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A B S T R A C T

One of the most challenging issues in radio received signal strength (RSS)-based localization systems is the
generation and distribution of a radio map with a coordinate system linked with spatial information in a large
indoor space. This study proposes a novel spatial-tagged radio-mapping system (SRS) that effectively combines
the heterogeneous properties of LiDAR and mobile phones to simultaneously perform both spatial and radio
mappings. The SRS consists of synchronization, localization, and map building processes, and enables real-time
spatial and radio mapping. In the synchronization process, the distance range, motion data, and radio signals
obtained through the LiDAR and mobile phone are collected in nodal units according to the sensing time.
In the localization process, a feature variance filter is used to control the number of features generated from
LiDAR and estimate the positions at which the nodes are generated in real time according to the motion data
and radio signals. In map building, the estimated positions of the nodes are used to extract spatial and radio
maps by using a unified location coordinate system. To ensure mobility, the SRS is manufactured in the form
of a backpack supporting LiDAR and a mobile phone; the usefulness of the system is experimentally verified.
The experiments are performed in a large indoor shopping mall with a complex structure. The experimental
results demonstrated that a common coordinate system could be used to build spatial and radio maps with high
accuracy and efficiency in real time. In addition, the field applicability of the SRS to location-based services is
experimentally verified by applying the constructed radio map to well-known fingerprinting algorithms using
the heterogeneous mobile phones.
1. Introduction

The scope of the localization technology has recently been expanded
to large indoor spaces [1]. The increase in the size and complexity of
buildings has resulted in the increasing demand of localization tech-
nologies to provide information for destinations indoors. The indoor
localization technology is already widely used in real life; represen-
tative applications include customer information services in shopping
centers, surveillance and reconnaissance services in security facilities,
and delivery services in distribution warehouses [2]. In particular, with
increasing use of mobile phones and developments in telecommunica-
tion devices, indoor localization technology is being closely utilized in
the field of life safety, e.g., for emergency calls and emergency exit
guidance [3].

With the proliferation of pervasive network devices, the fingerprint-
ing method based on the received signal strength (RSS) of WiFi and
Bluetooth has become the most widely used indoor localization technol-
ogy [4,5]. Other methods include measurement of the time difference
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of arrival [6] and angle of arrival [7]. However, their widespread use
in the public domain is limited owing to the high cost of purchasing,
installing, managing, and maintaining specially designed devices such
as ultra-wideband (UWB) [8,9]. Conversely, the fingerprinting method
can implement the RSS of WiFi and Bluetooth devices without the
need of additional devices, which are representative pervasive network
devices installed for cloud computing. Hence, the RSS-based finger-
printing method, which does not require additional costs even in the
case of mobile phones, is being developed into a practical indoor
localization technology.

Three major technical considerations are required to widely apply
the radio RSS-based fingerprinting localization method: (1) fingerprint
accuracy of the radio map containing the RSS information [10], (2)
connectivity with the spatial map [11], and (3) map building effi-
ciency [12]. Inadequacies in any one of these factors complicates the
application of fingerprint localization to the field. Therefore, a solution
is required that simultaneously addresses all three considerations.
vailable online 26 February 2022
474-0346/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.aei.2022.101560
Received 20 August 2021; Received in revised form 6 February 2022; Accepted 14
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

February 2022

http://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:yclee@etri.re.kr
mailto:yu-cheol.lee@stonybrook.edu
https://doi.org/10.1016/j.aei.2022.101560
https://doi.org/10.1016/j.aei.2022.101560
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2022.101560&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Advanced Engineering Informatics 52 (2022) 101560Y. Lee
Regarding the first consideration, the most important factor in the
radio RSS-based localization method is to build an accurate radio map.
This is because given the principles of localization in the fingerprinting
method, the currently received radio signal must be matched with the
RSS stored in the radio map. Therefore, studies have developed various
techniques for building radio maps [13,14].

Second, the location of the fingerprint in the radio map must be
registered to the same coordinate system as that in the spatial map [11].
The fingerprinting localization result is typically output as the location
at which the RSS is collected. In practical applications, it is necessary
to determine where the location estimated using the radio map cor-
responds in space. The method’s utility will inevitably decrease if the
localization result obtained through the radio map is not linked with
the location on the spatial map used as the user interface [15].

