
176  |   	﻿�  ETRI Journal. 2019;41:176–183.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

With the emergence of new wireless services, there has been 
an increasing demand for a radio spectrum. Cognitive radio 
is a type of radio technology that facilitates spectrum shar-
ing because it can detect whether communication channels 
are in use through spectrum sensing. If a primary user (PU) 
appears on the operating channel of a cognitive radio device 
or secondary user (SU), the SU should detect the PU im-
mediately and then switch to the backup channel within the 
channel move time. This type of spectrum sharing scheme 
optimizes the use of the available spectrum while minimizing 
interference to the PU. Thus, spectrum sensing, which is used 
to measure the channel occupancy, is one of the key tech-
nologies for cognitive radio. A number of spectrum sensing 

algorithms have been studied and can be classified into two 
categories. The first category requires a priori knowledge 
about the PU signal, such as a cross‐correlation scheme [1] 
and cyclostationary‐based detection [2], whereas the second 
category does not require any information of the PU, such as 
the eigenvalue decomposition detector [3] and energy detec-
tor (ED) [4‒8]. On the other hand, the eigenvalue decompo-
sition detector has significant complexity, and cannot achieve 
a desired performance in terms of the very small adjacent 
channel interference (ACI) [9].

An ED is generally used because it does not require a pri-
ori knowledge of the PU signals. It provides good detection 
performance when there is no noise uncertainty. However, an 
ED is very sensitive to noise uncertainty [4‒8]. In practice, 
the measured data may experience multipath fading and can 
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contain some multipath components, other interferences, and 
noise itself [4]. On the other hand, spectrum misuse behav-
iors, such as jamming and spoofing, may impose significant 
interference on spectrum environments [10,11]. Therefore, 
an ED cannot guarantee the desired detection performance, 
and cannot control the constant false alarm rate under noise 
uncertainty. The order statistics (OS) detector has been 
known to be robust against nonhomogeneous background 
signals [12‒15]. However, no analysis has been done yet to 
apply OS detection to spectrum sensing in a wireless chan-
nel, to the best of our knowledge. Only a few authors have 
attempted to apply OS detection to spectrum sensing. Shen 
et al. [16] proposed a blind spectrum sensing method based 
on goodness of fit testing of t‐distribution to solve noise vari-
ance uncertainty, and obtained the false alarm and detection 
performance through simulation. In [17], Rostami et al. have 
proposed OS based spectrum sensing, but their analysis has 
only been limited to the AWGN channel, and they obtained 
detection and false alarm performance through Monte Carlo 
simulations.

In this paper, we propose a robust spectrum sensing archi-
tecture and apply closed form expressions for both the false 
alarm and detection probabilities for radar detection in non-
homogeneous environments, which were previously derived 
by the authors [14,15], to spectrum sensing. From the equa-
tion of the false alarm probability, the exact threshold value is 
calculated to maintain a constant false alarm rate. The exact 
detection and false alarm probabilities are also obtained in 
nonhomogeneous environments with noise uncertainty.

On the other hand, collaborative or cooperative spectrum 
sensing (CSS) is necessary to maintain secure communica-
tions among a group of SUs [18‒21]. Recently, to defend 
against spectrum attacks such as the Byzantine failure prob-
lem, more general CSS techniques have been studied [22‒25]. 

Among those CSS methods, the OR rule has been known to 
increase detection probability greatly in a Rayleigh fading 
channel. Thus, we employ the OR rule and analyze the detec-
tion and false alarm probabilities of data fusion based on the 
decision data from each SU.

2  |   MODEL DESCRIPTIONS

Background noise may include an aggregation of various 
sources, such as thermal noise, multipath components, inter-
ference from adjacent systems within the vicinity, and the 
leakage of signals from other bands. To guarantee the co-
existence requirements between the PU and SU under the 
conditions of a hidden PU and deeply faded channel environ-
ments, which are natural in a wireless world, robust detection 
of the PU is required. Thus, it is necessary to develop a robust 
scheme of spectrum sensing, which has the characteristics of 
inherent protection against noise uncertainty.

