
872  |  	﻿� ETRI Journal. 2020;42(6):872–885.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Recently, blockchain has been attracting attention as a tech-
nology that can realize a trust infrastructure in the 4th in-
dustrial revolution era and it is considered a field with high
growth potential. However, because of the blockchain tri-
lemma, the manner in which blockchain can be developed
further is questionable. This trilemma implies that a trade-off
needs to be found between three key aspects of blockchain:
decentralization, scalability, and security. A blockchain
system can address at most two of these trilemma points.
Permissioned blockchains cannot resolve the trilemma, be-
cause they do not fully meet the decentralization criteria.
Public blockchains guarantee security and decentralization;

however, in their case, the scalability problem also needs
to be resolved. This is called the scalability trilemma. The
Bitcoin community has sought to solve this problem by im-
plementing an additional protocol layer (called the Lightning
Network) that can increase the number of transactions per
second without degrading security or decentralization [1].
Developers of the Ethereum platform have attempted to mit-
igate the limitations inherent in the consensus mechanism by
sharding (blockchain fragmentation) or using second-layer
solutions, such as plasma [2].

Despite these efforts, public blockchains remain limited
in terms of providing real-time services because of archi-
tectural limitations regarding the support of immediate fi-
nality [3]. In the case of Bitcoin, even a transaction stored

Received: 25 October 2019  |  Revised: 25 March 2020  |  Accepted: 6 May 2020

DOI: 10.4218/etrij.2019-0489

O R I G I N A L A R T I C L E

Algorithm based on Byzantine agreement among decentralized
agents (BADA)

Jintae Oh   | Joonyoung Park  | Youngchang Kim  | Kiyoung Kim

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2020 ETRI

Artificial Intelligence Research Laboratory,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea

Correspondence
Jintae Oh, Artificial Intelligence
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea.
Email: showme@etri.re.kr

Funding information
This research was supported by the
Electronics and Telecommunications
Research Institute (ETRI) grant funded
by the Korean government [No. 2018-0-
0020, Development of High Confidence
Information Trading Platform Based on
blockchain (PON algorithm)].

Abstract
Distributed consensus requires the consent of more than half of the congress to pro-
duce irreversible results, and the performance of the consensus algorithm deteriorates
with the increase in the number of nodes. This problem can be addressed by delegat-
ing the agreement to a few selected nodes. Since the selected nodes must comply
with the Byzantine node ratio criteria required by the algorithm, the result selected by
any decentralized node cannot be trusted. However, some trusted nodes monopolize
the consensus node selection process, thereby breaking decentralization and causing
a trilemma. Therefore, a consensus node selection algorithm is required that can con-
struct a congress that can withstand Byzantine faults with the decentralized method.
In this paper, an algorithm based on the Byzantine agreement among decentralized
agents to facilitate agreement between decentralization nodes is proposed. It selects a
group of random consensus nodes per block by applying the proposed proof of nonce
algorithm. By controlling the percentage of Byzantine included in the selected nodes,
it solves the trilemma when an arbitrary node selects the consensus nodes.

K E Y W O R D S

decentralization, distributed consensus algorithm, O(N), proof of nonce

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿￼
https://orcid.org/0000-0002-4372-0943
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:showme@etri.re.kr

     |  873OH et al.

in a block cannot be completed within 1 hour because of
the six-block confirmation required. Finality occurs as
soon as a block is created, and the transactions contained
therein become immutable. Real-time services cannot be
implemented without finality. Recently, consensus algo-
rithms have been developed to ensure finality and to opti-
mize consensus costs by applying provable decentralization
technologies [4–6]. However, these methods have disad-
vantages, such as weak decentralization, because of their
inability to construct a new congress for each block, and
high consensus complexity, because the minimum number
of nodes required for Byzantine tolerance is significantly
large. Therefore, an algorithm is required that can construct
a congress that can withstand Byzantine faults with the de-
centralized method.

In this paper, we propose a new distributed consensus
algorithm called Byzantine agreement among decentralized
agents (BADA) that allows both decentralization and finality
to be ensured, while it maintains the same level of security
in public blockchains. The proposed algorithm can provide
a decentralized consensus by fairly selecting the consensus
congress and consensus quorum from among participating
nodes and achieves block-level finality by exchanging O(N)
messages. The proposed algorithm can operate when the
number of nodes participating in the agreement is larger than
four, as compared to other algorithms that require at least sev-
eral hundred nodes.

A proof of nonce (PoN) algorithm is proposed for decen-
tralized consensus node selection. It describes the generation
of a random value by PoN and the selection of a node, and it
explains the method used to define a consensus congress and
consensus quorum to tolerate Byzantine faults.

In addition, the proposed distributed consensus algorithm
allows non-fixed nodes to exchange O(N) messages through
the following consensus steps: delegate request, prepare, and
commit. At the delegate request step, a preparation block is
created by selecting only the transaction agreed by f + 1 nodes
or more among the responding 2f + 1 consensus quorum
among a 3f + 1 consensus congress. The created preparation
block is delivered to the 2f + 1 consensus quorum at the pre-
pare step, and finally, the consensus is completed using mul-
tisignatures from the consensus quorum at the commit step.

Section 2 introduces existing published studies on over-
coming the problems and limitations of decentralization tech-
nologies and provides an analysis of the methods presented to
solve these problems from the perspectives of structure and
operation. Section 3 describes PoN applied to establish de-
centralization and to determine the consensus congress and
consensus quorum, and Section 4 describes the consensus
algorithm proposed in the present paper, the complexity of
which is O(N). Section 5 presents the results of the protocol
simulation and proof of concept (PoC) implementation, and
Section 6 outlines the main conclusions.

2  |   RELATED WORK

Consensus algorithms can be categorized into competitive
and non-competitive methods. A consensus algorithm can
be chosen according to the purpose of the application field.
Thus far, no consensus algorithm has been successfully com-
mercialized because of technical limitations, such as the re-
quirement that it simultaneously provide decentralization,
scalability, and security.

The consensus algorithm constitutes a technology that
is aimed to provide an agreed conclusion among unreliable
nodes and basically is required to solve the Byzantine prob-
lem. However, the Byzantine problem is complex because
of the traitor's ability to lie. Existing Byzantine fault tolerant
(BFT) studies have shown that the Byzantine generals' prob-
lem can be solved with a node size of 2f + 1 for f Byzantine
nodes, assuming that the signatures can be used to detect
changes in the message content of an honest general [7].

A BFT algorithm relies on two assumptions: detection of
the original data corruption is possible through the signature
of the data and the data should be delivered within a certain
time (synchronous network). However, the actual blockchain
technology is implemented as a peer-to-peer (P2P) network,
which cannot guarantee that the data will be delivered within
a certain time frame. To address this issue, the practical BFT
(PBFT) algorithm is enhanced using a method to operate
under the realistic partial synchronous network environment
[8].

To solve the problem of delayed finalization, which is
considered the most important limitation of the competitive
consensus algorithm, various studies have been conducted to
provide block-level finality by applying the PBFT concept to
the competitive consensus method [9]. Recent research work
has been focused on improving the PBFT algorithm to re-
duce the consensus cost in terms of the message exchange
complexity from O(N2) to O(N) [10,11] and the consensus
congress size from 3f + 1 to 2f + 1 [12,13].

