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ABSTRACT

Video classification researches have recently attracted attention in the fields of temporal modeling and
efficient 3D convolutional architectures. However, the temporal modeling methods are not efficient, and
there is little interest in how to deal with temporal modeling in the 3D efficient architectures. To build an
efficient 3D architecture for temporal modeling, we propose a new 3D backbone network, called VoV3D,
that consists of a temporal one-shot aggregation (T-OSA) module and a depthwise factorized component,
D(2+1)D. The T-OSA is devised to build a feature hierarchy by aggregating spatiotemporal features with
different temporal receptive fields. Stacking this T-OSA enables the network itself to model short-range
as well as long-range temporal relationships across frames without any external modules. We also design a
depthwise spatiotemporal factorization module, D(2+1)D, that decomposes a 3D depthwise convolution into
two spatial and temporal depthwise convolutions for efficient architecture. Through the proposed temporal
modeling method (T-OSA) and the efficient factorization module (D(2+1)D), we construct two types of
VoV3D networks: VoV3D-M and VoV3D-L. Thanks to its efficiency and effectiveness of their temporal
modeling, VoV3D-L has 4x fewer model parameters and 14x less computation, surpassing the state-of-
the-art TEA model on both Something-Something and Kinetics-400 datasets. We hope that VoV3D can
serve as a baseline for efficient temporal modeling architecture.

INDEX TERMS Action recognition, Video classification, Temporal modeling, Efficient 3D CNN architec-

ture, Spatial-temporal feature

I. INTRODUCTION
Recently, many works for video classification [I]—[8] have
focused on an ability to model the temporal variation, dy-
namics of an action (i.e., visual tempo ), called temporal
modeling in literature. Unlike 2D image classification, video
classification should distinguish visual tempo variation as
well as its semantic appearance. In other words, appearance
information alone is not sufficient to distinguish between
moving something up and down or between walking and
running, which requires to capture temporal variations. Thus,
effectively modeling visual tempo is a key factor for video
classification.

Previous works for temporal modeling [I]}, [2], [6], [9]
utilize 2D CNN architecture due to its efficiency rather than
3D CNN architecture. They usually process per-frame inputs
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and aggregate the per-frame results to produce a final output
through the temporal shift module or the motion infor-
mation embedding module , . Howeyver, these methods
depend heavily on the 2D ResNet backbone [10], which is
neither lightweight nor efficient compared to state-of-the-art
efficient 2D CNN models [3]], [I1]}, [I2]. 3D CNN-based
temporal modeling methods [4]], are also proposed to
construct input frame-level pyramid with different input
frame rates or feature-level pyramid [4]. However, these
methods require extra model capacity by adding a separate
network path or a fusion module. In short, since previous
works are add-on style modules on top of the backbone
network, they are constrained under the backbone network.

Another research that has recently attracted attention for
video understanding is to build an efficient 3D convolu-
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tional network architecture [[14]|]-[|16]]. These works exploit
3D depthwise convolution to reduce model parameters and
computations like 2D efficient CNN models [3], [[11], [12],
[17]—[19]], which replace a convolution with a combination
of depthwise and pointwise convolution. However, these 3D
networks simply focused on the efficiency in terms of the
computation of the building block and do not consider the
efficiency of temporal modeling.

For addressing these issues, in this work, we propose an
efficient and effective 3D architecture for temporal modeling,
called VoV3D. The proposed VoV3D consists of temporal
one-shot aggregation (T-OSA) building blocks, which are
made of the proposed depthwise factorization module (i.e.,
D(2+1)D). The T-OSA is devised to build a temporal feature
hierarchy by aggregating features with different temporal
receptive fields. As illustrated in Fig. [I] having diverse tem-
poral receptive fields in one feature map is helpful to capture
the visual tempo variation of an action. From this perspective,
stacking the T-OS A enables the network itself to model short-
range as well as long-range temporal relationships across
frames without any external modules. Furthermore, inspired
by the optimization benefit from kernel factorization [20],
[21]] and the efficiency of channel factorization [15], [16], we
also design a depthwise spatiotemporal factorized module,
called D(2+1)D. It decomposes a 3D depthwise convolution
into spatial and temporal depthwise convolutions for making
our network more lightweight and efficient. In practice, we
have confirmed that combining the two factorization methods
achieves better performance and efficiency than each one.
Moreover, the efficiency of D(2+1)D allows our network to
use more input frames (over 16 frames), which is advanta-
geous for temporal modeling.

By using the proposed temporal modeling method, T-OSA,
and the efficient factorized module, D(2+1)D, we construct
two types of 3D CNN architectures, VoV3D-M and VoV3D-
L models. In order to evaluate the proposed method in terms
of modeling temporal variations, we validate VoV3D on
the Something-Something dataset [22]] which has been well-
known to be challenging to classify an action due to the
temporal complexity [[1]], [21]], [23]]. Moreover, we show the
performance on Kinetics-400 dataset [24] to compare the
proposed network to the state-of-the-arts. Thanks to its effi-
ciency and effectiveness of the proposed temporal modeling
mechanism, VoV3D-L (with 32 frames and Kinetics-400 pre-
trained) outperforms the state-of-the-art both 2D and 3D tem-
poral modeling methods (i.e., TEA [9] and SlowFast [13]),
while having 4x and 5x fewer parameters and 14x and
5% less computation on Something-Something dataset [22].
Furthermore, the proposed VoV3D shows better temporal
modeling ability than the state-of-the-art efficient 3D archi-
tecture, X3D [16] having comparable model capacity. We
hope that the ideas contained within the proposed VoV3D
can be widely used for other video architectures.