As the basic architecture of a square‐law detector, a col-
laborative spectrum‐sensing scheme, as shown in Figure 1, 
is proposed. The background noise level is estimated as a 
function of the received data samples, such as X1, X2, ···, XM, 
where M is the number of data samples in the reference win-
dow, as shown in Figure 2. The mean level (ML) detector can 
be obtained by summing all cells, such as X=

∑M

i=1
Xi.

In an order statistic scheme, the data samples in the refer-
ence window in Figure 2 are sorted in increasing order. The 
resulting ordered sequence is X(1) ≤ X(2) ≤ ··· ≤ X(M), where X(1) 
is the smallest value and X(M) is the largest. The kth ordered 
statistics estimator is given by X = X(k). Test cell Y is compared 
to TX, where T is a scaling factor used to achieve the desired 
false alarm rate (FAR). Kim et al. have proposed an adaptive 
detection scheme for DSSS signals based on ordered statistics 

F I G U R E  1   Architecture of 
collaborative spectrum sensing model for 
spectrum sharing
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and analyzed the detection performance in a homogeneous en-
vironment [26,27]. Kim et al. have also derived a generalized 
order statistics detector for radar target detection in nonhomo-
geneous environments, which is called a generalized order sta-
tistics (GOS) constant false alarm rate (CFAR) detector [14,15], 
and applied a GOS CFAR detector to the acquisition of PN se-
quences in multipath fading mobile channels [28]. The power 
level estimator of a GOS local decision processor in Figure 2 is 
defined by X= f

�
X(1),⋯ , X(M)

�
=

∑M

i=1
�iX(i), where αi = 1 or 

0. As a fusion rule at a fusion center in Figure 1, we adopt an 
OR rule, that is, a 1‐out‐of‐N rule, because spectrum sharing is 
only possible when all SUs are able to use the common channel 
for communications, where N is the number of SUs. We call 
the architecture shown in Figure 1 a GOS‐OR spectrum‐sens-
ing scheme.

3  |   ANALYSIS OF GOS‐OR 
SPECTRUM SENSING SCHEME

3.1  |  Mathematical derivation of GOS‐OR
The PU detection of a local decision processor is declared if 
Y exceeds the threshold TX, as follows:

where the alternative hypothesis H1 corresponds to the pres-
ence of a PU signal, while the null hypothesis H0 corresponds 
to the absence of a PU signal. It is usually assumed that the 
square‐law reception of Rayleigh faded signals in AWGN 
have normalized likelihood functions, as follows:

where S is the average signal‐to‐noise ratio.
The false alarm probability is given by:

where MX[T] is the MGF of the random variable X.
The detection probability is obtained as

On the other hand, if the received data samples include 
noise uncertainty, such as multipath fading signals, inter-
ference signals, and noise itself, the likelihood function of 
square‐law energy detection in this type of nonhomogeneous 
environment is modeled [14,15,28,29] as

where Ii is the average interference‐to‐noise ratio (INR) of 
each cell in the reference window in Figure 2 and Ii = 0 in 
noise‐only environments. Thus, the MGF of X=

∑M

i=1
�iX(i) 

for the GOS local decision processor is obtained as

where β(i) = 1 + I(i) and I(i) is INR of the ith smallest value 
after ordering the data samples in the power level estimator in 
Figure 2. Furthermore, All M! Inverses indicates the possible 
transformations between {X1, X2, ···, XM} and {X(1), X(2), ···, 
X(M)}.

Therefore, the false alarm probability for the GOS detec-
tor is obtained from (4) and (7), as follows:

If there exists only Gaussian noise in the reference cells, 
I(i) = 0. Then, becomes

(1)Y

H1

>

<
H0

TX

(2)p0(y)= e−y,

(3)p1(y)=
e−y∕(1+S)

1+S
,

(4)

Pfa=E
{

P
[

Y > TX|H0

]}

= ∫∞
0

f (x) ∫∞
TX

p0 (y)dydx

=MX [T]

(5)

Pd=E
{

P
[

Y > TX|H1

]}

= ∫∞
0

f (x)∫∞
TX

p1 (y)dydx

=MX

[
T

1+S

]
.