MinBFT is a well-known consensus algorithm that allows
a reduction in the consensus congress size from 3f + 1 to
2f + 1. It can tolerate f Byzantine nodes, requiring only 2f + 1
nodes, and it includes a unique identifier generated by the
trusted execution environment (TEE) in a message so that
the process of message exchange is verifiable. Consequently,
occurrences of equivocation are avoided, and therefore, f
Byzantine nodes can be tolerated when using only 2f + 1
nodes. To generate a unique identifier, the following condi-
tions must hold: the same identifier should not be assigned to
two different messages, a message identifier must be mono-
tonically incremented so that it cannot take a value smaller
than that of the previous message identifier, and the message
identifier must be updated sequentially.

Moreover, the FastBFT algorithm was introduced to re-
duce the consensus of the message exchange complexity

874  |     OH et al.

from O(N2) to O(N). FastBFT increases the processing
power through aggregation of messages to enable their de-
livery through the primary node, rather than allowing all
the nodes to send and receive messages between each other
directly.

However, both the above algorithms utilize TEE as the
underlying hardware specification to prevent the equivoca-
tion of Byzantine nodes. Then, they reduce the total number
of nodes required for a consensus and therefore the number of
messages exchanged during a consensus.

Recently, two algorithms called Algorand and Zilliqa
were proposed to provide block-level finality based on the
decentralization concept. The decentralization concepts sug-
gested by both algorithms are mathematically proven, imply-
ing that only a portion of the nodes are required to participate
in a consensus process.

Algorand is a consensus algorithm that uses a verifiable
random function (VRF) to address the issue of the number
of nodes participating in a consensus. In Algorand, it is as-
sumed that more than 80% of participating nodes are honest
nodes. Under the Byzantine proportion of 20%, it creates a
committee of 2000 nodes in Phase 1 and then sets up a com-
mittee of 2000 nodes for 10 out of 11 steps in Phase 2. In the
last step in Phase 2, it makes a committee of 10 000 nodes
to ensure a safety violation probability of 5e−9 [4]. The mes-
sage complexity of Algorand is O(cn), where c is the num-
ber of nodes that compose a committee using VRF in a 20%
Byzantine agreement environment [14,15]. In the conducted
tests, which included 50 000 nodes, the consensus time was
not negligible as, on average, the completion of this process
required 22 seconds. Therefore, various opinions exist about
the applicability of this approach to the various applications
that require real-time service.

The Zilliqa algorithm arbitrarily selects 800 nodes from
a 25% Byzantine environment to proceed with the consensus
[16]. A number of consensus algorithms, including Zilliqa,
run the prepare phase of a consensus by the agreement of
2f + 1 nodes. As the composition of a committee is based
on proof of work (PoW), a new committee cannot be con-
structed per block, and therefore, this algorithm fails to

provide decentralization. It also requires that two rounds of
multisignatures be completed to agree on a block.

3  |   DECENTRALIZATION BY
PROOF OF NONCE

Many decentralized consensus algorithms used in blockchain
are limited with respect to providing full decentralization.
When a consensus node is randomly selected for decentrali-
zation, the following three conditions must be satisfied. First,
each node must be able to perform eligibility verification
only once per block height. Second, the eligibility of a node
to participate in the agreement should not be predictable in
advance. Finally, other nodes must be able to confirm that
they will qualify for the fair agreement. In this paper, a new
method for the decentralization of consensus nodes and a
non-competitive agreement algorithm that has a O(N) mes-
sage exchange complexity is proposed.

3.1  |  Participation in the pool with
a nonce chain

In this study, given a nonce and the previous blockhead
value, the general approach is to calculate an arbitrary value,
compare it with the threshold value, randomly select a node
from the participating pool, and then create a congress. A
“congress” is defined as a group of nodes selected to partici-
pate in the consensus and a “quorum” as the minimum num-
ber of nodes required for voting within a congress. Nodes can
participate in the pool by posting their nonce chain informa-
tion. However, the participation entitlement of a node must
be limited by providing an incentive mechanism to prevent a
malicious node from registering multiple nonce chains.

For the process of selecting arbitrary nodes in the pool,
we propose a verification method that uses a nonce chain and
demonstrates its use. Then, we discuss the creation and use
of the nonce chain.

3.1.1  |  Creation and preparation of
a nonce chain

To enable nodes to participate in an agreement, a hash chain
generated as shown in Figure 1 is required. Then, we gener-
ate a seed value (base) to obtain one hash chain and hash
the value continuously k times to generate a hash chain hav-
ing a length of k [17]. As shown in Figure 1, the base value
provided by the key chain generated by the master key and
random secret value is used as a seed value. The seed value
used by the node is a hash value with the master key of the
node and the random value generated secretly by the node as

F I G U R E 1   Proposed nonce chain

Hash Chain

master key

Base1

Basen

Base0 hash1(Base0) hashk(Base0) Start height 0

hash1(Base1) Hashk(Base1) Start height 1

nonce(k) nonce(1) Start heightnonce(2N)nonce(2N+1)

     |  875OH et al.

the input value. When one hash chain is consumed, to create
the subsequent hash chain a base value is obtained by incre-
menting the random secret value by 1 and hashing with the
master key. Then, the base value is hashed continuously to
generate a hash chain. The generated data have the features
of a hash chain, but in this paper, we refer to it as a nonce
chain, because this information is used as a nonce to calculate
the random value. Nodes are ready to use the nonce chain to
participate in the pool when its last value (nonce(1)) and the
start_height of the nonce chain have been revealed.

3.2  |  Checking the eligibility of nodes

In the process of finding a consensus, if the current block
height is h, the node can calculate a nonce chain index N
based on (1) and can determine a nonce by indexing the
nonce chain.

A node performs the eligibility check for a member of a
congress according to (2). The header h − 1 is the header
hash of the last block, and nonce(2N) is obtained from the
node's own nonce chain. These two values are hashed, and
the obtained result is compared with a threshold referred to
as “difficulty.” If the comparison outcome is true, then the
node qualifies as a candidate for the congress. The value of
difficulty is determined based on the selection probability, p,
of the node.

A node cannot predict the unexposed nonce of other nodes.
Moreover, a node knows its own nonce value in advance, but
it cannot predict unpublished blockhead values. Therefore, it
is impossible to predict who will be a member of a congress.
A node that has passed the eligibility check publishes its own
nonce(2N) and block height h. We add a digital signature to
verify the integrity of the data to be published.