The main contributions of this work are summarized as
below:

« We propose an effective temporal modeling method,
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FIGURE 1. lllustration of the temporal receptive field. The features having
multiple temporal receptive fields are advantageous to capture visual tempo
variation of an action.

Temporal One-Shot Aggregation (T-OSA) that can cap-
ture temporal variations by aggregating features having
different temporal receptive fields.

« We propose an efficient depthwise factorized module,
D(2+1)D that decomposes a 3D convolution into spatial
and temporal depthwise convolutions, making T-OSA
modules more accurate and efficient.

o We design an efficient 3D CNN architecture, VoV3D,
based on the proposed T-OSA and D(2+1)D modules,
which outperforms the state-of-the-arts in terms of both
temporal modeling and efficiency.

Il. RELATED WORKS

A. TEMPORAL MODELING FOR VIDEO
CLASSIFICATION

Recent attempts for temporal modeling for video classifica-
tion could be divided into two categories: 2D CNN-based and
3D CNN-based methods. 2D CNN-based methods such as
TSN [6], TSM [[1], STM [2] and TEA [9] prefer to use 2D
CNN, e.g., ResNet-50 as a backbone, due to its efficiency
than 3D CNN models. They process per-frame inputs and
aggregate these results to produce a final output on top of 2D
ResNet. TSN [6] proposes to form a clip by sampling evenly
from divided segments and this sparse sampling method
becomes a common strategy for many works. TSM [1] is
proposed to model temporal motion by utilizing memory
shift operation along the temporal dimension. Since motion
information is also an important cue for temporal modeling
as a short-term temporal relationship, attempts to model
feature-level motion features are proposed in STM [2] and
TEA [9]. STM and TEA propose to differentiate between ad-
jacent features for representing motion features and then add
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FIGURE 2. VoV3D has Temporal One-Shot Aggregation (T-OSA) building blocks. T-OSA consists of depthwise spatiotemporal factorized modules, D(2+1)D.

Please refer to the details of the VoV3D architecture in Table.[2

the spatiotemporal features and motion encoding together.
TEA [9] also has a temporal aggregation module to capture
long-range temporal dependency. However, TEA is based on
2D CNN features that are not jointly convolved along with
spatial and temporal axis. This means that the interaction
between spatial and temporal features is limited compared
to 3D spatiotemporal methods.

For modeling various visual tempos using spatiotemporal
3D CNN, many works have been proposed by building an
input frame-level pyramid [[13]], [25] or feature-level pyra-
mid [4]. SlowFast [13]] has two network inputs with different
frame rates to capture different types of visual information,
e.g., semantic appearance or motion. DTPN [25]] also uses
a different sampling rate for arbitrary-length input video,
which builds up the input frame-level hierarchy. Unlike these
methods, TPN [4] leverages the feature hierarchy on top
of the backbone network, instead of the input frame-level
hierarchy by building a temporal feature pyramid network.
In short, since temporal modeling methods are based on
the existing backbone networks, e.g., ResNet-50, they are
constrained under the nature of the backbone network.

B. EFFICIENT 3D CNN ARCHITECTURE

Since channelwise separable convolution is densely exploited
by efficient 2D CNN models [3]], [11]], [[12], [17]-[19], [19],
3D CNN ones [14]-[16] based on the extended depthwise
convolution have been explored. CSN [15]] adopts 3D depth-
wise convolution into the residual bottleneck [[10]] by replac-
ing the 3 X 3 x 3 convolution and adding a 1 x 1 x 1
convolution in front of the 3D depthwise convolution for
interaction between channels. X3D [16] explores 3D CNN
architecture along with spatial, temporal, depth, channel axis
for maximizing the efficacy of the model. The depthwise
bottleneck is also utilized as a key component in X3D, while
X3D is progressively expanded from a lightweight to a large-
scale model by scale-up all kinds of axes. As a result, X3D
achieves state-of-the-art performance with a much smaller
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model capacity on various video classification datasets. How-
ever, this method focuses only on building an efficient net-
work without considering temporal modeling. Therefore, we
focus on building an efficient 3D CNN architecture as well
as temporal modeling simultaneously.

lll. PROPOSED METHOD

Temporal modeling (i.e., capturing visual tempo variation)
plays an important role in action recognition [1]], [2[], [4],
[9], [13]]. In particular, in the case of a video that lacks
appearance variations of the features, video classification
networks should rely heavily on temporal variations. More-
over, it is necessary to model long-term as well as short-term
temporal relationships because short-term information is not
sufficient to distinguish temporal variations such as walking
vs. running. The conventional temporal modeling methods
based on 3D CNN try to model the visual tempo through
the input frame-level [[13]], [25]] or feature-level pyramids [4].
However, these methods have to add separate networks on
top of the existing 3D backbone as an external (i.e., plug-in)
module, which requires more parameters and computations.
To address these challenges, in this paper, we aim to propose
an efficient video backbone network having temporal model-
ing ability by itself without external modules. To this end, we
design a new 3D CNN architecture inspired by VoVNet [26],
[27] that represents hierarchical and diverse spatial features
at a small cost.

