
t𝑘 and t𝑘+1, which improved stability condition. However,
there are still more rooms for improvement, which motivates
our research. To consider the information of sampling time
at t𝑘 and t𝑘+1, the modified looped-functional is proposed
by using the augmented vector for two-sided sampling
time.

In this paper, enhanced results on sampled-data syn-
chronization criteria and controller design are given for the
complex dynamical networks with time-varying coupling
delay. The stability and stabilization criteria are presented in
forms of linear matrix inequalities (LMIs).The superiority of
the proposed scheme is shown through numerical examples.
The main contribution of this note is summarized as follows:

(i) Free-weighing matrices at time sequence t𝑘 and t𝑘+1
are separately employed with an additional scalar
parameter in consideration of system dynamics in
CDN satisfying convexity.

(ii) In order to fully consider the information of sawtooth
shape sampling pattern at t𝑘 and t𝑘+1, novel looped
functional is employedwith augmented vectorswhich
become zero by constructing the vector crossly
aligned at each sampling time t𝑘 or t𝑘+1. Namely, the
dimension of the LMI variable extends from 𝑅2×2 (2× 2 dimensional Euclidean space) to 𝑅4×4. Therefore,
augmented vectors provide an increased degrees of
freedom (DoF) and improved results.

(iii) QGFMI is firstly applied to sampled-data synchro-
nization. QGFMI estimates the upper limit of the
integral term more tightly. Thus it contributes to
deriving a less conservative result.

2. Preliminaries

CDNs composed of N identical coupled nodes with n-
dimensional dynamics are described as follows:

𝑥̇𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + c
𝑁∑
𝑗=1

𝐺𝑖𝑗𝐷𝑥𝑗 (𝑡)

+ c
𝑁∑
𝑗=1

𝐺𝑖𝑗𝐴𝑥𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢𝑖 (𝑡) ,
𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑁

(1)

where 𝑓(⋅) is the continuous vector-valued nonlinear func-
tion, 𝐺𝑖𝑗 is the outer coupling matrix from node 𝑖 to 𝑗 with
weight, A and 𝐷 are the inner coupling matrix, 𝑥𝑖(t) is the
state variable of node 𝑖, 𝑢𝑖(𝑡) is input variable e of node 𝑖, and𝑐 > 0 is the coupling strength. 𝐺𝑖𝑗 is defined as follows:

𝐺𝑖𝑗 > 0
𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗

𝐺𝑖𝑗 = 0
𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑎𝑛𝑑 𝑗

(2)

The diagonal elements of 𝐺𝑖𝑗 are denoted as 𝐺𝑖𝑗 =
−∑𝑁𝑖=1,𝑗=𝑖𝐺𝑖𝑗 for 𝑖 = 1, 2, . . . , 𝑁. The bounded time-varying
delay 𝜏(𝑡) satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏𝑀,
−𝜇 ≤ 𝜏̇ (𝑡) ≤ 𝜇, (3)

where 𝜏𝑀 and 𝜇 are positive known constants. Without loss
of generality, the nonlinear function 𝑓(⋅) is assumed to satisfy
a sector-bounded condition as

[𝑓 (𝑥) − 𝑓 (𝑦) −𝑊1 (𝑥 − 𝑦)]𝑇
⋅ [𝑓 (𝑥) − 𝑓 (𝑦) −𝑊2 (𝑥 − 𝑦)] ≤ 0, (4)

where𝑊1 and𝑊2 are matrices with appropriate dimensions.
Let 𝑟(𝑡) be an unforced isolated node, ̇𝑟(𝑡) = 𝑓(𝑟(𝑡)), then the
error dynamics of each dynamical system is derived as

̇𝑒𝑖 (𝑡) = 𝑔 (𝑒𝑖 (𝑡) , 𝑟 (𝑡)) + 𝑐 𝑁∑
𝑗=1

𝐺𝑖𝑗𝐷𝑥𝑗 (𝑡)

+ 𝑐 𝑁∑
𝑗=1

𝐺𝑖𝑗𝐴𝑥𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢𝑖 (𝑡) ,
𝑓𝑜𝑟 𝑖 = 1, 2, . . . , 𝑁,

(5)
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where 𝑒𝑖(𝑡) = 𝑥𝑖 − 𝑟(𝑡) and 𝑔(𝑒𝑖(𝑡), 𝑟(𝑡)) = 𝑓(𝑥𝑖(𝑡)) − 𝑓(𝑟(𝑡)).
Utilizing Kronecker product, the whole CDN is represented
as

̇𝑒𝑖 (𝑡) = 𝑔 (𝑒 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝐺 ⊗ 𝐷) 𝑒 (𝑡)
+ 𝑐 (𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝑢 (𝑡) (6)

where

𝑒 (𝑡) =
[[[[[[[
[

𝑒1 (𝑡)
𝑒2 (𝑡)
. . .

𝑒𝑁 (𝑡)

]]]]]]]
]
,

𝑒 (𝑡 − 𝜏 (𝑡)) =
[[[[[[[
[

𝑒1 (𝑡 − 𝜏 (𝑡))
𝑒2 (𝑡 − 𝜏 (𝑡))

. . .
𝑒𝑁 (𝑡 − 𝜏 (𝑡))

]]]]]]]
]
,

𝑔 (𝑒 (𝑡) , 𝑟 (𝑡)) =
[[[[[[[
[

𝑔 (𝑒1 (𝑡) , 𝑟 (𝑡))
𝑔 (𝑒2 (𝑡) , 𝑟 (𝑡))

. . .
𝑔 (𝑒𝑁 (𝑡) , 𝑟 (𝑡))

]]]]]]]
]
,

𝑢 (𝑡) =
[[[[[[[
[

𝑢1 (𝑡)
𝑢2 (𝑡)
. . .

𝑢𝑁 (𝑡)

]]]]]]]
]
.