3.2.1  |  Verification of nodes claiming
eligibility

To verify the eligibility claim of a node, we check that h
published by the node has the same value as the last block
height + 1 published to the network. If this result is true, the
value obtained by hashing the node's nonce(2N) by (2N − 1)
times is compared with the value of nonce(1) issued from that
node. If the result is true, then the condition of (2) is checked.
If the outcome is true, then the node's eligibility claim is true;

therefore, it can be included in the subsequent block con-
gress. However, if the result of the test is false, then it is con-
sidered that the node made a false claim, and consequently,
it is excluded from the subsequent block congress and can
be added to the blacklist. In general, digital signatures are
used to ensure data integrity. If the number of congress nodes
increases to 1000 or more, the integrity check causes a delay
of a few seconds. If an attacker creates a large number of
signed eligibility checks and uses them to attack a server, the
process can be delayed, and the entire service can fail. In this
paper, we propose a simple verification method to check the
node's eligibility by computing two hashes and performing
a comparison operation. Hash operations can be performed
considerably faster than the asymmetric cryptographic opera-
tions used in digital signatures. The load on the verification
server can be reduced to that of checking the electronic signa-
ture of only a node that failed the eligibility check.

3.3  |  Message integrity check

The proposed consensus algorithm employs multisignatures
to reduce the number of consensus messages. The message in-
tegrity can be checked by using two nonces sequentially from
the nonce chain. We assume that Node i is selected as a con-
gress candidate as a result of the previous eligibility check.
The node publishes nonce(2N) and h to prove its qualification.
At the same time, Node i generates msg = nonce(2N)||pki||Qi
including pki and Qi and then calculates and publishes the
message digest value of nonce(2N + 1) and message(msg)
data, as

Having nonce(2N), it is difficult to predict nonce(2N + 1);
therefore, the node publishes nonce(2N + 1) in the agreement
process to enable the integrity check of msg. In (3), || refers
to an operation that consists of connecting two arguments by
a concatenate operation to create a joint dataset and H() is a
hash function to calculate a message digest.

As shown in Figure 2, the proposed distributed consen-
sus algorithm is composed of the following stages: request,
delegate request, prepare, and commit. The client broadcasts
requests to the participating nodes, and then, the nodes de-
termine whether the request is abnormal and save normal re-
quests in their own proposed transaction pool. Node i selected
as a congress member in the delegate request stage transmits
a message, including the requests stored in the proposed
transaction pool, the value of its own nonce(2N + 1), and the
digital signature of these messages, to Server 0. At this time,
Server 0 verifies the delegate request of Node i based on the
process of Algorithm 1.

(1)N=h−start_height.

(2)H(header h−1||nonce (2N))<difficulty.

(3)msg||H(msg||nonce(2N+1)).

876  |     OH et al.

Algorithm 1 Pseudocode for request verification.
1: procedure CHECK_NODE_REQUEST((nonce (2N),

nonce (2N + 1), digest, msg))

2: if H(nonce(2N + 1)) = nonce(2N) then

3: if H(msg, nonce(2N + 1)) = digest then

4: node_request = good

5: end if

6: node_request = bad

7: end if

8: Return node_request

9: end procedure

An attacker can compromise the transferred msg but
cannot create a message digest without knowing non-
ce(2N + 1). Only when the verification result of Algorithm
4 fails, does Server 0 check the digital signature to reduce
the verification load of Server 0. It should be noted that
multisignatures are vulnerable to rogue keys [5,6,18,19]. In
general, when registering a public key to prevent a rogue
key attack, it is necessary to acquire the knowledge of a
user who can verify the secret key [20]. In this study, we
sought to implement protection against rogue key attacks
using a nonce chain. As the attacker cannot predict the
nonce arbitrarily, the validity of the nodes, pki and Qi, can
be confirmed by applying the nonce inspection process.
When Server i publishes the value of nonce(2N + 1) in the
delegate request stage, H(nonce(2N + 1)) must be the same
as the value of nonce(2N) that was published by Node i in
the process of selecting a congress.

3.4  |  Role of congress members

In the process of selecting congress members, the role of each
node must be assigned, as shown in Figure 2. Servers 0–3 are
the congress members of the current block. Server 0 consists
of one node, and Servers 1–3 consist of 3f(f ≥ 1) nodes. The
congress members are changed for each block. We perform
the following operations to grant the role of Server 0 to any
node in the congress: a part of the H(header h − 1||nonce(2N))

data transmitted by each node is cut (for example, the most
significant of 32 bits) to create a coupon. At this time, the node
with the minimum coupon value performs the role of Server
0. If there are two or more nodes with the same minimum
coupon value, the node with the smallest nonce(2N) value
is selected as Server 0. If a node uses the normal nonce(2N)
and nonce(2N + 1), nonce(1) of the node can be updated with
nonce(2N + 1), and at the same time, start_height is updated
with the current block height. This approach can serve to re-
duce hash computation delays in the future. Moreover, if a
problem arises involving Server 0 in the consensus and the
agreement becomes impossible, the node having the smallest
coupon other than Server 0 can assume the role of the new
Server 0.

The next section explains the determination of a congress
and quorum for a consensus.

3.5  |  Size of congress and quorum

In the case of the PBFT algorithm, considering the number of
consents equal to f + 1 at the prepare stage, the agreement is
completed if the consent of 2f + 1 is obtained at the commit
stage. Thereby, the PBFT algorithm requires a 3f + 1 size
congress and a 2f + 1 size quorum to be able to tolerate f
Byzantine nodes. This condition is also applied to the random
selection of consensus nodes. The reason for requiring f + 1
consents at the prepare stage is that the considered Byzantine
environment constitutes at most 33%, and therefore, at least
one normal consent is included in f + 1; consequently, the
prepare stage cannot be completed only by Byzantine nodes.
Therefore, to design a new Byzantine resistance consensus
algorithm, a means of detecting data corruption and keeping
the percentage of Byzantine nodes below 33% should be pro-
vided in the communication process.

In this study, we selected a congress through a thresh-
old comparison, as shown in (2). The nodes are selected in
a Bernoulli process, where the success probability is p. In
addition, the selection of a congress from n nodes results in
a binomial distribution in terms of the problem of finding
the probability distribution of congress member x. From the
probability distribution, when a PBFT agreement is made by
any number of nodes, x, selected in a particular moment, (4)
returns the probability value for the Byzantine node to win
the agreement. To ensure that the agreement operates appro-
priately, the selection probability, p, for a node, where the
probability value in (4) is less than or equal to a certain value,
must be determined.

(4)
n�

x= 1

x�
k=

�
x− 1

3

�
+ 1

⎛
⎜⎜⎝

b

k

⎞
⎟⎟⎠

pk(1−p)(b−k).
F I G U R E 2   Proposed Byzantine agreement among decentralized
agents (BADA) consensus algorithm

Delegate
request

Commit

Server 0
(primary)

Server 1

Server 3
(passive)

Client
Request Reply

Server 2

Prepare

     |  877OH et al.

However, even if p is determined, it is not guaranteed
that all nodes will respond within a fixed time T through
the asynchronous network. It is not possible to ensure that
z is the same as the number of selected nodes x, where z is
the number of nodes responding. Therefore, it is difficult
to guarantee that the proportion of Byzantine nodes is less
than 33%.