First, we propose an effective temporal modeling method,
named Temporal One-Shot Aggregation (T-OSA). For mak-
ing a network efficient, we also devise a depthwise spatiotem-
poral factorization method, D(2+1)D. Lastly, we design a
new video classification network, called VoV3D, which con-
sists of the proposed T-OSA and D(2+1)D.

A. TEMPORAL ONE-SHOT AGGREGATION (T-OSA)

VoVNet [26], [27] is a computation and energy-efficient 2D
CNN architecture devised to learn diverse feature represen-
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tations by stacking One-Shot-Aggregation (OSA) modules.
The OSA module consists of successive 3 x 3 convolutions
and aggregates those feature maps into one feature map at
once in a concatenate manner, followed by a 1 x 1 con-
volution. The OSA allows the network to represent diverse
features by capturing multiple receptive fields in one feature
map, which results in the effect of the feature pyramid.
Due to the diverse feature representation power of OSA,
VoVNet outperforms ResNet [10] and HRNet [28] in object
detection and segmentation tasks that require more complex
representation.

Inspired by the spatial feature’s hierarchy of OSA in
VoVNet, we propose temporal one-shot aggregation, called
T-OSA, to capture multiple temporal receptive fields in one
4D feature map, as illustrated in Fig. @ In detail, the i-th
2D convolution F2*3 (3 x 3 2DConv) can be replaced with
E3%3 (¢ x 3 x 3 3DConv) fori € {1,2,...,n} where t
is the temporal kernel size and n is the number of ¢ X 3 x 3
3D convolutions in T-OSA. It is noted that we keep temporal
dimension 7" (frames) for feature aggregation. Each feature
map X; € REXT¥HXW that is the result from F}***3 has
progressively increasing temporal receptive field due to its
successive connection. For example, if the temporal receptive
field (TRF) of the feature map X; is 3 and temporal kernel
size t is 3, the TRF of the next X5 is 5. Thus, once the features
are concatenated in channel-axis, the aggregated feature map
Xogg € ROFDOXTXHXW comprised of {Xip, X1, .oy X }
has diverse temporal and spatial receptive fields in one
feature map, where X;,, € RE*XT>XHxW iq the input feature
and n is set to 4 in Fig. @ Then,al x 1 x 1 3D convolution
is followed for reducing channel size (n + 1)C to C and the
residual connection is added to the final feature map. Thus,
stacking T-OSA allows the network to have various temporal
receptive fields, enabling the model to capture not only
short-range but also long-range temporal dependency across
frames, which has a similar effect with feature pyramid in the
same spatial feature space.

In practice, simply expanding 2D VoVNet to 3D CNN
architecture is limited in terms of optimization because 3D
CNN models have additional parameter space along with
temporal-axis and thus need optimization strategy. Therefore,
we elaborate the T-OSA with additional design choices for
the adaptation of OSA in 3D temporal feature space. While
the OSA module in 2D VoVNet uses only 3 x 3 2DConv,
the proposed T-OSA adopts 3D bottleneck architecture [[15]],
[16[, [29] (e.g., 1 x 1 x 1 3DConv, 3 X 3 x 3 3DConv,
1 x 1 x 1 3DConv) with more non-linearity operations. As
a 3D bottleneck architecture, we propose D(2+1)D in the
next section. Also, we add an inner residual connection to
facilitate optimization.

B. DEPTHWISE SPTAIOTEMPORAL FACTORIZATION

There are two types of factorization concept on 3D con-
volution (3DConv): 1) Depthwise (or Channelwise) [[14]]—
[16]] and 2) Kernelwise [20], [21], [30] methods. Inspired
by efficient 2D image classification network [3]], [11], [12],
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FIGURE 3. Depthwise spatiotemporal factorization. k, ¢, c denote the size
of the spatial kernel, temporal kernel, and channel in 3D convolution,
respectively. Compared to Spatiotemporal factorization (top) as in

R(2+1)D 20|, depthwise spatiotemporal factorization (bottom) in the proposed
D(2+1)D further decomposes the features along the channel axis, which
improves the efficiency of the network.

[L7]-[19]], [31]], depthwise separable convolution is also
mainly used as a key building block for efficient video
backbone networks [14]-[16]. 3D depthwise separable con-
volution (3DWConv) is utilized to factorize a 3DConv into a
t x k x k depthwise 3DConv followed by 1 x 1 x 1 pointwise
3DConv. CSN [15] addsal x 1 x 1 3DConv in front of the
3DWConv for preserving the interaction between channels,
which results in improving accuracy. Tran et.al. [15] found
that the 3DWConv has two advantages: 1) significant reduc-
tion of parameters and computational cost (FLOPs) with-
out sacrificing accuracy, 2) regularization effect. In addition
to channel factorization, kernel factorization also has been
widely used in [20], [21]], [30] for curtailing computation and
boosting accuracy. The kernel factorization is also called spa-
tiotemporal factorization as it is decomposed intoa 1 x k x k
spatial convolution (space) followed by at x 1 x 1 temporal
convolution (time) as shown in Fig. [3] (top).