(6)p
(
xi

)
=

e−xi∕(1+Ii)

1+ Ii

, 1≤ i≤M

(7)

MX (s)=EX

�
Exp (−sX)

�

=EX

�
Exp

�
−s

M∑
i=1

�iX(i)

��

=
∑

All M! Inverses

∫∞
0

dx(1)

Exp

�
−

x(1)

�(1)

�

�(1)

×⋯

× ∫∞
x(M−1)

dx(M)

Exp

�
−

x(M)

�(M)

�

�(M)

Exp

�
−s

M∑
i=1

�ix(i)

�

=
∑

All M! Inverses

M∏
i=1

1

�(i)

�
M∑
j=i

�
�−1

(j)
+s�j

��−1

(8)Pfa =
∑

All M! inverses

M∏

i=1

�−1
(i)

[
M∑

j=i

(
�−1

(j)
+T�j

)]−1

.

(9)

Pfa=M!
1

M∑
j=1
(1+T�j)

1
M∑

j=2
(1+T�j)

×⋯×
1

M∑
j=M

(1+T�j)

=
M

M+T
M∑

j=1

�j

×
M−1

(M−1)+T
M∑

j=2

�j

×⋯×
1

1+T
M∑

j=M

�j

=
M∏

i=1

M−i+1

(M−i+1)+T
M∑
j=i

�j

.

F I G U R E  2   Hypothesis testing scheme of local decision 
processor
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As a special case of the GOS detector, the OS detector is 
implemented with

Then, (9) reduces to

Equation (11) corresponds to the well‐known equation of 
false alarm probability for the OS CFAR detector derived by 
Rohling [12]. If we set all the coefficients of {αi, 1 ≤ i ≤ M} 
to one, then (9) becomes

which corresponds to the false alarm probability of the ML 
detector. On the other hand, the detection probability is ob-
tained from (5) and (7) as

The probabilities of a collaborative false alarm and detec-
tion for a GOS‐OR model may be written as follows [18,19]

where Pfa and Pd are the false alarm and detection probabil-
ities of a local decision processor, as given by (8) and (13) , 
respectively.

To demonstrate the performance of the GOS‐OR spec-
trum‐sensing algorithm from Figure 1, we assume that the 
number of SUs (N) is 5 and the number of data samples (M) is 
equal to 8. Here, T is calculated for the desired FAR according 

to various forms of the GOS algorithm from (9) , as shown 
in Table 1. GOS(6) indicates that the sixth smallest sample is 
selected as the background power level and GOS(1, 2, …, 8) 
is defined as the summation of the background power level 
for all samples in the window in Figure 2.

3.2  |  Performance analysis of GOS‐OR
Figure 3 shows the detection probabilities of various types of 
GOS detectors in homogeneous environments. As expected, the 
GOS(1, 2, …, 8) detector achieves the best performance among 
the four types of GOS detectors, whereas the GOS(6) detector 
shows the least performance because the detection performance 
in homogeneous situations improves as the number of noise 
samples increases. To keep the performance comparison con-
sistent, the desired FAR of Pfa = 10−3 is used for all graphs.

Figure 4 shows the collaborative detection probability of 
the GOS‐OR detector in homogeneous environments with 
no noise uncertainty. The detection performance improves 
significantly with the number of SUs, and the number of 
SUs in Figure 4 is 5. On the other hand, the collaborative 
false alarm increases linearly with the number of SUs be-
cause the GOS‐OR employs the OR rule of each SU. Thus, 
Pcfa = 1 − (1 − 0.001)5  ≈ 0.005.