Nodes that participate in the pool have a nonce chain gen-
erated from each master key. As this nonce chain is a random
value that is not related to the values of other nodes, the selec-
tion of nodes is an independent event. Assuming that the con-
sensus algorithm can tolerate Byzantine faulty nodes at the
maximum bp rate, the maximum number of Byzantine nodes
contained in all nodes is b = nbp. As this is an independent
event, the cumulative probability that f or fewer Byzantine
nodes are selected can be calculated as

Therefore, when the probability that the Byzantine nodes
exceed f is less than or equal to Pmax_bzt, a condition can be
set, such as

Assuming that the number of nodes participating in the pool
is n and that the proportion of Byzantine nodes is bp, (6) shows
that the probability of the largest number of Byzantine nodes
to be selected with a given probability p exceeding f is smaller
than Pmax_bzt. While forming a congress 3f + 1 in size under
the same conditions of n and p, the maximum probability that
Byzantine wins is less than Pmax_bzt, and the PBFT agreement
is possible. At this time, if the number of responding nodes is
3f or less, it is not possible to update a new congress composed
of 3f + 1. To change the congress according to every height, the
cumulative probability of being selected must be minimized to
be below 3f. We define (7) with the cumulative probability that
nodes of 3f or less are selected less than Pmin_node.

Assuming that the number of participating pools is n and
that the Byzantine fraction bp that the algorithm is required
to tolerate is given, one can calculate the probability, p, to
satisfy (6) and (7) at the same time. On the above basis, we
propose a new scheme to determine the size of the quorum
and the congress, as follows.

3.5.1  |  Decision scheme

When the number of participating pools is n and the toler-
ated Byzantine ratio is bp, we calculate the probability, p, to
satisfy (6) and (7) at the same time and set the congress size
fixed at 3f + 1 and the quorum size at 2f + 1. At this time, if
the number of congress candidates obtained across the net-
work is less than 3f + 1, the congress is not updated, whereas
if it is 3f + 1 or more, an arbitrary (first-come-first-served)
3f + 1 congress is formed. In the study, we set Pmax_bzt to
1.1e−16 and Pmin_node to 1.0e−6. By using the SciPy package
in Python, the maximum cumulative probability of binomial
distribution is obtained, being approximately 1 – 1.1e−16.
Assuming that the period of the consensus is 10 seconds,
if more than f Byzantine nodes are selected under a given
Pmax_bzt condition, they can occur once in 26 billion years.
Moreover, the probability of selecting 3f or fewer congress
nodes is Pmin_node.

Figure 3 shows the results of simulating an example of the
proposed scheme assuming that the number of n is 10 000 and
the Byzantine proportion is 20%. The Y-axis refers to the num-
ber of nodes corresponding to each condition and the X-axis to
the average number of randomly selected nodes. Let us sup-
pose that probability p is set to 0.1419; then, the probability
that the number of Byzantine nodes exceeds 418 is approx-
imately 1.1e−16 according to (6). Further, 3f in (7) becomes
1254, and the probability that the number of selected nodes is
3f or less is approximately 9.6e−7. Considering this condition,
a PBFT agreement within random selected nodes is possible,
in which the probability that Byzantine wins is 1.1e−16 or less.

Figure 4 represents the probability p, congress size 3f + 1,
and maximum number of Byzantine nodes f, which simulta-
neously satisfy (6) and (7), when the proportion of Byzantine
nodes is maintained at 20% and the number of participation
pools is changed up to 50 000.

Previous methods were limited in that a minimum num-
ber of nodes were required to satisfy the design conditions.
Unlike in the previous methods, in the scheme proposed in the
present paper, the design conditions are satisfied according to
the change in the number of nodes, as, given the possibility to
calculate the probability p, the operation is possible even when
the number of nodes participating in the agreement is small.

4  |   BYZANTINE AGREEMENT
AMONG DECENTRALIZED AGENTS
(BADA) ALGORITHM

In this section, we discuss multisignature-based consensus
algorithms applied to reduce the number of messages re-
quired to reach an agreement to O(N), under the assumption
that the scheme proposed in the previous section is used for a
congress and quorum.

(5)
f�

k= 0

⎛
⎜⎜⎝

b

k

⎞
⎟⎟⎠

pk(1−p)(b−k)

(6)1−

f�
k= 0

⎛
⎜⎜⎝

b

k

⎞
⎟⎟⎠

pk(1−p) b−k
≤Pmax_bzt.

(7)
3f�

x= 0

⎛
⎜⎜⎝

n

x

⎞
⎟⎟⎠

px(1−p) n−x
≤Pmin_node

.

.

878  |     OH et al.

4.1  |  Message complexity

In general, O(N) is an expression of message complexity,
which refers to the number of messages exchanged between
nodes in a distributed network environment and is calculated
mainly through an analysis that considers the worst-case sce-
narios. In other words, an evaluation can be obtained by cal-
culating the number of messages sent and received between
nodes in the process of reaching an agreement using the algo-
rithms of the variance agreement. The number of messages in
this process depends on the number of nodes that participate
directly in the agreement. If f is 1 in PBFT, there are four
nodes and the number of messages sent and received during
the PBFT commit phase can be calculated as 4 × 3 = 12. If
this is done in a network of N nodes, the number of messages
that occur can be calculated as N(N − 1). If this is expressed
using big-O notation, which is a type of complexity notation,
the message complexity can be expressed as O(N2). The mes-
sage complexity that occurs in the commit phase of MinBFT
is O(N2). FastBFT has a message complexity of O(N), which
occurs at the committee stage as a result of gathering mes-
sages through sharing.

In the proposed BADA algorithm, the largest message ex-
change is 2f in the commit stage of Figure 2, where 2f < N is
shown in Figure 4. The message complexity of BADA is O(N).

4.2  |  Multisignature algorithms

Multisignature is a scheme to produce a single signature
that aggregates signatures from a set of users who signed the
same message [21]. A pairing-based multisignature has the
advantage that it can be signed without the need to establish
a quorum in advance during the process of signature inte-
gration. It requires secret sharing preprocessing; however,

it can aggregate node signatures simultaneously following
the order in which the quorum has not been predetermined
[22]. Such a structure has the advantage that it can aggre-
gate any 2f + 1 signatures delivered previously without
an agreement being preset across the quorum nodes in an
asynchronous network such as a P2P network. However,
the problem arises that a fast cryptographic acceleration al-
gorithm to complete the entire agreement process in a few
seconds with a key length of 256 bits or more [23] has yet
to be introduced. In addition, a pairing cryptograph can
be defined only on a supersingular elliptic curve. When a
digital signature algorithm, such as the elliptic curve digital
signature algorithm (ECDSA) in blockchain, is used, it is
suggested that two elliptic curve and encryption methods
be employed. However, it is not compulsory to use pairing
cryptography for multisignature. The Schnorr multisigna-
ture is a possible example.

The Schnorr multisignature must, however, fix and set up
the quorum in advance, although the signature integration
process is simple. In the case of the EC-Schnorr multisig-
nature, the deficiency exists that the process of merging the
public key and random value of each signer has to be com-
pleted in advance before the signatures are merged [18]. The
Schnorr multisignature algorithm is vulnerable to rogue key
attacks and requires a means of protecting signatures from
fake keys. However, the process of combining signatures is
simple and has the advantage that the entire consensus algo-
rithm is completed in a few seconds using keys of 256 bits or
more. The Schnorr signature can be used as a substitute for
the ECDSA digital signature.