(7)

For the given system, our objective is to design a sampled-
data controller which makes the error systems converge
to zero. When considering that the measurement sensor
generates a signal, discretized sampled signals are only sent to
the controller through the network in system topology, and

the control input can be utilized using zero order function.
The control input signals using sampler are generated with a
sequence of hold time 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑘 < . . . where
lim𝑘󳨀→∞𝑡𝑘 = ∞ and k is a positive integer. The sampling
intervals are represented as

𝑡𝑘+1 − 𝑡𝑘 ≤ ℎ𝑘 ≤ ℎ𝑀 (8)

where ℎ𝑀 is the maximum sampling instant. Then, the
sampled-data controller is designed as

𝑢 (𝑡) = 𝑢 (𝑡𝑘) = 𝐾 (𝑒 (𝑡𝑘)) , 𝑓𝑜𝑟 𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1. (9)
where 𝑘 = diag{𝐾1, 𝐾2, . . . , 𝐾𝑁} is the control gain matrix
and 𝑒(𝑡𝑘) is the sampled error signal. The closed-loop error
systems with sampled-data control are rewritten as

̇𝑒𝑖 (𝑡) = 𝑔 (𝑒 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝐺 ⊗ 𝐷) 𝑒 (𝑡)
+ 𝑐 (𝐺 ⊗ 𝐴) 𝑒 (𝑡 − 𝜏 (𝑡)) + 𝐾𝑢 (𝑡𝑘) (10)

To develop main results, useful lemmas are introduced.

Lemma 1 (Wirtinger’s inequalities; [25]). For given a matrix𝑅 > 0 and a continuous differentiable function 𝜔(𝑡) in [𝑎, 𝑏],
the following inequality holds:

∫𝑏
𝑎
𝜔𝑇 (𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠 ≥ 1𝑏 − 𝑎𝜂𝑇1𝑅𝜂1 + 3𝑏 − 𝑎𝜂𝑇2𝑅𝜂2 (11)

where 𝜂1 = ∫𝑏
𝑎
𝜔(𝑠)𝑑𝑠 and 𝜂2 = ∫𝑏

𝑎
𝜔(𝑠)𝑑𝑠 − (2/(𝑏 −

𝑎)) ∫𝑏
𝑎
∫𝑏
𝑠
𝜔(𝑢)𝑑𝑢𝑑𝑠.

Lemma 2 (reciprocally convex combination method; [26]�).
For a given scalar 0 < 𝜃 < 1, vectors 𝜔1, 𝜔2, and matrices𝑀 > 0, N satisfying [𝑀 𝑁𝑁 𝑀 ] > 0, then the following holds:

1𝜃𝜔𝑇1𝑀𝜔1 + 11 − 𝜃𝜔𝑇2𝑀𝜔2 ≤ [[
𝜔1
𝜔2
]
]
𝑇

[
[
𝑀 𝑁
𝑁 𝑀]

]
[
[
𝜔1
𝜔2
]
]
. (12)

Lemma 3 (QGFMI). Given matrices X,Y and positive semi-
definite matrix R, the inequality is given by

∫𝑏
𝑎
𝜔𝑇 (𝑠) 𝑅𝜔 (𝑠) 𝑑𝑠 ≥ −[

[
𝜂0
𝜂3
]
]
𝑇[[
[
(𝑏 − 𝑎)𝑋𝑅−1𝑋𝑇 𝑋 [𝐼 0]

∗ (𝑏 − 𝑎)3 𝑌𝑅−1𝑌𝑇 + sym (𝑌 [−𝐼 2𝐼])
]]
]
[
[
𝜂0
𝜂3
]
]

(13)

where 𝜂0 is any vector and 𝜂3 = [∫𝑏
𝑎
𝜔𝑇(𝑠)𝑑𝑠, (1/(𝑏

−𝑎)) ∫𝑏
𝑎
∫𝑏
𝑠
𝜔(𝑢)𝑇𝑑𝑢𝑑𝑠]𝑇, and 𝜔(𝑡) is a differentiable function

which is a continuous on [a, b].
Proof. The proof of Lemma 3 is omitted as it is similar to that
of [27].

Remark 4. The QGFMI is used to calculate the upper limit
of integral term in the derivative of Lyapunov-Krasovskii
function, which increases freedom to choose a free-selectable
vector [27]. Furthermore, the new free-weighting matrix
plays a vital role in filling in the diagonal element and
corresponding augmented vector provides additional flexi-
bility.
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Remark 5. The control technique using the sample value
data in (9) can be applied to systems such as event-triggered
communication as in [28, 29].

3. Main Results

The matrices 𝐼𝑖 = 𝑅11𝑛×𝑛 for 𝑖 = 1, 2, . . . , 11 are denoted
to represent matrices composed of (𝑛 − 1) zero elements
matrices with 𝑖𝑡ℎ identity matrix. For example, 𝐼1 =[𝐼 0 0 0 0 0 0 0 0 0 0]𝑇and 𝐼5 = [0 0 0 0 𝐼 0 0 0 0 0 0]𝑇.
Moreover, the following are declared:

𝜁 (t) = [𝑒 (t) , ̇𝑒 (t) , 𝑒 (𝑡𝑘) , 1(𝑡 − 𝑡𝑘)
⋅ ∫𝑡
𝑡𝑘

𝑒𝑇 (𝛼) 𝑑𝛼, 𝑒 (𝑡𝑘+1) , 1(𝑡𝑘+1 − 𝑡)
⋅ ∫𝑡𝑘+1
𝑡

𝑒𝑇 (𝛼) 𝑑𝛼, e (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡 − 𝜏𝑀) , 1𝜏 (𝑡)
⋅ ∫𝑡

t−𝜏(𝑡)
𝑒𝑇 (𝛼) 𝑑𝛼, 1(𝜏𝑀 − 𝜏 (𝑡))

⋅ ∫t−𝜏(𝑡)

𝑡−𝜏𝑀

𝑒𝑇 (𝛼) 𝑑𝛼, 𝑔𝑇 (𝑒 (𝑡) , 𝑠 (𝑡))] ,
𝜅1 = [𝐼1, 𝐼3 + 𝐼5, 𝐼4 + 𝐼6, 𝐼2] ,
𝜅2 = [𝐼1 − 𝐼3, 𝐼1 − 𝐼4] ,
𝜅3 = [𝐼5 − 𝐼1, 𝐼5 − 𝐼6] ,
𝜅4 = [𝐼1 − 𝐼7, 𝐼1 + 𝐼7 − 𝐼9, 𝐼7 − 𝐼8, 𝐼7 + 𝐼8 − 𝐼10] ,
𝜂1 = [𝐼1 − 𝐼3, (𝑡 − 𝑡𝑘) 𝐼5, (𝑡 − 𝑡𝑘) 𝐼3, (𝑡 − 𝑡𝑘) 𝐼4] ,
𝜂2 = [𝐼5 − 𝐼1, (𝑡𝑘+1 − 𝑡) 𝐼3, (𝑡𝑘+1 − 𝑡) 𝐼5, (𝑡𝑘+1 − 𝑡) 𝐼6] ,
𝜂1𝑑 = [𝐼2, 𝐼5, 𝐼3, 𝐼1] ,
𝜂2𝑑 = [−𝐼2, −𝐼3, −𝐼5, −𝐼1] ,
𝑆1 (𝑡) = [(𝑡 − 𝑡𝑘) 𝑆10 − (𝑡𝑘+1 − 𝑡) 𝑆11 𝑆12𝑆𝑇12 𝑆13] ∈ 𝑅