Let us consider that the reference window in Figure 2 con-
tains two interfering signals whose distribution is different 
from that of noise. To demonstrate the operation of GOS‐OR 
in the low SINR environment, let us assume that the power 
level of the interference signal is equivalent to that of the PU 
signal. In this case, the power level estimate of the GOS(1, 2, 
…, 8) detector includes two interfering signals, and that of the 
GOS(1, 2, …, 7) detector may contain one interfering signal. 
From Figure 5, we can see that the detection performance of 
both the GOS(1, 2, …, 8) and GOS(1, 2, …, 7) detectors de-
grades severely in this type of nonhomogeneous environment 
with noise uncertainty. In particular, the GOS(1, 2, …, 8) de-
tector has the worst detection performance among the four 
detectors. On the other hand, both the GOS(1, 2, …, 6) and 
GOS(6) detectors maintain their detection performance well 
because they exclude interfering signals in the estimation of 
the background power level.

From Figure 6, we can also see that both the GOS(1, 
2, …, 6), and GOS(6) detectors maintain the desired FAR 
relatively well, whereas the false alarms of both the GOS(1, 
2, …, 8) and GOS(1, 2, …, 7) detectors become significantly 
smaller with the increase of INR, which means that the detec-
tion performances of both the GOS(1, 2, …, 8) and GOS(1, 
2, …, 7) worsen, as shown in Figure 5. This means that both 
the GOS(1, 2, …, 8) and GOS(1, 2, …, 7) detectors might 
miss the PU detection with high probability under this type 
of noise uncertainty, as shown in Figure 5.

Figure 7 shows the collaborative detection probability 
of the GOS‐OR detector in nonhomogeneous environments 

(10)�j =

{
1 if j= k,

0 if j≠ k, 1≤ j≤M.

(11)

Pfa=
M∏

i=1

M−i+1

M−i+1+T
M∑
j=i

�j

=
M

M+T
×

M−1

(M−1)+T
×⋯×

M−k+1

(M−k+1)+T

×
M−k

M−k
×⋯×

1

1

= k

�
M

k

�
(k−1)!(M+T−k)!

(M+T)!
.

(12)Pfa =
1

(1+T)M
,

(13)Pd =
∑

All M! inverses

M∏
i=1

�−1
(i)

�
M∑
j=i

�
�−1

(j)
+

T�j

1+S

��−1

.

(14)Pcfa = 1−
(
1−Pfa

)N
,

(15)Pcd = 1−
(
1−Pd

)N
,

T A B L E  1   Threshold coefficient T of GOS‐OR (M = 8)

Type of decision 
processor Pfa = 10−2 Pfa = 10−3 Pfa = 10−4

GOS(1, 2, …, 8) 0.7783 1.3714 2.1623

GOS(1, 2, …, 7) 1.2419 2.2504 3.6540

GOS(1, 2, …, 6) 1.9763 3.7212 6.2908

GOS(6) 5.8696 11.0859 18.7751

GOS(1, 2, 3, 4, 5) 3.3094 6.5748 11.7693

GOS(1, 2, 3, 4) 6.1326 13.2224 25.8646
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with noise uncertainty, wherein the reference window in 
Figure 2 includes two interfering signals. As expected, the 
collaborative detection performance improves dramatically 
over that of a local decision processor. The collaborative 
detection performances of both the G(1, 2, …, 6)‐OR and 
GOS(6)‐OR detectors improve with the number of SUs, as 
expected, whereas those of both the GOS(1, 2, …, 8)‐OR and 
GOS(1, 2, …, 7)‐OR detectors are still degraded owing to the 
interfering signals in the reference window.

It is also shown in Figure 8 that the GOS(1, 2, …, 6)‐OR 
and GOS(6)‐OR detectors maintain the desired FAR well, 
even though the collaborative FARs increase compared to 
those of local detectors, whereas the false alarms of both 
the GOS(1, 2, …, 8)‐OR and GOS(1, 2, …, 7)‐OR detectors 

become even smaller with an increase of INR, which means 
that the detection performance of the both the GOS(1, 2, …, 
8)‐OR and GOS(1, 2, …, 7)‐OR detectors worsens, as shown 
in Figure 7. Thus, both the GOS(1, 2, …, 8)‐OR and GOS(1, 
2, …, 7)‐OR detectors may miss a PU detection with high 
probability, even when the collaborative spectrum‐sensing 
scheme is employed.