Our motivation lies in the fusion of these two factoriza-
tion methods for realizing an efficient video classification
network. We design a depthwise spatiotemporal factoriza-
tion module, D(2+1)D, that decomposes a 3DWConv into
a spatial DWConv and a temporal DWConv as shown in
Fig. [3] (bottom). We analyze each resource requirement of
models in Table. [I] illustrating the number of parameters
and computation (FLOPs) of a 3DConv in the middle of
bottleneck architecture. The input tensor of the 3DConv has
C x T x H x W shape, where T" and C' are the numbers
of frames and channels, and H, W is the size of height and
width, respectively. Assuming the number of filters (output
channel) is the same (C), the 3D filter has t x k X k
kernel size, where ¢, k denote temporal and spatial kernel,
respectively. As demonstrated in Table. |1} compared to the
basic bottleneck 3DConv in (a), 3DWConv in (c) is C'x
more efficient because it has only one sub-filter for the
input tensor as illustrated in Fig. [3] We design two types of
factorized modules based on the order of spatial and temporal
dimensions: D(14+2)D and D(2+1)D. It is noted that spatial
down-sampling is operated in the spatial convolution and the
temporal convolution keeps temporal dimension. Compared
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FIGURE 4. Training top-1 error on Something-Something v1. D(2+1)D
shows higher training error, but lower testing error (compare validation
accuracies in Table. Eb This suggests D(2+1)D yields regularization,
preventing overfitting.

Stage VoV3D-M (L) output size ' x H x W
convl 1x3%5x1%,24 T x 112 x 112
(D(2+1)D, 40(48)) x5 .
T-OSA2 1% 12,24 x1(1) T x 56 x 56
(D(2+1)D, 80(96)) x5 )
T-OSA3 1% 12, 48 x1(2) T x 28 x 28
(D2+1)D, 160(192))x5 i
T-OSA4 1% 12,96 x2(5) Tx14x 14
(D(2+1)D, 320(384)) x5 )

T-OSA5 1 x 12, 160(192) x2(3) Tx7Tx7
convs 1 x 1%,320(384) TxT7TxT7
pool5 TXT7x7 I1x1x1

fcl 1 x 12,2048 1x1x1
fc2 1 x 12 #classes 1x1x1

TABLE 2. VoV3D architectures: VoV3D-M and VoV3D-L. T denotes the
number of input frames. VoV3D has two types of models: VoV3D-M and
VoV3D-L. They are comprised of Temporal One-Shot Aggregation (T-OSA)
building blocks made of D(2+1)D modules.

Type Param. FLOPs
Model T-OSA DQ@2+1)D  Top-1 Top-5

(a) bottleneck C2tk? C?tk2(HWT)/s?

(b) R2+1)D C2(t+ k%)  C2(t+Kk%)(HWT)/s? Baseline (M) 46.4 75.3

(c) dw-bottleneck ~ Ctk? Ctk?(HWT)/s? 48.0+24 767 +14

(d) D(1+2)D Ct+k?)  C(s*t+k2)(HWT)/s? v 485423 769 +1.6

(e) D2+1)D C(t+ k?) C(t+ k2)(HWT)/s? v v 49.0+2.6  78.2+29
TABLE 1. Comparison of parameters and computation. This table Baseline (L) 47.1 76.5
considers only a 3D convolution located in the middle of the bottleneck. ¢, &, v 43.9 +1.8 77.6 +1.1
and s denote temporal, spatial kernel size, and stride, respectively. C, H, W, v 48.8 +1.7  77.4 +0.9
T denote channel, height, width, the number of frames in the input 3D feature v v 49.6 +2.5 78.1 +1.6

map, assuming input/output channel size is same.

with 3DWConv in (c¢), both D(1+2)D and D(2+1)D have
about one order of magnitude fewer parameters and compu-
tations. In comparison between the two factorized modules,
an important difference arises in spatial down-sampling. The
number of parameters is the same, while the computation
cost is different due to different spatial sizes. Specifically,
for D(14+2)D, the temporal DWConv is operated first with
C xT x H x W input tensor followed by the spatial DWConwv
with stride s. It is summarized as:

FLOPs = Ct x HWT + Ck* x HWT/s*

= (s*t + k*)CHWT/s>. )

For D(2+1)D, since spatial DWConv with down-sampling
goes ahead, the temporal DWConv operates the spatially
down-sized input tensor, which results in reducing overall
computation. This is summarized as:

FLOPs = Ct x HWT/s> + Ck* x HWT/s?
= (t+k)CHWT/s>.

In Fig. ] we observed that D(2+1)D has higher training
error, but better validation accuracy (see Table. [) than
R(2+1)D and DWConv, which is the similar phenomenon
as in CSN [15]]. Combining the spatiotemporal factoriza-
tion with depthwise convolution yields better regularization
effect, preventing overfitting. Therefore, we expect that the
D(2+1)D can be widely used for other 3D CNN architectures
to boost their performances. For example, We have confirmed
the effect through the combination of the state-of-the-art

2)
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TABLE 3. Contributions of the proposed components in VoV3D on
Something-Something V1.

method (i.e., X3D [16]]) and our D(2+1)D, which will be
described in the experimental section.