Table 1 presents the simulation of the time required
to process EC-Schnorr multisignatures, when the value
of probability p is selected as 0.1419, under the assump-
tion that the number of participating pools is 10 000 and
the Byzantine proportion is 20%. The secp256k1 elliptic
curve is used for the Schnorr signature. It is obtained as a
result of simulation using Python on a computer equipped
with a 2.3 GHz Xeon process. The time consumed by each
node to generate a public key pair and a Qi pair is approxi-
mately 101 ms on average. Server 0 requires approximately
1.164 seconds to complete the remaining process, except
for key generation, whereas nodes other than Server 0 re-
quire approximately 9 ms; therefore, the time consumed by
Server 0 must be minimized.

4.3  |  Operation of the proposed
consensus algorithm

The proposed consensus algorithm employs the EC-Schnorr
multisignature in the process of finding the agreement. The
consensus algorithm presented in Figure 2 is described step
by step in the following.

F I G U R E 3   Determination of the congress and the quorum using
maximum Byzantine distribution

1600

1400

1200

1000

800

600

400

200

00 200 400 600 800 12001000 1400

detceleS
sedon

Nodes in participant pool (n)

Congress

n

Min_node

f n/3

Max_bzt

     |  879OH et al.

4.3.1  |  Request

In the proposed algorithm, the client is not able to specify
Server 0, as the congress is not fixed but is reconstructed for
each block. The client broadcasts a request to all nodes of
the participation pool. Therefore, other nodes not selected in
the congress continue to receive the request. In general, the
PBFT algorithm assumes Server 3 is in a passive state if it
does not respond within a given time.

4.3.2  |  Delegate request

Participating nodes in the pool determine whether there is
an abnormality in the received request and place a normal
transaction in their own proposed transaction pool. A new
consensus can be initiated when the previous block Server
0 sends a reply block. The new agreement is initiated with
a delegate request. At this stage, the node selected as a con-
gress member in the new block generates a delegate request
message with the proposed transaction stored in the trans-
action pool and sends it to Server 0. The delegate request
message of the node contains the proposed transaction,
nonce(2N + 1), and Qi(h + 1). The proposed transaction is
a set of transactions that were stored in the proposed trans-
action pool of a node. nonce(2N + 1) and Qi(h + 1) can be
used in the consensus of the subsequent block height if the
congress is not updated appropriately. In addition, the digital
signature of the sending server is attached to the message.
The signature can be used in the commit phase to check for
errors in the message.

The operation of Server 0 receiving the delegate request
message is represented in Algorithm 2. Server 0 receives the
delegate request from a node and repeats the operation until

the quorum size 2f + 1, including itself, is satisfied in line 3,
that is, the “While” statement of Algorithm 2. In the block,
where the agreement is completed, pki and Qi of the nodes
selected as the congress in the subsequent block are recorded.
Therefore, line 5 searches the index of the congress node that
has sent the delegate request message and combines the values
of the multisignature keys in line 6. The MT_LIST function of
line 14 is a processor that provides a list of transactions from
the delegate requests of a server and creates a map in which
each element of the list is requested by each server. When the
“While” statement is completed, r of line 11 is generated, and
if the value of line 12 is returned, a prepare message including
this value is generated and transmitted to the member of the
congress.

4.3.3  |  Prepare

Using the line 14 function of Algorithm 2, f + 1 or more
nodes simultaneously request results corresponding to t_
list and t_map. At this time, Msg of line 10 is the head
value of the complete block including the pregenerated
t_list and t_map. At the prepare stage, Server 0 generates
a prepare message including Q, Pk, r, and Msg returned at
line 12, and transmits it to the congress. At this time, the
prepare message is amended with the digital signature of
Server 0 so that the attacker cannot change the content in
the message delivery path. The prepare block must be a
complete block including transactions as in a general block
chain. It is a complete block, because we need to use multi-
signatures signed by all the agreed quorums on the prepare
block provided by Server 0 so that bits in future blocks
cannot be modified or added. In addition, to identify each
of the 2f + 1 nodes, we create and send a delegate server
bitmap. The delegate server bitmap can also be calculated
based on the proposed transaction bitmap (t_list, t_map)
if the delegate request is restricted to include at least one

T A B L E 1   Simulation results of the delay time of each part of the
EC-Schnorr multisignature with 837 nodes

action

Time (ms)

Server 0 Server 1–3

Private, public key 50.523 50.523

k, Qi 50.576 50.576

r = H(Pk||Q||Msg)mod p 436.567 N/A

si = ki − rskimod p N/A 8.820

Invalid Qi check 620.660 N/A

S=
∑n

i= 1
s

i
3.392 N/A

Sig verify 103.872 N/A

F I G U R E 4   Scheme satisfaction condition according to the
number of nodes

1600

1400

1200

1000

800

600

400

200

Se
le

ct
ed

no
de

s
1800

5000
Total nodes (n)

10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000 50 000

np

3f + 1

f

00

880  |     OH et al.

transaction. Therefore, Server 0 adds its own digital sig-
nature to a message containing information (prepared
transaction, proposed transaction bitmap, delegate server
bitmap, Q, Pk, and r) to create a prepare block and transmit
it to Servers 0–2, which perform multiple signing on that
block. The quorum node confirms that the prepare mes-
sage will be reflected without errors including transactions
that are requested from at least f + 1 nodes of the quorum.
This prevents Server 0 from creating a message with false
transactions.

Algorithm 2 Pseudocode for delegate request
1: procedure DELEGATE_REQUEST()

2: node_num = 0, t_list = 0, t_map = 0, Pk = 0, Q = 0

3: while node_num < quorum do

4: Input nodes delegate request

5: find node index i

6: Pk += pki, Q += Qi

7: t_list, t_map = MT_LIST(request, t_list, t_map)

8: node_num += 1

9: end while

10: Msg = t_list, t_map, …

11: r = H(Pk ||Q|| Msg)mod p

12: Return Q, Pk, r, Msg

13: end procedure

14: procedure MT_LIST(request, t_list, t_map)

15: for each item in request do

16: if item is in the t_list then

17: push item in t_list

18: t_map[len(t_list)] = 1

19: else

20: t_map[t_list[item]] +=1

21: end if

22: end for

23: Return t_list, t_map

24: end procedure

4.3.4  |  Commit

Algorithm 3 is used to confirm the process of preparing a
message. Servers 0–2, which receive the prepare message,
verify the digital signature of Server 0 by line 2 of the al-
gorithm to check whether there is an abnormality in the
message. If the verification result of the digital signature is
true, the remaining operation of the algorithm is performed.
However, if it is false, then, Server 0 immediately returns
false and notifies other nodes of this result and activates an
empty agreement.