4𝑛×4𝑛,
𝑆10 ∈ 𝑅𝑛×𝑛,
𝑆11 ∈ 𝑅𝑛×𝑛,
𝑆12 ∈ 𝑅𝑛×3𝑛,
𝑆13 ∈ 𝑅3𝑛×3𝑛,
𝑆1𝑑 = [𝑆10 − 𝑆11 0𝑛×𝑛0𝑛×𝑛 0𝑛×𝑛] ,

𝑅̂ = [𝑅 0
0 𝑅] .

(14)

Theorem 6. For a given scalar parameter ℎ𝑀 and a gain
matrix K, if there exist a positive scalar 𝛿, symmetric matrices
P > 0, Q1 > 0, Q2 > 0, R > 0, T1 > 0, and T2 > 0, any
matrices 𝐺1, 𝐺2, 𝐺3, 𝐺4, 𝑆1(𝑡), 𝑆2, 𝑋1, 𝑋2, 𝑌1, 𝑌2, and 𝑀̂, and
a scalar 𝛿 > 0 satisfying the inequalities

[[
[
Π1,ℎ(𝑡)=0 𝜅1𝑋2 𝜅3𝑌2∗ −ℎ𝑀𝑇2 0

∗ 0 −3ℎ𝑀𝑇2
]]
]
≤ 0 (15)

[[
[
Π1,ℎ(𝑡)=h 𝜅1𝑋1 𝜅2𝑌1∗ −ℎ𝑀𝑇1 0

∗ 0 −3ℎ𝑀𝑇1
]]
]
≤ 0 (16)

[ 𝑅̂ 𝑀
𝑀̂ 𝑅̂ ] ≥ 0 (17)

where

Π1,ℎ(𝑡) = sym {𝐼1𝑃𝐼𝑇2 } + 𝐼1𝑄1𝐼𝑇1 − (1 − 𝜇) 𝐼7𝑄1𝐼𝑇7
+ 𝐼1𝑄2𝐼𝑇1 − 𝐼8𝑄2𝐼𝑇8 + 𝜏𝑀𝐼2𝑅𝐼𝑇2 − 𝜅4 [ 𝑅̂ 𝑀̂

𝑀 𝑅̂ ]𝜅𝑇4
+ sym {𝜂1𝑆1 (𝑡) 𝜂𝑇2𝑑 + 𝜂1𝑑𝑆1 (𝑡) 𝜂𝑇2 + 𝜂1𝑆1𝑑𝜂𝑇2 }
+ sym{[𝐼1 − 𝐼3 (𝑡 − 𝑡𝑘) 𝐼4] 𝑆2 [−𝐼

𝑇
2

−𝐼𝑇1 ]

+ [𝐼2 𝐼1] 𝑆2 [ 𝐼𝑇5 − 𝐼𝑇1(𝑡𝑘+1 − 𝑡) 𝐼6]} + (𝑡𝑘+1 − 𝑡) 𝐼2𝑇1𝐼𝑇2
+ (𝑡 − 𝑡𝑘) 𝐼2𝑇2𝐼𝑇2 + sym {𝜅1𝑋1 [𝐼 0] 𝜅𝑇2
+ 𝜅2𝑌1 [−𝐼 2𝐼] 𝜅𝑇2 } + sym {𝜅1𝑋2 [𝐼 0] 𝜅𝑇3
+ 𝜅1𝑌2 [−𝐼 2𝐼] 𝜅𝑇3 } − 𝛿 [𝐼1 𝐼11] [𝑊̃1 𝑊̃2∗ 2𝐼][

𝐼𝑇1
𝐼𝑇11]

+ (𝑡 − 𝑡𝑘) sym {(𝐼1𝐺1 + 𝐼2𝐺2)
⋅ (𝑐 (𝐶 ⊗ 𝐷) 𝐼𝑇1 + 𝑐 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐾𝐼𝑇3 − 𝐼𝑇2 + 𝐼𝑇11)}
+ (𝑡𝑘+1 − 𝑡) sym {(𝐼1𝐺3 + 𝐼2𝐺4)
⋅ (𝑐 (𝐶 ⊗ 𝐷) 𝐼𝑇1 + 𝑐 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐾𝐼𝑇3 − 𝐼𝑇2 + 𝐼𝑇11)}

(18)

and𝑊1 = (I ⊗𝑊1𝑊2) + (𝑊1𝑊2 ⊗ I),𝑊2 = −𝐼 ⊗ (𝑊𝑇1 +𝑊𝑇2 ),
then CDNs are asymptotically stable.

Proof. Construct the following Lyapunov-Krasovskii func-
tion for t ∈ [t𝑘, t𝑘+1):

V (𝑥𝑡) = 𝑉1 (𝑡) + 𝑉2 (𝑡) + 𝑉3 (𝑡) + 𝑉𝑙1 (𝑡) + 𝑉𝑙2 (𝑡)
+ 𝑉𝑙3 (𝑡) + 𝑉𝑙4 (𝑡) , (19)
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where

𝑉1 (𝑡) = 𝑒𝑇 (𝑡) 𝑃𝑒 (𝑡) ,
𝑉2 (𝑡) = ∫𝑡

𝑡−𝜏(𝑡)
𝑒𝑇 (𝛼) 𝑄1𝑒 (𝛼) 𝑑𝛼 + ∫𝑡

𝑡−𝜏𝑀

𝑒𝑇 (𝛼) 𝑄2𝑒 (𝛼) 𝑑𝛼,

𝑉3 (𝑡) = ∫𝑡
𝑡−𝜏𝑀

∫𝑡
𝛽
̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼𝑑𝛽,

𝑉𝑙1 (𝑡) = 2
[[[[[[[[
[

𝑒 (𝑡) − 𝑒 (𝑡𝑘)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘+1)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘)
∫𝑡
𝑡𝑘
𝑒 (𝛼) 𝑑𝛼