Finally, in terms of cost, the building technique for the radio map
must have a large mapping space size per hour. The time required to
build the radio map is directly related to the cost of implementing
localization [12,16]. Owing to the growing size of indoor spaces, the
efficiency of building radio maps is emerging as a crucial technical
factor in the proliferation of location-based services (LBSs).

As a solution to these three issues, this study proposes a novel
spatial-tagged radio-mapping system (SRS) that can simultaneously
build spatial and radio maps in real time by fusing heterogeneous
sensing data obtained from LiDAR and mobile phone. Essentially, SRS
synchronizes and collects the distance range and radio signals acquired
from LiDAR and mobile phone as one node. SRS uses the LiDAR
distance range to estimate the collected node position and can use this
position to simultaneously build the spatial and radio maps. This system
is technically significant in that it combines the advantages of LiDAR
and mobile phone to provide a practical mapping tool for effectively
building and distributing the radio map for indoor localization.

Furthermore, SRS is considered an appropriate solution for the three
technical contributions owing to its improved mapping efficiency, reli-
able accuracy, and connectivity with the spatial map when building the
radio map. Considering that the spatial and radio maps are built using
the position estimated through LiDAR-based localization technology,
the location coordinate system of both maps is automatically registered
to a common coordinate system. Hence, the fingerprint location of the
radio map can ensure reliable accuracy. This study also developed a
feature variance filter (FVF) that controls the number of features in the
localization module by identifying trends of a mobile phone’s motion
data and radio signals. FVF is a core technology for achieving efficient
and real-time mapping, and it enables mapping at even walking speeds
using SRS.

The remainder of this paper is organized as follows. After a discus-
sion of the related work in the following section, Section 3 presents
the detailed algorithm of SRS. Section 4 describes experiments and
results to verify the major contributions of SRS. Section 5 concludes
the research work and outlines possible future studies on practical
applications of SRS.

2. Related works

To implement radio RSS-based indoor localization technology, a
radio map whose coordinate system is linked with the spatial map
must be provided beforehand. This is typically implemented by des-
ignating fingerprint location containing the collected radio received
signal information on the floorplan used as the spatial map [17,18].
A floorplan is used because the direct construction of a spatial map
containing geometric data using only equipment, such as mobile phone,
is difficult. Representative approaches include point manual calibration
(PMC) [19,20], simultaneous localization and mapping (SLAM) [21],
learning-based approach [22,23], and cloud collection [24]. Actual
localization is possible only with a radio map; however, as LBS can
only be used when the location can be defined in space, registration
using the spatial map is an important technical factor.
2

The PMC estimates the fingerprint location using pedestrian dead-
reckoning (PDR) that combines inertial measurement unit (IMU), gyro-
scope, and magnetometer, and links with the map coordinate system.
Usually, a straight line consisting of departure and arrival points is
manually designated on the map, and the operator estimates the posi-
tion of the points constituting the actual straight path with a constant
stride by PDR. By manual scale adjustment and calibration of the
location of the estimated points on the spatial map, fingerprint location
information with collected radio signals can be linked with the spa-
tial map. Because the operator manually performs matching with the
spatial map, the method is highly accurate, and is thus used by many
researchers for constructing the reference dataset of fingerprinting
localization performance. However, the involvement of manual work
leads to low efficiency [25–27].

While the SLAM technique is highly efficient, the registration ac-
curacy between the floorplan and radio map is low. After designating
the starting point on the drawing, this method connects the movement
trajectory using radio signals and the PDR and expands the mapping
area. This is more efficient compared to the PMC method because
there are fewer manual connection tasks. However, large errors arise
in the location estimated using PDR in the case of a non-straight
movement; this results in the problem of incorrect loop closure in
SLAM [28,29]. As a result, the floorplan and actual radio fingerprint
location are frequently inconsistent. In some investigations, to address
the limitations of PDR, SLAM using a LiDAR and a panoramic camera
is employed to construct a spatial map, and then it is manually linked
with a radio map [30]. The spatial map is used only for extracting the
ground-truth location information of the waypoints for the challenge.
The operator constructs a radio map for the location of the waypoints
defined on the spatial map with PMC method. LiDAR-based SLAM is
applied to the construction of radio maps, but a system that can build
both spatial and radio maps concurrently as in the case of SRS is not
provided.