Algorithm 3 Pseudocode for confirming a prepare
message

1: procedure CHECK_PREPARE_MSG(Q, Pk, r, Msg,
Sign)

2: if Sign is valid then

3: Pk = 0, Q = 0

4: node_list = CHECK_BITMAP(Msg)

5: if node_list > 0 then

6: for i in node_list do

7: Pk += pki, Q += Qi

8: end for

9: if r = H(Pk ||Q|| Msg)mod p then

10: Return True

11: end if

12: end if

13: end if

14: Return False

15: end procedure

16: procedure CHECK_BITMAP(Msg)

17: node_list = 0

18: if server count in Msg < quorum then

19: return 0

20: end if

21: for item, index in Msg do

22: if bit count of item = 0 then

23: Return 0

24: else

25: push index in node_list

26: end if

27: end for

28: Return node_list

29: end procedure

Upon receiving the prepare message, the server executes
lines 3 to 12 of Algorithm 3 to verify the validity of r gener-
ated by Server 0. The required quorum is checked at line 18,
and as a result, it returns 0 if false, and exits the check_bit-
map() function. In addition, line 22 checks whether the trans-
action requested by at least one or more servers is included in
the Proposed Transaction, and returns 0 if the result is false.
Line 25 identifies the indices of the transactions that have
obtained consent from f + 1 or more nodes, adds them to
node_list, and returns the final result.

If the value of node_list is 0 in line 5, the line returns false
and terminates the function. When node_list is not empty,
pki and Qi are extracted for index i stored in the node_list,
and Pk and Q are combined in line 7. When the loop of line
5 ends and the result of executing line 9 is true, the node
partial signature si = ki − rski is created using the secret key

     |  881OH et al.

(ski) and secret random value (ki) of a node, and the message
containing the result is transmitted. If the result of line 9 is
false, Server 0 receives invalid Pk, Q, r, or Msg. Therefore,
other nodes are notified that they should proceed with the
empty agreement. Server 0 does not immediately verify par-
tial signatures individually. It takes time to verify hundreds of
partial signatures, which affects the overall agreement time.
Thereafter, Server 0 merges each partial signature into a tree
and first verifies the validity of the multisignature. If the ver-
ification result is false, the fake signature is searched in the
tree and the digital signature of the server that has sent the
fake signature can be additionally checked.

The anomaly of the partially merged signature can be
checked, as shown in Algorithm 4, by the characteristics
of the EC-Schnorr multisignature. To accomplish this, it is
required that Algorithm 4 up to line 6 be executed for two
values (Pkpar and Spar) to obtain Qpar, to repeat the process
of executing Algorithm 4 up to line 6, which matches these
results again, and then to construct a tree. At this time, the
vertices of the tree become S, Q, and Pk. Here, S is a part of
the value of the Schnorr multisignature result, Q is a value
obtained by combining the parts of Qi, and Pk is the public
key of the combined multisignatures.

Algorithm 4 Pseudocode for verifying multisignature
1: procedure PARTIAL_VARIFY(pki, pkj, Qi, Qj, si, sj)

2: Pkpar = pki +pkj

3: Qpar = Qi +Qj

4: r = H(P kpar ||Qpar|| Msg)mod p

5: Spar = si +sj

6: Qvar = SparG +rP kpar

7: if Qpar = Qvar then

8: Return True

9: else

10: Return False

11: end if

12: end procedure

If Server 0 scans entire partial signatures sequentially, the
identification of fake digital signatures requires, on average,
a number of verifications equal to (2f + 1)/2. However, it is
possible to discover a server that sends a fake signature by
applying the partial signature inspection through a tree and
one digital signature inspection.

As soon as Server 0 has received si from all quorum serv-
ers, the subsequent steps are to create S and execute veri-
fication; thereafter, if the obtained result is true, Server 0
generates a message that includes the prepared transaction,
Pk, and (r, S). It completes the agreement by forwarding the
message to all nodes.

4.4  |  Consensus error handling procedure

The following process can be performed to address errors
that occur in the agreement process. The delegate request,
prepare, and commit processes set a timer at the start of each
step; erroneous handling can occur if the following procedure
is not started before the timer expires. The processing method
applied when an error occurs at each step is now described.
An agreement on a block that does not contain a transac-
tion constitutes an empty agreement. An empty agreement
does not include an effective transaction but has the effect of
changing the congress. In general, the PBFT algorithm has a
fixed consensus node, and, if the agreement fails, it applies
a view change to resolve this. However, as the nodes of the
consensus are not fixed, it is less computationally expensive
to reconfigure the consensus node rather than apply a view
change if the agreement fails. An empty block can be created
as a means of reducing the complexity of the protocol while
reducing the risk, instead of allowing an unreliable node to
return a consensus upon the failure of the agreement.

4.4.1  |  Delegate request stage error handling

In the current block consensus, Server 0 starts the timer
of the delegate request stage at which the reply block cor-
responding to the previous block height is received and the
current block agreement is initiated. If normal delegate re-
quests corresponding to the quorum have not been received
before the termination of Server 0's delegate request timer,
an error message is generated indicating that fewer requests
than the quorum have been received. At this time, the quo-
rum can be reconfigured to execute the empty agreement,
except for the node that does not respond in the congress.
Moreover, after receiving the reply block of the previous
agreement, each of Servers 1–3 starts its own delegate re-
quest timer, while forwarding its own delegate request. The
server with the smallest coupon among the remaining ones,
except for the coupon possessed by Server 0, acquires a
new Server 0 qualification and tries an empty agreement,
if Server 0 does not transmit the prepare block before the
delegate request timer expires. In this case, the block may
contain a log of errors.

4.4.2  |  Prepare stage error handling

Server 0 starts the prepare timer while forwarding the first
prepare block. If Server 0 does not receive si from all the
servers in the quorum before the prepare timer expires, the
algorithm implies that the servers that do not send si to the
blacklist should be added and the quorum should be reformed

882  |     OH et al.

to exclude the blacklist corresponding to the congress, and
the operation should proceed with the empty agreement.

4.4.3  |  Commit stage error handling

Even when Server 0 does not have a valid integrated signa-
ture, the algorithm determines another server that sends fake
signatures and adds it to the blacklist. Then, the blacklist cor-
responding to the congress is excluded, and the empty agree-
ment can proceed. Moreover, each server corresponding to
the quorum starts a commit timer when it receives a prepare
packet of Server 0. If Server 0 has not started replying before
the commit timer expires, it is replaced with a new Server 0
and an empty agreement can proceed.

5  |   IMPLEMENTATION AND
RESULTS

This section describes the experimental environment and ex-
plains the analysis of the experimental results for evaluating
the proposed BADA algorithm.

5.1  |  Experimental environment

The BADA algorithm was implemented in Python and then
executed on docker containers running on the Linux operat-
ing system. In the BADA algorithm, the hash function re-
quired for the nonce chain and block used the SHA256 hash
function. The signature was used to check the integrity of the
message, and the multisignature scheme for consensus used
EC-Schnorr signatures with the secp256k1 elliptic curve.

To analyze the performance characteristics of the BADA
algorithm in large-scale nodes, consensus nodes were con-
structed using from 200 to 1400 docker containers in two ex-
perimental environments. The first experimental environment
consisted of four Dell PowerEdge R730 servers equipped
with two Intel Xeon Gold 6152 CPUs, 512 GB memory, 10 G
Ethernet interfaces per server, and CentOS 7.5 as the operat-
ing system. The second experimental environment consisted
of 64 Dell PowerEdge R530 servers with two Intel Xeon E5-
2623 CPUs, 64 GB memory, 10 G Ethernet interfaces per
server, and CentOS 7.5 as the operating system.