]]]]]]]]
]

𝑇

𝑆1
[[[[[[[[[
[

𝑒 (𝑡𝑘+1) − 𝑒 (𝑡)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘+1)
∫𝑡𝑘+1
𝑡

𝑒 (𝛼) 𝑑𝛼

]]]]]]]]]
]

,

𝑉𝑙2 (𝑡) = 2[[
𝑒 (𝑡) − 𝑒 (𝑡𝑘)
∫𝑡
𝑡𝑘
𝑒 (𝛼) 𝑑𝛼 ]]

𝑇

𝑆2 [[
[
𝑒 (𝑡𝑘+1) − 𝑒 (𝑡)
∫𝑡𝑘+1
𝑡

𝑒 (𝛼) 𝑑𝛼
]]
]
,

𝑉𝑙3 (𝑡) = (𝑡𝑘+1 − 𝑡) ∫𝑡
𝑡𝑘

̇𝑒𝑇 (𝛼) 𝑇1 ̇𝑒 (𝛼) 𝑑𝛼,

𝑉𝑙4 (𝑡) = − (𝑡 − 𝑡𝑘) ∫𝑡𝑘+1
𝑡

̇𝑒𝑇 (𝛼) 𝑇2 ̇𝑒 (𝛼) 𝑑𝛼.

(20)

Differentiating each LKF in equation (20) provides

V̇ (𝑥𝑡) = 𝑉̇1 (𝑡) + 𝑉̇2 (𝑡) + 𝑉̇3 (𝑡) + 𝑉̇𝑙1 (𝑡) + 𝑉̇𝑙2 (𝑡)
+ 𝑉̇𝑙3 (𝑡) + 𝑉̇𝑙4 (𝑡) ,

(21)

where

𝑉̇1 (𝑡) = 2𝑒 (𝑡) 𝑃 ̇𝑒 (𝑡) = sym {𝐼𝑇1 𝑃𝐼2} ,
𝑉̇2 (𝑡) = 𝑒𝑇 (𝑡) 𝑄1𝑒 (𝑡) − (1 − 𝜇) 𝑒𝑇 (𝑡 − 𝜏 (𝑡)) 𝑄1𝑒 (𝑡

− 𝜏 (𝑡)) + 𝑒𝑇 (𝑡) 𝑄2𝑒 (𝑡) − 𝑒𝑇 (𝑡 − 𝜏𝑀) 𝑄2𝑒 (𝑡 − 𝜏𝑀)
= 𝐼1𝑄1𝐼𝑇1 − (1 − 𝜇) 𝐼7𝑄1𝐼𝑇7 + 𝐼1𝑄2𝐼𝑇1 − 𝐼8𝑄2𝐼𝑇8 ,

𝑉̇3 (𝑡) = 𝜏𝑀 ̇𝑒𝑇 (𝑡) 𝑅 ̇𝑒 (𝑡) − ∫𝑡
𝑡−𝜏𝑀

̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼

= 𝜏𝑀𝐼2𝑅𝐼𝑇2 − ∫𝑡
𝑡−𝜏𝑀

̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼,

𝑉̇𝑙1 (𝑡) = 2
[[[[[[[[
[

𝑒 (𝑡) − 𝑒 (𝑡𝑘)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘+1)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘)
∫𝑡
𝑡𝑘
𝑒 (𝛼) 𝑑𝛼

]]]]]]]]
]

𝑇

𝑆1 (𝑡)
[[[[[[[
[

− ̇𝑒 (𝑡)
−𝑒 (𝑡𝑘)
−𝑒 (𝑡𝑘+1)
−𝑒 (𝑡)

]]]]]]]
]

+ 2
[[[[[[
[

̇𝑒 (𝑡)
𝑒 (𝑡𝑘+1)
𝑒 (𝑡𝑘)
𝑒 (𝑡)

]]]]]]
]

𝑇

𝑆1 (𝑡)
[[[[[[[[
[

𝑒 (𝑡𝑘+1) − 𝑒 (𝑡)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘+1)
∫𝑡𝑘+1
𝑡

𝑒 (𝛼) 𝑑𝛼

]]]]]]]]
]

+ 2
[[[[[[[
[

𝑒 (𝑡) − 𝑒 (𝑡𝑘)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘+1)
(𝑡 − 𝑡𝑘) 𝑒 (𝑡𝑘)
∫𝑡
𝑡𝑘
𝑒 (𝛼) 𝑑𝛼

]]]]]]]
]

𝑇

⋅ 𝑆1𝑑
[[[[[[[[
[

𝑒 (𝑡𝑘+1) − 𝑒 (𝑡)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘)
(𝑡𝑘+1 − 𝑡) 𝑒 (𝑡𝑘+1)
∫𝑡𝑘+1
𝑡

𝑒 (𝛼) 𝑑𝛼

]]]]]]]]
]
= sym {𝜂1𝑆1 (𝑡) 𝜂𝑇2𝑑

+ 𝜂1𝑑𝑆1 (𝑡) 𝜂𝑇2 + 𝜂1𝑆1𝑑𝜂𝑇2 } ,

𝑉̇𝑙2 (𝑡) = 2[[
𝑒 (𝑡) − 𝑒 (𝑡𝑘)
∫𝑡
𝑡𝑘
𝑒 (𝛼) 𝑑𝛼 ]]

𝑇

𝑆2 [− ̇𝑒 (𝑡)
−𝑒 (𝑡)] + 2 [

̇𝑒 (𝑡)
𝑒 (𝑡)]
𝑇

⋅ 𝑆2 [[
[
𝑒 (𝑡𝑘+1) − 𝑒 (𝑡)
∫𝑡𝑘+1
𝑡

𝑒 (𝛼) 𝑑𝛼
]]
]

= sym
{{{
[𝐼2 − 𝐼3 (𝑡 − 𝑡𝑘) 𝐼4] 𝑆2 [[

−𝐼𝑇2
−𝐼𝑇1

]
]