C. VOV3D ARCHITECTURE

Finally, we construct an efficient 3D CNN architecture,
VoV3D, that can model various visual tempos effectively
with the proposed T-OSA and D(2+1)D modules. We design
two types of lightweight models: VoV3D-M and VoV3D-L
which have only 3.3M and 5.8M parameters, respectively.
VoV3D is comprised of the proposed T-OSA blocks which
have five D(2+1)D modules followed by a 1 x1x 1 3DConv.
In the stage level (same spatial resolution), VoV3D has mul-
tiple T-OSAs (e.g., 5), in series, which leads to representing
diverse temporal features. convl is also the (2+1)D style-
convolution where 1 x 32 spatial 3DConv is operated and
followed by a 5 x 12 temporal 3DConv. Following [16], we
also add a channel attention module, SE block [32]], into the
D(2+1)D with reduction ratio of 1/16. The efficient D(2+1)D
allows VoV3D to reduce significant computation cost, so it
can use longer frames (>16) to capture longer visual tempo.
The details are illustrated in Table.

IV. EXPERIMENTS
A. DATASETS

We validate the proposed VoV3D on Something-Something
(SSvl & v2) [22] and Kinetics-400 [24]. In contrast to
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VoV3D-M Param. GFLOPs Top-1  Top-5
(a) bottleneck [29] 429M  103.2 x 6 48.6 76.8
(b) R2+1)D [20] 20.9M 48.9 X 6 48.6 77.6
(c) dw-bottleneck [[15], [16] 3.3M 7.0x 6 48.0 76.7
(d) D(1+2)D (ours) 3.2M 6.5 %6 48.0 77.2
(e) D(2+1)D (ours) 3.2M 6.4x6 49.0 78.2
X3D-M [16] 3.3M 6.1 x6 46.4 75.3
X3D-M [16] w/ DQ2+1)D 3.2M 5.8 X6 47.4 75.9

TABLE 4. Comparison to different bottleneck architectures on
Something-Something V1.

Kinetics-400 [24] that is less sensitive to visual tempo varia-
tions, SSv1 & v2 [22] is focused on human-object interaction
which requires a more temporal relationship than appear-
ance [1], [21]], [23]]. Since SSvl & v2 is widely used as
a benchmark for evaluating the effectiveness of temporal
modeling, the effectiveness of the proposed VoV3D is mainly
investigated for this dataset. SSv1 [22] contains 108k videos
with 174 categories, and the second release (v2) of the dataset
is increased to 220k videos. Kinetics-400 [24] includes 400
categories and provides download URL links over 240k
training and 20k validation videos. Because of the expiration
of some YouTube links, we collect 234,619 training and
19,761 validation videos. For a fair comparison with X3D,
we train X3D and VoV3D on the same Kinetics-400 collected
by ourselves.

B. IMPLEMENTATION DETAILS

Training. Our models are trained from scratch without using
ImageNet [33]] pretrained model unless specified. For SSv1
& v2 [22] dataset, we use segment-based input frame sam-
pling [1]], which splits each video into N segments and picks
one frame to form a clip (/N frames) from each segment.
We note that thanks to the memory-efficient VoV3D, our
model can be trained with more input frames, e.g., from 16
to 32. For Kinetics-400 [24], we sample 16 frames with a
temporal stride of 5 as [[16]. We apply the random cropping of
224 x 224 pixels from a clip and random horizontal flip with
a shorter side randomly sampled in [256, 320] pixels [13]],
[1el, 1341, [35] for VoV3D-M and VoV3D-L models. In
the case of SSvl & v2, it requires discriminating between
directions, so the random flip is not applied. Following [|13]],
[16[], we use the same parameters for training SSvl & v2:
SGD optimizer, 100 epochs, mini-batch size 64 (8 clips per
a GPU), initial learning rate 0.1, half-period cosine learning
rate schedule [36], linear warm-up strategy [37]], and weight
decay 5x10~°. Following [1], [38]], we also fine-tune VoV3D
using Kinetics-400 pretrained model. We use a linear warm-
up [37] for 2k iterations from 0.0001 and a weight decay of
5 x 107°. We finetune the model for 50 epochs with a base
learning rate of 0.05 decreased at 35 and 45 epoch by 0.1
and use sync bathcnorm. For Kinetics-400, we use the same
training parameters except for 256 epochs and mini-batch
size 128. We train all models using a 8-GPU machine and
implementation is based on PySlowFast [3].

6

From scratch K-400 finetune

Model #F  GFLOPs

Top-1 Top-5 Top-1 Top-5
X-M|[16] 16 6.1x6 46.4 75.3 51.2 78.9
V-M 16 6.4x6 49.0 78.2 524 80.3
X-M|[16] 32 12.3x6 48.9 77.6 51.5 79.6
V-M 32 12.8%6 50.1 79.2 53.3 81.2
X-L [16] 16 11.9%x6 47.1 76.5 50.8 79.3
V-L 16 12.1x6 49.6 78.1 534 814
X-L [16] 32 239x%6 48.4 77.8 52.6 81.2
V-L 32 243%6 50.7 78.8 54.7 82.0

TABLE 5. Comparison to X3D on Something-Something V1. #F denotes
the number of input frames. X and V denote X3D and VoV3D, respectively. For
model parameters, X3D-M and VoV3D-M have 3.3M respectively and X3D-L
and VoV3D-L have 5.6M and 5.8M, respectively.