In this experiment, we assumed that 20% of the total nodes
were Byzantine nodes. The BADA algorithm randomly selects
a 3f + 1 congress for each block height to proceed with the con-
sensus. For this purpose, the probability of congress selection,
p, is calculated and used so that an average of 3f + 1 nodes out
of the total number of nodes are selected as the congress, as
shown in Figure 4. For example, if the total number of nodes
is 1000, using p = 0.59 results in the number of non-Byzantine

nodes in the congress node being less than 1.1e−16, and the
probability that the number of congress nodes is less than or
equal to 514 (=3f + 1 = 3 × 171 + 1) can meet the 1.0e−6
condition. In addition, if 100 nodes participate in the consen-
sus, using p = 0.83 results in the probability of exceeding 20
Byzantine nodes being zero, and the probability of selecting
fewer than 61 congress nodes being less than or equal to 1.0e−6.

5.2  |  Decentralization simulation

Decentralization means that authority is not concentrated on
certain nodes participating in the consensus and that all the
nodes participate fairly. To achieve this, the BADA algorithm
adopts the PoN algorithm using the nonce chain. To evalu-
ate the proposed algorithm in terms of decentralization, we
validated the eligibility of a node to participate in a consen-
sus using its own nonce value corresponding to the height of
the block to be agreed upon by all nodes participating in the
consensus and form a quorum with the nodes that responded
quickly. To verify that the proposed PoN algorithm is decen-
tralized, 1000 nodes were configured and the quorum selection
probability, p, was set to 0.59. Then, 1000 blocks were created
to measure the frequency of the nodes participating in the quo-
rum for each block. Figure 5 shows the frequency of quorum
participation by node and the distribution of these values.

In Figure 5, the horizontal axis represents the frequency
with which a node was selected as a part of a quorum for a
consensus considering 1000 blocks and the vertical axis rep-
resents the number of nodes participating in these cases. The
analysis showed that the number of nodes that participated in
a quorum was 573.54, on average, and the form of the distri-
bution was normal, 29.17. The maximum number of blocks
participating as a quorum is 631, and the minimum number
of blocks is 230. As shown in the figure, 23 nodes partici-
pated in 593 blocks for a quorum, and all the nodes partici-
pated in between 466 and 631 blocks, with the exception of
one node that participated in 230 blocks, indicating that all
the nodes participated in the quorum fairly.

5.3  |  Block interval analysis

Conventional PBFT-like consensus algorithms have limita-
tions in terms of scalability. The number of nodes participat-
ing in the consensus increases, and consequently, the number
of nodes participating in the agreement requires a message
complexity of O(N2). The BADA algorithm is intended to
provide O(N) message complexity to overcome these limits
on scalability, thereby providing shorter consensus times.
Therefore, in this subsection, we discuss the measurement of
the block creation time of the BADA algorithm and describe
the obtained results to assess its applicability.

     |  883OH et al.

In the two experimental environments described in
Section 5.1, from 200 to 1400 docker-based nodes were run
and the test was conducted with the probability of node se-
lection, p, set to 1 so that all nodes could be configured in
the consensus. Figure 6 shows the results of the time mea-
surement with respect to block creation according to the
number of nodes participating in the consensus in the two
test environments. The first test environment consisted of 4
Dell PowerEdge R730 servers, and the second consisted of
64 Dell PowerEdge R530 servers. As shown in Figure 6, the
block creation time was measured as approximately 4.4 sec-
onds for four servers and 5.61 seconds for 64 servers, when
the number of the consents was 200. However, as the number
of the consensus increased, the block generation time in the
4-server environment also increased, exceeding that in the
environment with 64 servers. This is because the four serv-
ers have 44 CPU cores per server, leading to a better perfor-
mance than in the second environment with 64 servers having
eight CPU cores per server. At the same time, the number of
consensus nodes per server should be adjusted to form the
same number of consensus nodes involving fewer servers.
If the number of consents is 1200, or 300 consensus nodes
per server, 7 or 8 consensus nodes per core operate, and in
the case of 64 servers, only 18 or 19 consensus nodes per
server operate with approximately 2 or 3 consensus nodes
per core. If the number of the congress was 1400, then the
test environment with four servers could not be configured
because of a lack of system resources. In turn, in the environ-
ment with 64 servers the block creation time was measured
as approximately 12.7 seconds. As shown in Figure 4, even if
the total number of nodes is increased to more than 50 000, a
consensus can be reached by forming a congress of approx-
imately 1400 nodes providing an acceptable block creation
time of less than 13 seconds. This is because the message
complexity required for reaching consensus in the BADA

algorithm is O(N), and the EC-Schnorr multisignature verifi-
cation algorithm described in Section 4 can be used to reduce
the time required for the corresponding operation. In Table 2,
we show a comparison of the proposed BADA algorithm and
the methods proposed in previous papers.

From the above analysis results, we conclude that the pro-
posed BADA algorithm can be deemed to overcome the lim-
itations of existing consensus algorithms in terms of ensuring
decentralization and scalability across tens of thousands of nodes.

In MinBFT or FastBFT, there is no random node selection
function; thus, all nodes must participate in the consensus.
Therefore, in this table, we assume that 50 000 nodes partici-
pate in the consensus and show the results of the comparison
of BADA and algorithms that can arbitrarily select congress
nodes. However, a direct comparison was difficult, as Zilliqa
and Algorand already have commercial platforms, whereas
the proposed algorithm does not, as it is only a consensus

F I G U R E 5   Statistics on acquisition of consensus

5

20000

15

10

25

20

30

400 600 800 1000
Counts

mu = 573.538000, sigma = 29.169838
Selected count

F I G U R E 6   Consensus time with the increasing number of nodes

200 400 600 800 12001000 1400
Number of congress (nodes)

6

4

8

12

10

14

16

B
lo

ck
 in

te
rv

al
 (s

ec
)

4 base stations
64 base stations

T A B L E 2   Comparison of the proposed algorithm and previous
methods

BADA Algorand Zilliqa

Message
complexity

O(c), where
c < n

O(cn),
where
c < n

O(n)

Congress size 3f + 1 3f + 1 3f + 1

Congress size with safety violation prob.

1e−6 670 N/A 800

5e−9 862 2000 N/A

2e−16 1433 N/A N/A

Congress change
period

Per block Per block Replace only
some nodes

Special
requirements

No No PoW support
required

884  |     OH et al.

algorithm. Therefore, the numbers of congresses selected
under the same safety violation probability condition were
compared. In the case of Zilliqa, this is the minimum number
of nodes for a 1e−6 safety violation, and there is no assump-
tion that 50 000 nodes participated in the agreement.