+ [𝐼2 𝐼1] 𝑆2 [[
𝐼𝑇5 − 𝐼𝑇1

(𝑡𝑘+1 − 𝑡) 𝐼𝑇6
]
]
}}}
,

𝑉̇𝑙3 (𝑡) = (𝑡𝑘+1 − 𝑡) ̇𝑒𝑇 (𝑡) 𝑇1 ̇𝑒 (𝑡) − ∫𝑡
𝑡𝑘

̇𝑒𝑇 (𝛼)
⋅ 𝑇1 ̇𝑒 (𝛼) 𝑑𝛼 = (𝑡𝑘+1 − 𝑡) 𝐼2𝑇1𝐼𝑇2 − ∫𝑡

𝑡𝑘

̇𝑒𝑇 (𝛼)
⋅ 𝑇1 ̇𝑒 (𝛼) 𝑑𝛼,

𝑉̇𝑙4 (𝑡) = (𝑡 − 𝑡𝑘) ̇𝑒𝑇 (𝑡) 𝑇2 ̇𝑒 (𝑡) − ∫𝑡𝑘+1
𝑡

̇𝑒𝑇 (𝛼)
⋅ 𝑇2 ̇𝑒 (𝛼) 𝑑𝛼 = (𝑡 − 𝑡𝑘) 𝐼2𝑇2𝐼𝑇2 − ∫𝑡𝑘+1

𝑡
̇𝑒𝑇 (𝛼)

⋅ 𝑇2 ̇𝑒 (𝛼) 𝑑𝛼.
(22)
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Separating the integral in 𝑉̇2 for two sides and applying
Lemmas 1 and 2, we have

− ∫𝑡
𝑡−𝜏𝑀

̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼

= −∫𝑡
𝑡−𝜏(𝑡)

̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼

− ∫𝑡−𝜏(𝑡)
𝑡−𝜏𝑀

̇𝑒𝑇 (𝛼) 𝑅 ̇𝑒 (𝛼) 𝑑𝛼

≤ −𝜁𝑇 (𝑡) Σ [ 𝑅̂ 𝑀̂
𝑀̂ 𝑅̂ ]Σ𝑇𝜁 (𝑡)

= −𝜁𝑇 (𝑡) 𝜅4 [ 𝑅̂ 𝑀̂
𝑀̂ 𝑅̂ ] 𝜅𝑇4 𝜁 (𝑡)

(23)

where Σ = [𝐼1 − 𝐼6 𝐼1 + 𝐼6 − 𝐼8 𝐼1 − 𝐼7 𝐼1 + 𝐼7 − 𝐼9], 𝑅̂ =[ 𝑅 00 𝑅 ] .
Using Lemma 3, the upper bound of each integrals in𝑉̇𝑙3(𝑡), 𝑉̇𝑙4(𝑡) is estimated as follows:

−∫𝑡
𝑡𝑘

̇𝑒𝑇 (𝛼) 𝑇1 ̇𝑒 (𝛼) 𝑑𝛼 ≤ 𝜁𝑇 (𝑡) [𝜅
𝑇
1

𝜅𝑇2 ]
𝑇[[
[
(𝑡 − 𝑡𝑘)𝑋1𝑇−11 𝑋𝑇1 𝑋1 [1 0]

∗ (𝑡 − 𝑡𝑘)3 𝑌1𝑇−11 𝑌𝑇1 + sym (𝑌1 [−𝐼 2𝐼])
]]
]
[𝜅𝑇1𝜅𝑇2 ] 𝜁 (𝑡) , (24)

−∫𝑡𝑘+1
𝑡

̇𝑒𝑇 (𝛼) 𝑇2 ̇𝑒 (𝛼) 𝑑𝛼 ≤ 𝜁𝑇 (𝑡) [𝜅
𝑇
1

𝜅𝑇3 ]
𝑇[[
[
(𝑡𝑘+1 − 𝑡)𝑋2𝑇−12 𝑋𝑇2 𝑋2 [1 0]

∗ (𝑡𝑘+1 − 𝑡)3 𝑌2𝑇−12 𝑌𝑇2 + sym (𝑌2 [−𝐼 2𝐼])
]]
]
[𝜅𝑇1𝜅𝑇3] 𝜁 (𝑡) , (25)

Then, the following is satisfied with the given nonlinear
function as

[𝑔 (𝑒𝑖 (𝑡) , 𝑠𝑖 (𝑡)) − 𝑊1𝑒𝑖 (𝑡)]𝑇
⋅ [𝑔 (𝑒𝑖 (𝑡) , 𝑠𝑖 (𝑡)) − 𝑊2𝑒𝑖 (𝑡)] ≤ 0. (26)

Equation (13) is equivalent to

−𝛿 [ 𝑒 (𝑡)
𝑔 (𝑒 (𝑡) , 𝑟 (𝑡))]

𝑇 [𝑊1 𝑊2∗ 2𝐼][
𝑒 (𝑡)

𝑔 (𝑒 (𝑡) , 𝑟 (𝑡))] ≥ 0 (27)

where𝑊1 = (I⊗𝑊1𝑊2) + (𝑊1𝑊2 ⊗ I),𝑊2 = −𝐼⊗ (𝑊𝑇1 +𝑊𝑇2 ),
and 𝛿 is a constant scalar. Considering the dynamic equations
(6)with auxiliarymatrices𝐺1 ,𝐺2,𝐺3,𝐺4, the following holds:

2 (((t − 𝑡𝑘) 𝐺1 + (𝑡𝑘+1 − 𝑡) 𝐺2) 𝐼1
+ ((t − 𝑡𝑘) 𝐺3 + (𝑡𝑘+1 − 𝑡) 𝐺4) 𝐼2) ⋅ (𝑐 (𝐶 ⊗ D) 𝐼1
+ 𝑐 (𝐶 ⊗ A) 𝐼7 + K𝐼3 − 𝐼2 + 𝐼11) = 0,

(28)

Summing up (21), (24), (25), (27), and (28), the derivative of
LKF is expressed as

𝑉̇ (𝑥𝑡) = 𝜁𝑇 (𝑡) Λ ℎ(𝑡)𝜁 (𝑡) (29)

where

Λ ℎ(𝑡) = Π1,ℎ(𝑡) + (t − 𝑡𝑘) Π2 + (𝑡𝑘+1 − 𝑡)Π3
Π1,ℎ(𝑡) = sym {𝐼1𝑃𝐼𝑇2 } + 𝐼1𝑄1𝐼𝑇1 − (1 − 𝜇) 𝐼7𝑄1𝐼𝑇7