A learning-based approach designates some labeled fingerprint loca-
tions on the spatial map and adds fingerprint information for unknown
areas according to the learning model. The method enables building a
radio map of the entire area by specifying a few labeled fingerprints,
thus reducing manual calibration cost compared to PMC. However, the
method requires efforts to designate the labeled fingerprint locations
on the spatial map. Usually, this method can be used only in indoor
environments that include a place where the reference location can be
known, such as GPS. [20].

Cloud collection is a method for creating and updating the radio
fingerprint location in space through a complex technique, such as with
PMC, SLAM, and learning-based approach [31]. Even in large spaces,
the mapping efficiency increases with increase in the number of map-
ping participants, and the previously collected fingerprint information
can be continuously updated. However, ensuring consistent accuracy is
difficult because the radio map is built using various techniques.

In the four aforementioned techniques, majority of the methods for
registering the spatial and radio maps require a floorplan to be provided
beforehand. Even if a floorplan is given, the radio fingerprint collection
location is only registered in the floorplan. To improve the efficiency
of fingerprint creation, an interpolation method that considers the
physical distance of the floorplan has been used [32]. Moreover, to
increase the fingerprint accuracy, the radio signals are collected to
reflect the structural shapes of the floorplan [33]. However, these
methods are inapplicable to situations in which a spatial map, such as
a floorplan, is not provided.

Accordingly, to address the limitations of the existing techniques,
in this study, we propose SRS, which combines the data acquired
from LiDAR and mobile phone to simultaneously build and distribute
the spatial and radio maps. Additionally, to confirm the applicability
of SRS as a base technology for indoor LBS, its performance was
experimentally verified in terms of securing radio-map fingerprint ac-
curacy, registration of location information using the spatial map, and

improvement of mapping efficiency.
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Fig. 1. Overview of the proposed spatial-tagged radio-mapping system.
3. Spatial-tagged radio-mapping system

SRS can simultaneously build spatial and radio maps in an inte-
grated coordinate system by fusing the data measured from LiDAR and
mobile phone. Fig. 1 describes the components and operation process
of the SRS. In the main PC, the synchronization, localization, and map
building modules are executed step by step.

In the synchronization step, the radio signals and the distance range
acquired from mobile phones and LiDAR connected through WLAN and
LAN, respectively, are synchronized according to the acquisition time
and stored in one node. In the localization step, the 3D points converted
from the LiDAR distance range are used to estimate the position at
six degrees of freedom (DoF) through scan and map matchings. In the
mapping step, the estimated 6-DoF position and 3D points are used to
construct a 3D-point cloud and 2D-plane image as the spatial map. The
estimated 6-DoF position and radio signals can be used to build the
fingerprint information as a radio map. This study also proposes an
FVF that can analyze whether the moving space changes according to
the motion data and radio signals measured from mobile phones in the
localization module. Using FVF to control the number of features to be
employed for localization matching, the map can be built in real time.

3.1. Synchronization

LiDAR and mobile phone are physically different devices connected
via LAN and WLAN, respectively. As such, synchronization is vital to
enhance the accuracy of the collected measurement information. In
particular, as mobile phone is connected via WLAN, the collected data
are likely to be delayed. Therefore, to synchronize the sensing data, the
3D points converted from the 3D range distances of LiDAR, 𝐏𝐿

𝑡 , and the
motion data and radio signals 𝐙𝑡 from mobile phone are composed as
one node, 𝐍𝑡, according to the measurement time as follows:

𝐍𝑡 =
{

𝐏𝐿
𝑡 ,𝐙𝑡

}

. (1)

In addition, the information obtained from the mobile phone, 𝐙𝑡,
can be transmitted to the main PC through WLAN, which may cause
latency. To overcome the latency issue, nodes are created based on the
time the data acquired from the device and not the time data sent to
the main PC. Specifically, in LiDAR and mobile phones, the time of data
acquisition is passed to the main PC and saved in a buffer, and these
are constructed as a single node when the acquisition time of 𝐏𝐿

𝑡 and
𝐙𝑡 is within a set range.

3D points data 𝐏𝐿
𝑡 is the local coordinate system with the LiDAR

position as the origin, with 𝑁𝑎 channels in the vertical direction and
𝑁𝑝 points, (𝑥𝐿𝑛,𝑖, 𝑦

𝐿
𝑛,𝑖, 𝑧

𝐿
𝑛,𝑖), for each channel in the horizontal direction.

