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ABSTRACT
The transmittance of the p-dopedhole transporting layer (p-HTL) and the charge generation layer (p-
CGL) corresponding to the photoluminescence (PL) of blue dopants in an emitting layer decreases as
the ratio of the p-dopant increases due to the absorption of the p-dopant. However, there was little
difference in the luminous efficiency of blue top-emitting organic light-emitting diodes using p-HTL
or p-CGL at a maximum doping ratio of 20%. p-HTL for a single structure required a 5% doping ratio
to ensure sufficient electrical characteristics, but p-CGL for the two-stack tandem structure required
more than a 10% doping ratio. The optical simulation showed that the device was affected by the
specific absorbance of the p-dopant depending on the doping ratio and thickness. Although there
was no significant difference in efficiency depending on the doping ratio at a thickness of 10 nm, the
reduction rate of the external quantumefficiency increased fromover 20 nmdue to the doping ratio.
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1. Introduction

Organic light-emitting diodes (OLEDs) have been stud-
ied along with innovative displays and other develop-
ments for the expansion of the display industry [1,2]. The
study of organicmaterials was essential for such intended
development. In general, organic materials have a diffi-
cult challenge to achieve high conductivity characteristics
due to their large band gaps that cause them to have a
serious injection height barrier. Therefore, research on
charge injection barriers is the most important field that
is considered to significantly enhance the efficiency of
OLEDs [3,4]. To improve the charge injection, the inter-
layer between organic materials and electrodes uses such
materials as transition metal oxides (RuOx, MoOx, VOx,
WOx, etc.) [5–7] and 1,4,5,8,9,11-Hexaazatriphenylene-
hexacarbonitrile (HAT-CN) [8], since these interlayers
can control the energy level alignment to lower the injec-
tion barrier. Recently, however, it has been reported that
the electrical dopingmethodmore significantly enhances
performance than do these materials [9]. Electrical dop-
ing adds a small quantity of dopant to the charge trans-
port layer [10,11] to make it easy to fabricate, inexpen-
sive, and capable of alleviating heterogeneity between
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organic materials. It significantly improves the electrical
characteristics such as by decreasing the turn-on voltage
or enhancing the conductivity of devices [12]. Moreover,
since electrical doping has been studied for a long time,
it is the most common and reliable subject of research
[13–16].

However, electrical doping easily affects the light-
emitting performance of OLEDs because it changes the
optical properties of OLEDS, such as their absorption
of organic materials [17,18]. Furthermore, no detailed
studies have been reported so far on the optical prop-
erties of OLEDs to which electrical doping has been
applied. Since the main purpose of electrical doping
is merely to improve electrical properties, the optical
effects of electrical doping have not been considered
significant.

In this study, we confirmed that the optical character-
istic of a p-dopant varies significantly in the blue wave-
length and we reported a difference in the characteristics
of OLEDs because of changes in the doping ratio and
thickness of the p-doped layers in single and tandem top-
emitting OLEDs (TEOLEDs) by optimizing the electrical
characteristics of the device.
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2. Experiment

Single and two-tandem blue-fluorescence TEOLEDs
were fabricated with identical electroluminescence (EL)
units, as shown in Figure 1. The bottom electrode had
been pre-deposited as ITO (5 nm)/Ag (100 nm)/ITO (5
nm) on glass substrates. All the layers in the device had
been deposited by thermal evaporation at a high vac-
uum pressure in the range of 10−7–10−8 torr. In the
single blue TEOLEDs, the device included metal layers –
a thin-metal transparent top electrode (Ag, 17 nm) – and
organic layers – a p-doped hole transport layer (p-HTL,
10 nm) with a varying doping ratio (x%), a hole transport
layer (HTL, 140 nm), an emission layer (EML, 20 nm),
an electron transport layer (ETL, 30 nm), and a capping
layer (CPL, 60 nm). In the tandem blue TEOLEDs, the
device included metal layers – a thin-metal transparent
top electrode (Ag, 17 nm) – and organic layers – a p-
doped (10%) hole transport layer (p-HTL, 10 nm), an
HTL (30 nm), an EML (20 nm), an ETL (20 nm), an
n-doped charge generation layer (n-CGL, 20 nm), a p-
doped charge generation layer (p-CGL, 10 nm) with a
varying doping ratio (y%), and a CPL (60 nm). The x and
y values of the doping ratio varied (5%, 10%, 15%, and
20%, respectively). Figure 1(c) shows an optimized EL
spectrum of the blue emitter in the single and tandem
devices. It means the thicknesses of all the organic layers
had been optimized such that the blue-emission wave-
length met the micro-cavity condition. [19] Because the
deposited organic material was easily degraded, the fab-
ricated device was encapsulated in a nitrogen-filled glove
box.