+ 𝐼1𝑄2𝐼𝑇1 − 𝐼8𝑄2𝐼𝑇8 + 𝜏𝑀𝐼2𝑅𝐼𝑇2 − 𝜅4 [ 𝑅̂ 𝑀
𝑀̂ 𝑅̂ ] 𝜅𝑇4

+ sym {𝜂1𝑆1 (𝑡) 𝜂𝑇2𝑑 + 𝜂1𝑑𝑆1 (𝑡) 𝜂𝑇2 + 𝜂1𝑆1𝑑 (𝑡) 𝜂𝑇2 }
+ sym{[𝐼1 − 𝐼3 (𝑡 − 𝑡𝑘) 𝐼4] 𝑆2 [−𝐼

𝑇
2

−𝐼𝑇1 ]

+ [𝐼2 𝐼1] 𝑆2 [ 𝐼𝑇5 − 𝐼𝑇1
(𝑡𝑘+1 − 𝑡) 𝐼𝑇6 ]} + (𝑡𝑘+1 − 𝑡) 𝐼2𝑇1𝐼𝑇2

+ (𝑡 − 𝑡𝑘) 𝐼2𝑇2𝐼𝑇2 + sym {𝜅1𝑋1 [𝐼 0] 𝜅𝑇2
+ 𝜅2𝑌1 [−𝐼 2𝐼] 𝜅𝑇2 } + sym {𝜅1𝑋2 [𝐼 0] 𝜅𝑇3
+ 𝜅1𝑌2 [−𝐼 2𝐼] 𝜅𝑇3 } − 𝛿 [𝐼1 𝐼11] [𝑊̃1 𝑊̃2∗ 2𝐼][

𝐼𝑇1
𝐼𝑇11]

+ sym {(𝐼1𝐺1 + 𝐼2𝐺2)
⋅ (𝑐 (𝐶 ⊗ 𝐷) 𝐼𝑇1 + 𝑐 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐾𝐼𝑇3 − 𝐼𝑇2 + 𝐼𝑇11)}

Π2 = 𝜅1𝑋1𝑇−11 𝑋𝑇1 𝜅𝑇1 + 13𝜅2𝑌1𝑇−11 𝑌𝑇1 𝜅𝑇2
Π3 = 𝜅1𝑋2𝑇−12 𝑋𝑇2 𝜅𝑇1 + 13𝜅3𝑌2𝑇−12 𝑌𝑇2 𝜅𝑇3

(30)
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Therefore, the conditions 𝜁𝑇(𝑡)Λ ℎ(𝑡)𝜁(𝑡) < 0 implies that 𝑉̇ <0 for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). From the convex combination method,Λ ℎ(𝑡) < 0 for ℎ(𝑡) ∈ [0, ℎ𝑀) is equivalent to the conditions
in Theorem 6 using Schur complements, and thus the syn-
chronization error system is asymptotically stable for given
sampling time ℎ𝑀. This is the end of the proof.

Remark 7. The constructed Lyapunov functionals include
novel looped functionals, which are V𝑙1, V𝑙2,V𝑙3, and V𝑙4.
Those functionals satisfy V𝑙1= V𝑙2 = V𝑙3 = 0 at every
sampling instances 𝑡𝑘 , 𝑡𝑘+1 so it is looped functional as defined
in [23].

Remark 8. The additional consideration of 𝑡𝑘+1 in Lyapunov-
Krasovskii functional (LKF) results in deriving less con-
servative results, which reflect more information for sam-
pling time. The idea is motivated by the two-sided looped-
functional [24], which is applied to CDNs with time-
varying coupling delay to achieve more stable synchroniza-
tion between two or more nodes. In the stability analysis
of the sampled-data system using looped-functional, it is
important to take into account the sampled-time-dependent
vectorswhich become zero at each end point of each sampling
time. However, in [24], the product term between the vectors
x(t) − x(𝑡𝑘) and x(𝑡𝑘+1) − x(t) and the product term between𝑥(𝑡𝑘) and 𝑥(𝑡𝑘+1) are separately considered. In this paper,
more generalized results are derived by defining the vector
as 𝜂 which provides each cross terms at the same time.

Remark 9. The novelty of the proposed looped functional
is in the formation of V𝑙1. In V𝑙1, the variables are chosen
as 𝜂1, 𝜂2 and 𝑆(𝑡) is composed of sampled-time-dependent
matrix. The dimension of the LMI variable 𝑆1(𝑡) is extended
to 𝑅4×4. Therefore, augmented vectors provide an increased
degrees of freedom (DoF) and improved results compared
with the existing results. Herein, the DoF is the number of
independent variables or equations that must be specified
to solve the problem uniquely. It extends the range of the
solution and provides less conservative conditions.

Remark 10. In Theorem 6, a sufficient condition for the
synchronization is derived in terms of LMIswhich is obtained
by constructing new looped functional. The results are
sufficient conditions, which imply that there is still room
for further improvement. Some approaches to reducing the
conservatism are available. The conservativeness will be
reduced by augmented vector or segmenting formulas. Also,
new Lyapunov functions such as Lyapunov-Krasovskii or
discontinuous Lyapunov [30]may play an essential role in the
further reduction of the conservativeness.

Based on Theorem 6, the following corollary is con-
structed for the stabilization problem.

Corollary 11. For given scalars 𝛼, 0 ≤ 𝛽 ≤ 1, and ℎ𝑀, if there
exist a positive scalar 𝛿, symmetric matrices 𝑃 > 0, 𝑄1 > 0,𝑄2 > 0, 𝑅 > 0, 𝑇1 > 0, and 𝑇2 > 0, and any matrices 𝑆1(𝑡),𝑆2, 𝑋1, 𝑋2, 𝑌1, 𝑌2, 𝑀̂, 𝐻𝑎, 𝐻𝑏, 𝐺𝑎 = diag{𝐺𝑎1, 𝐺𝑎2, . . . , 𝐺𝑎𝑛},𝐺𝑏 = diag{𝐺𝑏1, 𝐺𝑏2, . . . , 𝐺𝑏𝑛},

[[[
[

Π̂1,ℎ(𝑡)=0 𝜅1𝑋2 𝜅3𝑌2∗ −ℎ𝑀𝑇2 0
∗ 0 −3ℎ𝑀𝑇2

]]]
]
≤ 0, (31)