6  |   CONCLUSIONS

In this paper, we proposed a new distributed consensus algo-
rithm, BADA, in which non-fixed nodes can find agreement
through O(N) message exchanges. The nodes in the BADA al-
gorithm can be decentralized by applying PoN. With regard to
PoN, we presented a method to calculate the parameters used
to define the number of a congress and a quorum by the hash-
based method to satisfy the Byzantine tolerance. In addition,
the distributed consensus algorithm can provide extensibility
across several arbitrarily selected nodes considering the same
argument, and hence, it can be applied to a group of nodes
from at least five to several tens of thousands or more nodes.
Through the experiments, we confirmed that the proposed al-
gorithm operated normally in the experimental environment
driven by 1400 dockers distributed across 64 servers.

ACKNOWLEDGMENT
We sincerely thank Prof. Seungwon Shin for his detailed and
valuable comments on the earlier version of the draft.

ORCID
Jintae Oh https://orcid.org/0000-0002-4372-0943

REFERENCES
	 1.	 J. Poon and T. Dryja, The bitcoin lightning network: Scalable off-

chain instant payments, 2015, available at https://light​ning.netwo​
rk/light​ning-netwo​rk-paper.pdf.

	 2.	 J. Poon and V. Buterin, Plasma: Scalable autonomous smart con-
tracts, White paper, 2017, available at https://plasma.io/plasma.
pdf.

	 3.	 S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009,
available at https://bitco​in.org/bitco​in.pdf.

	 4.	 Y. Gilad et al., Algorand: Scaling byzantine agreements for cryp-
tocurrencies, in Proc. Symp. Oper. Syst. Principles (Shanghai
China), 2017, pp. 51–68.

	 5.	 L. Harn, Group-oriented (t, n) threshold digital signature scheme
and digital multisignature, IEE Proc. Comput. Digital Techn. 140
(1994), 307–314.

	 6.	 K. Ohta and T. Okamoto, Multi-signature schemes secure against
active insider attacks, IEICE Trans. Fund. Electron. Commun.
Comput. Sci. E82-A (1999), 21–31.

	 7.	 L. Lamport, R. Shostak, and M. Pease, The byzantine generals
problem, ACM Trans. Program. Lang. Syst. 4 (1982), 382–401.

	 8.	 M. Castro and B. Liskov, Practical byzantine fault tolerance,
USENIX OSDI 99 (1999), 173–186.

	 9.	 J. Kwon, Tendermint: Consensus without mining, 2014, available
at http://tende​rmint.com/docs/tende​rmint​{_}v04.pdf.

	10.	 J. Liu et al., Scalable byzantine consensus via hardware-assisted
secret sharing, IEEE Trans. Comput. 68 (2018), 139–151.

	11.	 G. S. Veronese et al., Efficient byzantine fault-tolerance, IEEE
Trans. Comput. 62 (2013), 16–30.

	12.	 M. Yin et al., Hotstuff: Bft consensus in the lens of blockchain,
arXiv preprint, 2018, arXiv:1803.05069.

	13.	 Y. Yang, Linbft: Linear-communication byzantine fault tolerance
for public blockchains, arXiv preprint, 2018, arXiv:1807.01829.

	14.	 P. Schindler, A. Judmayer, and E. R. Weippl, Hydrand: Efficient
continuous distributed randomness, in Proc. IEEE Symp. Security
Privacy (San Francisco, CA, USA), May 2020, pp. 73–89.

	15.	 S. Bano et al., Consensus in the age of blockchains, arXiv preprint,
2017, arXiv:1711.03936.

	16.	 Zilliqa team, The Zilliqa technical whitepaper, 2017, available at
http://zilli​qa.com.

	17.	 L. Lamport, Password authentication with insecure communica-
tion, Commun. ACM 24 (1981), 770–772.

	18.	 G. Maxwell et al., Simple schnorr multi-signatures with appli-
cations to bitcoin, Designs, Codes Cryptography 87 (2019),
2139–2164.

	19.	 C. Li, T. Hwang, and N. Lee, Threshold-multi- signature schemes
where suspected forgery implies traceability of adver- sarial share-
holders, in Proc. Adv. Cryptol.-EUROCRYPT (Perugia, Italy),
May 1994, pp. 194–204.

	20.	 T. Ristenpart and S. Yilek, The power of proofs-of-possession:
Securing multiparty signatures against rogue-key attacks, in Proc.
Adv. Cryptol.-EUROCRYPT (Barcelona, Spain), May 2007, pp.
228–245.

	21.	 D. Boneh et al., Aggregate and verifiably encrypted signatures from
bilinear maps, in Proc. Adv. Cryptol.-EUROCRYPT (Warsaw,
Poland), May 2003, pp. 416–432.

	22.	 A. Boldyreva, Threshold signatures, multisignatures and blind sig-
natures based on the gap-diffie-hellman-group signature scheme,
in Proc. Public Key Cryptography-PKC (Miami, FL, USA), Jan.
2003, pp. 31–46.

	23.	 D. Boneh, B. Lynn, and H. Shacham, Short signatures from the
Weil pairing, J. Cryptol. 17 (2004), 297–319.

AUTHOR BIOGRAPHIES

Jintae Oh received his B.S. and M.S.
degrees in Electronics Engineering
from Kyungpook National University,
Daegu, Rep. of Korea, in 1990 and
1992, respectively, and his Ph.D. de-
gree in Computer Engineering from
Chungnam National University,
Deajeon, Rep. of Korea, in 2011. He

was with the Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea from 1992 to
1998, where he was a senior researcher. He was with three
start-ups in St. Louis, MO, U.S.A. from 1998 to 2002.
Since 2003, he has been with the Electronics and
Telecommunications Research Institute, where he is now a
principal researcher. His main research interests are net
work security and blockchain.

https://orcid.org/0000-0002-4372-0943
https://orcid.org/0000-0002-4372-0943
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://plasma.io/plasma.pdf
https://plasma.io/plasma.pdf
https://bitcoin.org/bitcoin.pdf
http://tendermint.com/docs/tendermint{_}v04.pdf
http://zilliqa.com

     |  885OH et al.

Joonyoung Park received his B.S. and
M.S. degrees in Computer Science and
Engineering from Korea University,
Rep. of Korea in 2014 and 2016, re-
spectively. Since 2016, he has been with
the Electronics and Telecommunications
Research Institute, Daejeon, Rep. of
Korea, where he is now a researcher.

His main research interests are distributed systems and
blockchain.

Youngchang Kim received his M.S.
and Ph.D. degrees in Computer
Engineering from Chonbuk National
University, Jeonju, Rep. of Korea, in
2003, and 2009, respectively. Since
2009, he has been working as a senior
researcher at the Electronics and
Telecommunications Research Institute,

Daejeon, Rep. of Korea. His main research interests are dis-
tributed computing and blockchain.

Kiyoung Kim received her M.S. de-
gree in Computer Science and
Statistics from Chonnam National
University in 1993, and her Ph.D. de-
gree in Computer Science from
Chungbuk National University in
Korea in 2002. Since 1988, she has
been with the Electronics and

Telecommunications Research Institute, Daejeon, Rep. of
Korea, where she is now a principal researcher. Her main
research interests are smartphone security and
blockchain.