For the optical experiment, the intrinsic and doped
layers were deposited on a quartz glass by thermal
evaporation for optical measurement, and the transmit-
tance of the intrinsic and doped layers was measured
using a UV-Vis-NIR spectrophotometer (LAMBDA 750,
PerkinElmer). The refractive index (n) and the extinction
coefficient (k) were investigated with a photometric ellip-
someter (M-2000, J.A. Woollam). For the electrical stud-
ies, the current density–voltage (J-V) characteristics of
the devices were measured using a source-measurement
unit (Keithley-238, Keithley), and the luminance (L)
and electroluminescence (EL) spectra were examined
using a spectroradiometer (CS-2000, Konica Minolta).
The external quantum efficiency (EQE) in all directions
was measured using an integrating sphere equipment (6-
inch Halfmoon sphere system, Otsuka Electronics). All
the measurement data were taken at room temperature
and were measured in a dark atmosphere. Lastly, for
the optical simulation studies, the device was used with
the OLED optical simulation program SETFOS (Fluxim
AG).

Figure 1. (a) Single blue TEOLED. (b) Tandem blue TEOLED struc-
ture. (c) EL spectrum in the single and tandem blue TEOLEDs.

3. Results and Discussion

3.1. Optical analysis of thematerials

We investigated the optical characteristics of the intrin-
sic layer and the p-doped layer depending on the doping
ratio. Figure 2(a) shows the transmittance of the intrin-
sic layer and the p-doped layers in the visible range.
As shown in Figure 2(a), the transmittance characteris-
tics of the intrinsic layer did not vary within the visible
light area. In comparison with the intrinsic layer, spe-
cific peakswere identified in the blue area (400∼550 nm)
from the doping layer. Furthermore, the transmittance
linearly decreased as the doping ratio increased. Thus,
the p-dopant for electrical doping had properties that
influence blue luminescence.
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Figure 2. (a) Transmittanceand (b) refractive index (n), extinction
coefficient (k), and photoluminescence (PL) intensity of the EML.

Figure 2(b) shows the n and k spectra of the intrinsic
layer and the p-doped layer, and the photoluminescence
(PL) intensity of the EML. The k increased in proportion
to the doping ratio in the blue region (400∼500 nm).
Furthermore, the PL intensity of the EML radiation over-
lapped with the k spectra of the p-doped layer. As shown
by the decrease in the transmittance according to the
doping ratio, the optical effect of electrical doping has the
potential to affect the optical performance of a device. n
also showed a decrease in transmittance (from2.1–1.8) in
the blue region according to the doping ratio. However,
these changes did not significantly affect the optical per-
formance of the device because the variation is usually
found in organic materials. [20] Therefore, k is a major
factor influenced by the doping ratio.