[[[
[

Π̂1,ℎ(𝑡)=h 𝜅1𝑋1 𝜅2𝑌1∗ −ℎ𝑀𝑇1 0
∗ 0 −3ℎ𝑀𝑇1

]]]
]
≤ 0, (32)

[ 𝑅̂ 𝑀̂
𝑀̂ 𝑅̂ ] ≥ 0, (33)

where

Π̂1,ℎ(𝑡) = sym {𝐼1𝑃1𝐼𝑇2 } + 𝐼1𝑄1𝐼𝑇1 − (1 − 𝜇) 𝐼7𝑄1𝐼𝑇7
+ 𝐼1𝑄2𝐼𝑇1 − 𝐼8𝑄2𝐼𝑇8 + 𝜏𝑀𝐼2𝑅𝐼𝑇2 − 𝜅4 [ 𝑅̂ 𝑀̂

𝑀̂ 𝑅̂ ] 𝜅𝑇4
+ sym {𝜂1𝑆1 (𝑡) 𝜂𝑇2𝑑 + 𝜂1𝑑𝑆1 (𝑡) 𝜂𝑇2 + 𝜂1𝑆1𝑑 (𝑡) 𝜂𝑇2 }
+ sym{[𝐼1 − 𝐼3 (𝑡 − 𝑡𝑘) 𝐼4] 𝑆2 [−𝐼

𝑇
2

−𝐼𝑇1 ]

+ [𝐼2 𝐼1] 𝑆2 [ 𝐼𝑇5 − 𝐼𝑇1
(𝑡𝑘+1 − 𝑡) 𝐼𝑇6 ]} + (𝑡𝑘+1 − 𝑡) 𝐼2𝑇1𝐼𝑇2

+ (𝑡 − 𝑡𝑘) 𝐼2𝑇2𝐼𝑇2 + sym {𝜅1𝑋1 [𝐼 0] 𝜅𝑇2
+ 𝜅2𝑌1 [−𝐼 2𝐼] 𝜅𝑇2 } + sym {𝜅1𝑋2 [𝐼 0] 𝜅𝑇3
+ 𝜅1𝑌2 [−𝐼 2𝐼] 𝜅𝑇3 } − 𝛿 [𝐼1 𝐼11] [𝑊̃1 𝑊̃2∗ 2𝐼][

𝐼𝑇1
𝐼𝑇11]

+ (𝑡 − 𝑡𝑘) sym {(𝛽1𝐼1 + 𝛼𝐼2) ⋅ (𝐺𝑎𝐼𝑇11
+ 𝑐𝐺𝑎 (𝐶 ⊗ 𝐷) 𝐼𝑇1 + 𝑐𝐺𝑎 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐻𝑎𝐼𝑇3
− 𝐺𝐼𝑇2 )} + (𝑡𝑘+1 − 𝑡) sym {(𝛽2𝐼1 + 𝛼𝐼2) ⋅ (𝐺𝑎𝐼𝑇11
+ 𝑐𝐺𝑏 (𝐶 ⊗ 𝐷) 𝐼𝑇1 + 𝑐𝐺𝑏 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐻𝑏𝐼𝑇3
− 𝐺𝑏𝐼𝑇2 )} ,

(34)

then the control gain is given by h = 𝐺−1𝑎 𝐻𝑎 which stabilizes
the error dynamics.

Proof. Substituting the variables 𝐺1, 𝐺2, 𝐺3, and 𝐺4 in
the zero equation (28) into 𝛽1𝐺𝑎, 𝛽2𝐺𝑏, 𝛼𝐺𝑎, and 𝛼𝐺𝑏,
respectively, the following are obtained:

2 (𝑡 − 𝑡𝑘) [(𝛽1𝐼1 + 𝛼𝐼2) ⋅ (𝑐𝐺𝑎 (𝐶 ⊗ 𝐷) 𝐼𝑇1
+ 𝑐𝐺𝑎 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐻𝑎𝐼𝑇3 − 𝐺𝑎𝐼𝑇2 + 𝐺𝑎𝐼𝑇11)] = 0, (35)
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2 (𝑡𝑘+1 − 𝑡) [(𝛽2𝐼1 + 𝛼𝐼2) ⋅ (𝑐𝐺𝑏 (𝐶 ⊗ 𝐷) 𝐼𝑇1
+ 𝑐𝐺𝑏 (𝐶 ⊗ 𝐴) 𝐼𝑇7 + 𝐻𝑏𝐼𝑇3 − 𝐺𝑏𝐼𝑇2 + 𝐺𝑏𝐼𝑇11)] = 0.

(36)

where𝐻𝑎 = 𝐺𝑎𝐾 and𝐻𝑏 = 𝐺𝑏𝐾. The other part of the proof
is omitted for brevity as it is similar to that ofTheorem 6.

4. Numerical Examples

In this section, two examples are revisited from literature [5].

Example 12. Let us consider the CDNs composed of 3 nodes
with the following matrices and parameters:

A = [1 0
0 1] ,

𝐷 = [0 0
0 0] ,

𝐺 = [[
[
−1 0 1
0 −1 1
1 1 2

]]
]
,

𝑐 = 0.5,
𝜏𝑀 = 0.5,
𝜇 = 0.25.

(37)

The nonlinear function is defined as

𝑓 (𝑥𝑖 (𝑡)) = [−0.5𝑥𝑖1 + tanh (0.2𝑥𝑖1) + 0.2𝑥𝑖10.95𝑥𝑖2 − tanh (0.75𝑥𝑖2) ] , (38)

satisfying the condition in (3) by the following matrices:

𝑊1 = [−0.5 0.2
0 0.95] ,

𝑊2 = [−0.3 0.2
0 0.2] .

(39)

For 𝛼 = 1.2, ℎ𝑀 = 2.01, the corresponding gain matrices are
given by

𝐾1 = [ 0.1117 −0.1514
−0.0761 −0.8361] ,

𝐾2 = [ 0.1117 −0.1514
−0.0761 −0.8361] ,

𝐾3 = [ 0.2682 −0.1716
−0.0949 −0.8335] .