To compare VoV3D-M/L to the strong state-of-the-art

X3D [16], we also train X3D-M/L having similar parameters
and FLOPs with the same training protocols. Note that for
X3D-L, unlike origin X3D paper [16], we use the same
spatial sample size [256, 320], not [356, 446]. The reason
why we invest computation budget to more input frames
(>16) is that the SSvl & v2 [22] requires more temporal
modeling than appearance information.
Inference. Following common practice in [1]], [S]], [16]], [35],
we sample multiple clips per video (e.g., 10 for Kinetics and
2 for SSv1 & v2). We scale the shorter spatial side to 256
pixels and take 3 crops of 256256, as an approximation of
fully-convolutional testing [35] called full resolution image
testing in TSM [1]]. Then, we average the softmax scores for
prediction.

C. ABLATION STUDY

In order to verify the effectiveness of the proposed method in
terms of temporal modeling, we conduct ablation studies on
SSv1 [22] that requires more temporal modeling ability [1]],
[21], [23]] than Kinetics-400.

Component contributions. We study the effect of the in-
dividual component of VoV3D and results are shown in
Table. Bl We use X3D as a baseline and T-OSA without
D(2+1)D consists of the same depthwise bottleneck as X3D.
T-OSA boosts performance by large margins in both M and
L models, demonstrating the diverse temporal representation
of T-OSA improves temporal modeling capability. D(2+1)D
also achieves higher accuracy, which suggests that the factor-
ization of spatial and temporal features helps the network to
optimize easily.

Comparison with the different bottleneck. We compare
the proposed depthwise spatiotemporal factorization module
(i.e., D(2+1)D) with other architectures [13]], [15], [20] in
Table. 4] We alternatively plug the bottleneck architectures
into the T-OSA. While R(2+1)D [20] reduces both param-
eters and GFLOPs with higher accuracy than the standard
bottleneck [29] in (a), the depthwise bottleneck [[15]], [[16]] in
(c) also significantly reduces the computations but obtains
lower performance than R(2+1)D. However, both D(1+2)D
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Something V1 SomethingV2
Model Backbone Pretrain Frame  Param (M) GFLOPs Top-1 Top-5 Top-1 Top-5
TSM [1] ResNet-50 Kinetics-400 16 24.3 33x6 472 77.0 63.0 88.1
TSM [1] ResNet-101 Kinetics-400 8 24.3 65 X 6 48.7 77.2 63.2 88.2
TSM+TPN [4] ResNet-50 ImageNet 8 N/A N/A 50.7 - 64.7 -
STM [2] ResNet-50 ImageNet 16 N/A 67 x 30 50.7 80.4 64.2 89.8
TEA [9] ResNet-50 ImageNet 8 24.4 35 x 30 51.7 80.5 - -
TEA [9] ResNet-50 ImageNet 16 24.4 70 x 30 52.3 81.9 65.1 89.9
NL-I3D+GCN [39] 3D ResNet-50 Kinetics-400 32 N/A 303 x 6 46.1 76.8 - -
SlowFast 16 x 8, R50 [13] - Kinetics-400 64 34.0 131.4 x 6 - - 63.9 88.2
ip-CSN-152 [[15] - - 32 29.7 74.0 x 10 49.3 - - -
ViT-B-TimesSformer [40] ViT-B [41] ImageNet-21K 8 121.4 1703 x 3 - - 62.5 -
MVIT-B, 32 x 3 [42] - Kinetics-400 32 36.6 170.0 x 3 - - 67.1 90.8
X3D-M |[16] - - 16 33 6.1 X6 46.4 75.3 63.1 88.0
VoV3D-M - - 16 32 6.4 %6 49.0 78.2 63.6 88.6
VoV3D-M - - 32 32 12.8 x 6 49.8 78.0 64.3 88.9
VoV3D-M - Kinetics-400 32 32 12.8 x 6 53.2 81.1 65.8 89.6
X3D-L [16] - - 16 5.6 12.0x 6 47.1 76.5 62.7 87.8
VoV3D-L - - 16 5.8 12.1 x6 49.5 78.0 64.5 88.7
VoV3D-L - - 32 5.8 24.3 X6 50.7 78.8 65.9 89.6
VoV3D-L - Kinetics-400 32 5.8 24.3 X 6 54.7 82.0 67.4 90.5

TABLE 6. Comparison with the state-of-the-art architectures on Something-Something V1& V2 validation set. Note that Something-Something dataset
requires more temporal relationship than Kinetics-400 [24] (appearance-oriented). For fair comparison, X3D and VoV3D are trained with the same training protocols

on PySlowFast [5].

and D(2+1)D achieve better accuracy with less computation
than dw-bottleneck in (c). In particular, D(2+1)D outper-
forms all other architectures with a minimum computation
and model size. In addition, we also investigate the effect of
D(2+1)D by replacing dw-bottleneck with D(2+1)D in X3D.
As a result, D(2+1)D improves 1%p Top-1 accuracy gain
while reducing model parameters and GFLOPs.
Comparison to X3D under various conditions. We com-
pare VoV3D with X3D under the following conditions: the
number of input frames (#F in Table. [5) and whether a back-
bone is pre-trained with Kinetics-400 or not. We train VoV3D
and X3D with 16 and 32 input frames from scratch or using
Kinetics-400 pretraining. Table [5] summarizes the results.
We can find that using more frames boosts performance in
both VoV3D and X3D and VoV3D consistently outperforms
X3D. This demonstrates that using more frames helps the
networks to capture visual tempo variation and the ability of
the proposed T-OSA to represent diverse temporal receptive
fields enables VoV3D to yield better temporal modeling than
X3D.