3.2. Electrical analysis of the device characteristics

Figure 3(a), (b), and (c) show the current density versus
the voltage (J-V), the luminance versus the voltage (L-
V), and the current efficiency versus the luminance (ηc-
L), respectively, of the single and tandem blue TEOLED

Figure 3. (a) Current density versus voltage (J-V), (b) luminance
versus voltage (L-V), and (c) current efficiency versus luminance
(ηc-L) characteristics of the blue TEOLEDs in this study.

devices for different doping ratios in p-HTL and p-CGL.
For the single and tandem blue TEOLED devices, all the
data were measured by varying the doping ratio (x%) of
p-HTL and the doping ratio (y%) of p-CGL.
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The single blue TEOLED devices that had similar
J-V characteristics at all doping ratios are shown in
Figure 3(a). Although their J-V states coincided, they
were expected to have a lower turn-on voltage and bet-
ter performance after electrical doping than the struc-
ture with an undoped layer. [21] On the other hand,
the tandem blue TEOLED devices showed low perfor-
mance at the 5% doping ratio and a saturated state at
doping ratios above 10%. Since p-CGL interfaces with n-
CGL, a relatively low doping concentration of 5% causes
large-depletion regions between interfaces. This not only
obstructs tunneling injection but also leads to insuffi-
cient charge formation [22]. However, the performance
of devices at high doping ratios, such as over 10%, is satu-
rated because the fermi energy level is pinned beyond the
density of state (DOS) tail of a high occupied molecular
orbital (HOMO) even if the doping ratio increases [23].

Figure 3(b) shows the L-V characteristics of the single
and tandem structures. The single structure showed that
the devices with 5%, 10%, 15%, and 20% doping ratios
had turn-on voltages of 3.9, 3.7, 3.8, and 3.8 V, respec-
tively, at a luminance of 1,000 cd/m2. The device with a
doping ratio of over 5% showed a saturation state. The
most optimal performance was expected at a doping ratio
of over 5% in the single devices. The tandem structure
showed that the devices with 5%, 10%, 15%, and 20%
doping ratios had turn-on voltages of 7.3, 6.7, 6.7, and
6.8 V, respectively, at a luminance of 1,000 cd/m2. The
device with a 5% doping ratio showed low stability and
relatively high turn-on voltages, unlike the devices with
other doping ratios. This is because, as mentioned above,
the formation of charges at a low doping ratio had been
insufficient.

Lastly, the ηc-L values of the single and tandemdevices
at all the doping ratios are shown in Figure 3(c). The sin-
gle devices with 5%, 10%, 15%, and 20% doping ratios
had current efficiency values of 6.0, 5.9, 5.6, and 5.6 cd/A,
respectively, at a luminance of 1,000 cd/m2. As there were
slight differences in current efficiency of about 0.4 cd/A
at the 5%, 10%, 15%, and 20% doping ratios, the cur-
rent efficiency of the single devices with over 5% doping
ratios was considered saturated, similar to the J-V and
L-V characteristics. The tandem devices with 5%, 10%,
15%, and 20% doping ratios had current efficiency val-
ues of 10.8, 10.9, 10.9, and 10.9 cd/A, respectively, at a
luminance of 1,000 cd/m2. The current efficiency values
were similar at all the doping ratios at a low luminance
(100∼1,000 cd/m2). However, the device with a low
doping ratio of 5% steadily decreased in efficiency at a
high luminance (10,000∼20,000 cd/m2), and the device
with a 10% doping ratio had the highest efficiency. As
mentioned with respect to the J-V and L-V character-
istics in the tandem structure, devices with more than

Table 1. Integrating sphere analysis of the single and two-
tandem blue TEOLEDs

Single TEOLEDs a Tandem TEOLEDs b

Doping ratio EQE (%) Voltage (V) EQE (%) Voltage (V)

5% 6.2 4.68 11.55 7.33
10% 6.14 4.35 12.32 6.6
15% 5.91 4.4 12.4 6.57
20% 5.88 4.44 12.29 6.53
aJ = 50mA/cm2 (L = 3,000 cd/m2).
bJ = 5 mA/cm2 (L = 1,000 cd/m2).

10% doping ratios show saturation in performance, and
devices with a low (5%) doping ratio show a drop in
performance due to low charge formation.