(40)

𝐾 are designed using the toolbox YALMIP 3.0 and SeDuMi
1.3 of MATLAB. The time-varying delay is chosen as 𝜏(𝑡) =0.25+0.1 sin2 (5𝑡). The initial state is𝑥(0) = [4,−3,−2, 1, 2, −5]𝑇.
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Figure 1:The state trajectories of the system (38) with 𝑐 = 0.5, 𝜏𝑀 =0.5, and 𝜇 = 0.25.
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Figure 2:The input signals of the system (38)with 𝑐 = 0.5, 𝜏𝑀 = 0.5,
and 𝜇 = 0.25.

The state trajectories of error system and the sampled-
data input signals are, respectively, presented in Figures 1
and 2, which show stable convergence. Figure 1 shows the
trajectories of error dynamics which is controlled by using
the gainmatrices at the simulation time from0 to 30 seconds.
The input signals (u1, u2, and u3) converge, respectively, to 0
in Figure 2.

Example 13. Consider Chua’s circuit composed of 4 nodes.
The dynamics of Chua’s circuit is represented as

̇𝑥1 (𝑡) = 𝜖1 (−𝑥1 (𝑡) + 𝑥2 (𝑡) − ℎ (𝑥1 (𝑡)))
̇𝑥2 (𝑡) = −𝑥1 (𝑡) − 𝑥2 (𝑡) + 𝑥3 (𝑡)
̇𝑥3 (𝑡) = −𝜖2𝑥2 (𝑡)

(41)

where h(𝑥1(𝑡)) = 𝑚2𝑥1(𝑡)+0.5(𝑚1+𝑚2)(‖𝑥1(𝑡)+1‖−‖𝑥1(𝑡)−1‖) with the parameters 𝜖1 = 10, 𝜖2 = 14.87, 𝑚1 = −1.27,
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and 𝑚2 = −0.68. Then, the nonlinear function is denoted
as

𝑓 (𝑥𝑖 (𝑡))

= [[
[
−𝜖1 (1 + 𝑚2) 𝜖1 0

1 −1 1
0 −𝜖2 0

]]
]
𝑥𝑖 (𝑡)

+ [[
[
−𝜖1 (𝑚1 + 𝑚2) (󵄩󵄩󵄩󵄩𝑥𝑖1 (𝑡) + 1󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑥𝑖1 (𝑡) − 1󵄩󵄩󵄩󵄩)0

0
]]
]

(42)

From (4), the matrices are given as

𝑊1 = [[
[
2.7 10 0
1 −1 0
0 −14.87 0

]]
]
,

𝑊2 = [[
[
−3.2 10 0
1 −1 1
0 −14.87 0

]]
]
.

(43)

For given systems, the inner coupling matrix 𝐴, the outer
coupling 𝐷, and parameters are chosen as

𝐴 = 𝐼𝑁,
𝐷 = 0𝑛,

𝐺 = [[[[[
[

−3 1 1 1
1 −2 1 0
1 1 −2 0
1 0 0 −1

]]]]]
]
,

𝑐 = 0.5,
𝜏𝑀 = 0.5,
𝜇 = 0.1.

(44)

The controller gain of Example 13 was calculated using
toolboxYALMIP 3.0 and SeDuMi 1.3 ofMATLAB in the same
manner of Example 12. The corresponding gain with 𝛼 = 0.7,ℎ𝑀 = 0.2138 is given as

𝐾1 = [[
[
−6.7314 −4.1356 1.0795
−0.0834 −1.1048 −0.7895
6.6711 7.6457 −2.1652

]]
]
,

𝐾2 = [[
[
−7.7827 −3.5618 1.0721
−0.1367 −2.0333 −0.5521
6.6458 7.3950 −3.0248

]]
]
,
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Figure 3:The error trajectories of system (41) with 𝑐 = 0.5, 𝜏𝑀 = 0.5,
and 𝜇 = 0.1.
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Figure 4:The sampled-data input signals of system (41)with 𝑐 = 0.5,𝜏𝑀 = 0.5, and 𝜇 = 0.1.

𝐾3 = [[
[
−7.7821 −3.5679 1.0678
−0.1372 −2.0340 −0.5508
6.6346 7.4183 −3.0214

]]
]
,

𝐾4 = [[
[
−7.8447 −3.4030 1.1874
−0.0468 −2.3492 −0.5990
6.4107 7.2538 −3.3484

]]
]
.

(45)

The trajectories of error dynamics and the sampled-data
input signals are represented in Figures 3 and 4, respectively.

The maximum allowable sampling time is computed; the
result using Corollary 11 is compared with existing results
in Table 1. The results show that Corollary 11 provides more
considerable maximum sampling period. It means that the
synchronized error system guarantees stability in the broader
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Table 1: The allowable maximum sampling time for Examples 12 and 13.

ref. [5] ref. [31] ref. [16] ref. [19] Corollary 11ℎ𝑀 0.5409 0.5573 0.9016 1.3756 1.9789ℎ𝑀 0.0790 0.0793 0.1607 0.1833 0.2138
Nov 3𝜄2 + (4 + 𝑛)𝜄 + 1 3.5𝜄2 + 3.5𝜄 + 1 11.5𝜄2 + 3.5𝜄 + 1 7𝜄2 + (4 + 𝑛)𝜄 + 1 34𝜄2 + 5𝜄 + 1

sampling region. The last line of Table 1 represents a number
of decision variables (NoV). It can be expressed as the product
of the number of node and dimension of the node, which is
defined as 𝜄 = N × n. Our method has higher complexity
due to a larger NoV than ones of other methods. However,
the proposed method is efficient on offline work with a more
considerable allowable maximum sampling time.

5. Conclusions

This paper provides the new stabilization criteria to increase
the maximum sampling interval for the synchronization of
CDN with time-varying coupling delay. Novel two-sided
looped functional and QGFWI are presented to obtain the
enhanced results. The two-sided stabilization method is for-
mulated by additional freematrices for present and next sam-
pling time. The proposed looped functional, which vanishes
at current sampling time and the next one, is constructed by
using the augmented states to consider the information of
sawtooth shape sampling pattern. Finally, simulation results
show that the proposed synchronization approach provides a
larger maximum sampling interval than one of the existing
results. In other words, the proposed method contributes to
extending the stable region and deriving a less conservative
result. Also, the effectiveness of the proposed sampled-
data control scheme has been demonstrated by numerical
examples.

In future work, practical situations will be considered in
sampled-data control for CDNs. For example, the proposed
scheme could be applied to the synchronization of CDN
systems with heterogeneous time-varying delay or with
asynchronous and aperiodic sampling characteristics.
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