D. COMPARISON TO STATE-THE-OF-ART

Results on Something-Something. We validate the effi-
ciency and effectiveness of the proposed VoV3D on SSvl
& V2 requiring more temporal modeling ability than spatial
appearance. Table [6] shows the results and resource budgets
of other methods: temporal modeling based on 2D CNN
methods [1f], [2, [9] and 3D CNN architectures [4], [Sl],
[15[, [16], [39]. First, under the same input frames (e.g.,
16 frames), VoV3D-M/L consistently outperforms X3D-M/L
with a comparable model budget on both SSv1 & v2. In par-
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ticular, the performance gain of ‘L’ models is bigger than ‘M’
models. This result demonstrates that stacking the proposed
T-OS As makes it better to model temporal dependency across
frames. Qualitative comparison is also illustrated in Fig.[6]

Compared to the representative temporal modeling 2D
CNN method, TSM [1]] based ResNet-101, VoV3D-M with
16 frames achieves higher accuracy while it requires much
fewer parameters (8x) and GFLOPs (10x), even without
pretraining. Furthermore, the performance of VoV3D-L with
32 frames pretrained on Kinetics-400 surpasses that of the
best model among 2D CNN methods, TEA [9] by a large
margin (2.4% / 2.3% @Top-1) on both SSvl & v2, while
having about 14X fewer computation. These results break
the prejudice that 3D CNN architectures require an expen-
sive computation budget than 2D CNN. We also note that
VoV3D architecture alone shows sufficient performance and
efficiency than the add-on style temporal modeling methods
on top of 2D backbone networks [1]], [2], [4]], [9]. It shows
that VoV3D can serve as a strong baseline for temporal
modeling.

VoV3D is also superior to those 3D CNN-based temporal
modeling methods, such as SlowFast [13] and CSN [15].
Even without Kinetics-pretraining, VoV3D-M with 32
frames achieves higher accuracy than SlowFast pretrained on
Kinetics-400 with 11x more model parameters. It demon-
strates that a 3D single network path is enough to model
visual tempo variations. Although CSN [15] contains the
depthwise bottleneck architecture, its accuracy is lower than
that of VoV3D-M. This result shows that the proposed T-OSA
plays an important role in temporal modeling.

Since attention-based methods [41], [43], [44] have ad-
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Method Pre #F PM) GFLOPs Top-1  Top-5
13D [45] IN 64 12 108 x N/A 711 90.3
Nonlocal R50 [35] IN 32 353 282 x 30 76.5 92.6
TSM [1] IN 16 243 65 x 30 74.7 -
STM (2] IN 16 NA 67 x 30 73.7 91.6
TEA R50 [9] IN 16 244 70 x 30 76.1 92.5
R(2+1)D [20] - 16 636 152 x 115 72.0 90.0
SlowFast 4% 16, R50 [13] - 32 344 36.1 x 30 75.6 92.1
ip-CSN-152 |15] - 32 328 109 x 30 77.8 92.8
X3D-M [16] - 16 3.8 6.2 x 30 75.1 92.2
X3D-L [16] - 16 6.1 9.1 x 30 76.1 92.6
VoV3D-M - 16 3.7 6.4 x 30 74.7 92.1
VoV3D-L - 16 6.2 9.3 x 30 76.3 92.9

TABLE 7. Comparison with the state-of-the-art architectures on
Kinetics-400. IN, #F, P denote ImageNet pretraining, the number of frames
and parameters, in respectively. Note that both VoV3D and X3D are trained
with the same training protocols on the same environment such as GPU
server, training set, and scale size [256, 320] and implemented on
PySlowFast [9].

vantages of modeling long-range dependency inherently, We
also compare VoV3D with the recent vision transformer
based methods such as TimeSformer [40] and MViT [42].
VoV3D outperforms TimeSformer, while having 20x less
model parameter and requiring 35X computational cost. The
reason TimeSformer has lower performance than VoV3D is
that TimeSformer utilizes ViT-B that exploits only single-
scale feature map (14 x 14) instead of multi-scale features as
in VoV3D and MViT. Besides, VoV3D achieves similar per-
formance compared to MViT-B (32x3) using 32 input frames,
showing better efficiency in terms of model parameters (6x)
and GFLOPs (3x), respectively. The reason why VoV3D
performs better than the transformer-based methods is that
VoV3D can model not only long-range redundancy but also
local connectivity. Therefore, these results demonstrate that
the capability of modeling both long-range dependency and
local connectivity is necessary for temporal modeling.
Results on Kinetics-400. We also compare VoV3D to
other state-of-the-art methods on Kinetics-400. VoV3D-L
achieves 76.3%/92.9% Top-1/5 accuracy, and it shows bet-
ter performance than the state-of-the-art temporal modeling
2D method, TEA [9]], even without ImageNet pretraining.
VoV3D-L also surpasses 3D temporal modeling methods,
SlowFast [13] 4 x 16 based on ResNet-50 while having
about 5x and 4x fewer model parameters and FLOPs,
respectively. Compared to ip-CSN-152 [15] as an efficient
3D CNN, VoV3D-L shows slightly lower Top-1 accuracy,
but it achieves higher Top-5 accuracy with much less model
capacity. While VoV3D-M shows comparable accuracy with
X3D-M, VoV3D-L achieves higher Top-1/Top-5 accuracy.