3.3  |  Adaptive estimation of the 
number of nonhomogeneous signals
As discussed in Section 3.2, it is very important to eliminate 
nonhomogeneous samples or outliers in the reference win-
dow to minimize the missed detection of a PU under noise 

F I G U R E  3   Detection probabilities of various types of GOS 
detectors in homogeneous environments (M = 8)
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F I G U R E  4   Collaborative detection probabilities of various types 
of GOS‐OR detectors in homogeneous environments (M = 8, N = 5)
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F I G U R E  5   Detection probabilities of various types of GOS 
detectors in nonhomogeneous environments with noise uncertainty 
(M = 8, no. of interferers = 2, SIR = 1)
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F I G U R E  6   False alarm probabilities of various types of GOS 
detectors in nonhomogeneous environments with noise uncertainty 
(M = 8, no. of interferers = 2)
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uncertainty. As shown in Section 3.2, the GOS‐OR detector 
has inherent protection against these outliers if the threshold 
coefficients α are correctly determined. Thus, we need to 
determine the value of the threshold coefficients correctly. 
In real situations, there might be several types of signals, 
including interfering signals and SU signals, as well as ther-
mal noise. First, we should discriminate the noise samples 
from SU signals, and SU signals should not enter into the 
reference window. All SUs should have this capability. We 
then need to know the number of interference samples in the 
reference window. With these aspects in mind, we propose 
the following algorithm. The power level estimate X is ob-
tained by GOS(1, 2, …, M/2). Every sample is tested with 
this threshold value TX of the GOS(1, 2, …, M/2) detector, 

and if any sample exceeds this threshold, the number of in-
terferer in the window, denoted by N(I), is increased by 1. 
This process is continued until every sample in the reference 
window is tested. Finally, we set the threshold coefficient 
as follows:

Figure 9 shows simulations of thresholds for three types 
of GOS detectors. From the figure, we can see that the thresh-
old of the GOS(1, 2, …, 8) detector is too high to detect the 
PU signal under noise uncertainty and that of the GOS(1, 
2, …, 6) detector works well when the number of interfering 
signals is less than or equal to two. On the other hand, the 
adaptive GOS detector works well as long as the number of 
interfering signals is less than M/2 because it adaptively esti-
mates the number of interfering signals and eliminates those 
components.

4  |   CONCLUSIONS

Noise uncertainty is a serious problem in an ED. Even though 
OS detectors provide inherent protection against nonhomo-
geneous background signals, no work has been done yet to 
apply OS detection to spectrum sensing, to the best of our 
knowledge. Only a few authors have attempted to apply order 
statistics to spectrum sensing, but their analyses have only 
been limited to Monte Carlo simulations. In this paper, we 
have proposed a new spectrum sensing‐scheme based on the 
generalized order statistics and data fusion algorithm of an 
OR rule, and analyzed their detection and false alarm prob-
abilities precisely.

(16)�i =

{
1 if 1≤ i≤M−N(I),

0 if M−N(I)+1≤ i≤M.

F I G U R E  7   Collaborative detection probability of various types 
of GOS‐OR detectors in nonhomogeneous environments with noise 
uncertainty (M = 8, N = 5, no. of interferers = 2, SIR = 1)
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noise uncertainty (M = 8, Pfa = 0.001)
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Analytical results show that the GOS‐OR architecture 
can achieve optimum performance and maintain the desired 
false alarm rate if the exact coefficients of the GOS‐OR de-
tector can be selected. Here, one important aspect is to elim-
inate the interfering signals in the estimation of the power 
level. The adaptive estimation of the number of nonhomo-
geneous data samples in the reference window is addressed 
in Section 3.3.
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