Since the analysis of the J-V, L-V, and ηc-L charac-
teristics were related only to the forward emission, the
integrating sphere equipment was used to evaluate the
optical characteristics for all directions for more accurate
measurements. Table 1 shows the EQE results obtained
with the integrating sphere of the single and tandem
blue TEOLEDs at the current densities of 50mA/cm2

(3,000 cd/m2) and 5mA/cm2 (1,000 cd/m2), respectively.
As shown in the table results, the EQE in the single
structures showed similar characteristics regardless of
the doping ratio, and the voltage characteristics showed
slightly higher voltages (about 0.33 V) at the 5% dop-
ing ratio than at the other doping ratios. However, it was
difficult to determine the effect of the absorption of the
p-dopant in this tendency.

The tandem structures showed performance differ-
ences between the doping ratios of 5% and above 10%
at the same current density. The device with a 5% dop-
ing ratio showed a low EQE and a high turn-on voltage,
unlike the devices with other doping ratios. The tandem
deviceswith a doping ratio of 10%ormore had properties
that were saturated at an approximately 12.3% EQE and
a 6.5V turn-on voltage. However, this could also be con-
sidered the effect of the absorption of the p-dopant. It can
instead be interpreted as similar to the electrical variation
according to the doping ratio. These results show that
the characteristics identified using the equipment were
closely related to the resulting electrical characteristics.
The insignificant effect of the optical properties of the p-
doped layer on the electrical properties is attributed to the
very thin (10 nm) p-doped layer. Therefore, these devices
with different doping ratios in a thin film (less than 10
nm) did not show a significant effect on the absorption
of the p-dopant.

3.3. Optical simulation analysis

When electrically doped injection layers, such as p-i-n,
are themain structure in a device or are significantly thick
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Figure 4. Simulation of the normalized EQE versus the optimized
thickness of (a) p-HTL and (b) p-CGL depending on the doping
ratio.

[24,25], they will affect the optical properties of a device
such as its luminous efficiency due to their absorbance of
the dopant. Therefore, this study investigated the effect
of the dopant by simulating not only the doping ratio
but also the factors of the thickness of the electrical dop-
ing layer. Figure 4(a) and (b) show the performance of a
device with a normalized EQE according to the doping
ratio and the thickness of p-HTL and p-CGL. The thick-
ness of the two layerswas variedwhile the thickness of the
HTL was optimized to maintain the cavity length [26].
As shown in the simulation, both the single and tandem
structures at the 10nm-thick p-HTL and p-CGL showed
only slight EQE differences depending on the doping
ratio. The summarized results in Table 1 also show that
therewere only slight differences in the EQEs of the single
and tandem structures depending on the doping concen-
tration of the 10nm-thick p-HTL and p-CGL. The reduc-
tion rate due to the doping ratio at 10 nmwas insufficient,

but the decrease rate due to the doping ratio was notice-
able as the thickness increased. It was especially found
that the efficiency reduction rate according to the dop-
ing ratio increased to up to 16%, as shown in Figure 4(a),
and to up to 13%, as shown in Figure 4(b), from a
thickness of 50 nm. The absorption of the p-dopant was
increased by the micro-cavity as the thickness of the top-
emitting structure increased. Therefore, both the ratio of
the p-dopant with a specific wavelength absorption for
electrical doping and the thickness of p-HTL or p-CGL
should be considered in designing the structure of the
device.

4. Conclusion

This study investigated the optical effects of p-HTL and
p-CGL on the device. The optical experiment showed
a significant optical impact, such as decreasing trans-
mittance through blue absorption of the dopant. How-
ever, the electrical experiment showed different optical
results. Although the optical properties of the p-dopant
were expected to be influenced by the absorption of spe-
cific wavelengths, the single and tandem structures did
not show varying optical performance according to the
doping ratio (maximum: 20%). This suggests that the
influence of the p-dopant absorption on the thickness is
not significant. However, if the device is designed with a
high doping ratio and thickness, the absorption can affect
the device. Thus, a device design that considers both the
characteristics of the p-dopant and the thickness of the
electrically doped layer will improve the performance of
the device.
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