E. ROBUSTNESS ANALYSIS TO TEMPORAL VARIATION
Inspired by TPN [4]], we investigate the robustness to tem-
poral variation of VoV3D and X3D. VoV3D-M and X3D-M
are trained with the same sampling rate (temporal stride 7)
of 5 on Kinetics-400. At the test phase, we measure the top-
1 accuracy drop depending on the change of the sampling
rate (e.g., 7 € {5,8,10,12,14,16}) used for adjusting the
visual tempo of a given action instance. The accuracy drop
is used for measuring the robustness to temporal variations.
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FIGURE 5. Robustness to temporal variation. Changing sampling rates (or
temporal stride) induces temporal variation. Compared to X3D, VoV3D is more
robust to temporal variation due to its temporal modeling ability of T-OSA.

Method Param. GPU Memory  sec/video  SSv2 Top-1
R(2+1)D [20] 20.9M 5,952MB 0.030 48.6
dw-bottleneck [16] 3.3M 4,604MB 0.013 48.0
D(2+1)D (ours) 3.2M 4,762MB 0.014 49.0
SlowFast-R50 [13] 34.0M 20,284MB 0.088 63.9
X3D-L-32 [16] 5.6M 10,462MB 0.035 62.7
MVIT-32 [42] 36.6M 22,038MB 0.055 67.1
VoV3D-L-32 (ours)  5.8M 11,974MB 0.039 67.4

TABLE 8. Model budget comparison. (b), (c), () denote the same models
in Table|§| sec/video means GPU runtime. GPU memory and runtime are
measured during inference with 16 batch on one V100 GPU (CUDA 10.1 &
pytorch 1.6). For a fair comparison, we test all models in the same codebase,
PySlowFast.

Fig. 3] shows the accuracy drop curves of varying visual
tempos for VoV3D and X3D. When changing the sampling
rate, VoV3D shows less accuracy drop than X3D, which
supports the fact that VoV3D is more robust to temporal
variation and thus has a better ability to model temporal
relationships across frames than X3D.

F. MODEL CAPACITY ANALYSIS

In Table [§] we compare model capacity of D(2+1)D with
R(2+1)D [20] and depthwise-bottleneck [16]] in terms of
model parameter, total feature sizes (i.e., Activations), and
GPU memory. (b), (c), (¢) models are the same ones in
Table El Compared with R(2+1)D, D(2+1)D consumes less
GPU memory even with similar feature sizes due to its
much smaller model size, allowing VoV3D and X3D to use
longer input frames. Moreover, D(2+1)D shows two times
better efficiency than R(2+1)D in terms of inference time.
We also compare our VoV3D-L-32 comprised of the efficient
D(2+1)D modules with state-of-the-art methods including
CNN-based X3D [16] and SlowFast-R50 [13] and the re-
cent Vision transformer-based MViT-32 [42]]. Compared to
SlowFast-R50, VoV3D consumes two times less GPU mem-
ory while running two times faster. Showing faster inference
time, VoV3D also requires fewer model parameters and less
GPU memory than MViT. These results demonstrate VoV3D
based on 3D CNN can be widely used due to its efficacy and
effectiveness.
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Label : “Moving eraser and sharpner closer to each other”
X3D : “Moving <sth> closer to something”( X )
VoV3D : “Moving <sth> and <sth> closer to each other”(./ )

Label : “Pushing bike light from left to right”

X3D : “Moving <sth> across a surface without it falling down” X )

VoV3D: “Pushing <sth> light from left to right”(~/")

Label : “Pushing pen from right to left”
X3D: “Pulling <sth> from right to left”( X )
VoV3D: “Pushing <sth> from right to left”(./")

W= BN

Label : “putting orange in front of cup”
X3D : “Putting <sth> next to <sth>"( X )
VoV3D: “putting <sth> in front of <sth>"(./")

Label : “pulling paper towel from right to left”
X3D : “Moving <sth> and <sth> away from each other”( X )
VoV3D: “pulling <sth> from right to left”(-/")

Label : “moving blue colour pen down”
X3D : “Moving <sth> towards <sth>"( X )
VoV3D: “moving <sth> down”(./)

FIGURE 6. Qualitative comparison with X3D on Something-Something datasets. We compare the proposed VoV3D with X3D qualitatively on
something-something dataset which requires more temporal modeling ability than spatial appearance (e.g., Kinetics-400). As shown these examples, VoV3D
distinguishes directions and interactions between objects and humans rather than X3D, which demonstrates the proposed Temporal One-Shot-Aggregation method

effectively models temporal relationships between frames.

V. CONCLUSION

We have proposed a simple yet effective temporal modeling
3D architecture, VoV3D, that consists of Temporal One-Shot
Aggregation (T-OSA) and depthwise spatiotemporal factor-
ized module, D(2+1)D. The T-OSA is able to effectively
model temporal variations by aggregating features having
different temporal receptive fields. The D(2+1D) module
decomposes 3D depthwise convolution into a spatial and
temporal depthwise convolution, which makes the proposed
VoV3D significantly efficient and boosts performance. We
expect the proposed VoV3D and its components to be widely

VOLUME , 2021

used in other video applications.
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