This system is represented as

𝐏𝐿
𝑡 =

{

𝐩𝐿𝑛,𝑖
|

|

|

𝑛 = 1,… , 𝑁𝑎, 𝑖 = 1,… , 𝑁𝑝

}

,

𝐩𝐿𝑛,𝑖 =
(

𝑥𝐿𝑛,𝑖, 𝑦
𝐿
𝑛,𝑖, 𝑧

𝐿
𝑛,𝑖

)

.
(2)

Motion data 𝐦𝑡 of 𝐙𝑡 consists of the sum of the accelerations of the
three-axis, 𝑎𝑡; sum of the angular velocities of the three-axis, 𝜔𝑡; sum of
the magnetic fields of the three-axis, 𝜇 ; and atmospheric pressure 𝜌 .
3

𝑡 𝑡
Fig. 2. Point feature extraction based on the sequential contour values.

In addition, radio signal 𝐫𝑡 of 𝐙𝑡 consists of 𝑁𝑧 MAC addresses and RSS
values of (𝑚𝑐𝑗 , 𝑟𝑗 ) acquired from nearby Wi-Fi and Bluetooth devices:

𝐙𝑡 =
(

𝐦𝑡, 𝐫𝑡
)

,𝐦𝑡 =
(

𝑎𝑡, 𝜔𝑡, 𝜇𝑡, 𝜌𝑡
)

,
𝐫𝑡 =

{(

𝑚𝑐𝑗 , 𝑟𝑗
)

|

|

𝑗 = 1,… , 𝑁𝑧
}

.
(3)

3.2. Localization for map construction

3.2.1. Feature extraction
We consider that only the features of major static objects should be

extracted from the LiDAR-based 3D points and used for matching. This
is because the use of all the point data of LiDAR for localization match-
ing might not guarantee the real-time performance owing to heavy
computational burden. Moreover, for objects that move dynamically,
such as humans, frequent changes in location may adversely impact
the matching accuracy. Therefore, only the point features of corners
and planes extracted from static objects, such as columns and walls,
with fixed locations are used for matching.

The LiDAR technology can measure the locations of nearby objects
in the form of points at uniform bearing angle intervals. Thus, using the
curvature value of sequential points, the point features corresponding
to the corners and planes can be extracted, as shown in Fig. 2. The
curvature value for given point 𝐩𝐿𝑛,𝑖 in the 𝑛th scan channel can be
calculated using scan points 𝐩𝐿𝑛,𝛼 and 𝐩𝐿𝑛,𝛽 on either side as follows:

𝜅(𝛼,𝛽)
𝑛,𝑖 =

‖

‖

‖

‖

(

𝐩𝐿𝑛,𝛼 ,𝐩
𝐿
𝑛,𝛽

)

‖

‖

‖

‖

‖

‖

‖

𝐩𝐿𝑛,𝑖
‖

‖

‖

. (4)

To determine whether this corresponds to the point features of 𝐩𝐿𝑛,𝑖,
curvature set K𝑛,𝑖 is calculated as follows:

K𝑛,𝑖 =

⎧

⎪

⎨

⎪

⎩

𝜅(𝛼,𝛽)
𝑛,𝑖

|

|

|

|

|

|

|

(𝛼 + 𝛽)
2

= 𝑖, cos−1
⎛

⎜

⎜

⎝

𝐩𝐿𝑛,𝛼 ⋅ 𝐩
𝐿
𝑛,𝛽

‖

‖

‖

𝐩𝐿𝑛,𝛼
‖

‖

‖

‖

‖

‖

𝐩𝐿𝑛,𝛽
‖

‖

‖

⎞

⎟

⎟

⎠

< 𝜋
4

⎫

⎪

⎬

⎪

⎭

, (5)

where 𝛼 and 𝛽 form an index pair, 𝑖, in the 𝑛th channel. Given that
majority of corner shapes are vertical, the relative angle between 𝐩𝐿𝑛,𝛼
and 𝐩𝐿𝑛,𝛽 spans up to a maximum of 𝜋∕4. If the average value of
curvature set K̄ is larger than that of corner threshold 𝜅 or smaller
𝑛,𝑖 𝑣
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Fig. 3. (a) Geometrical feature extraction. (b) Extraction of the matching distance
between the current point and geometrical features of different scans.

than that of plane threshold 𝜅ℎ, 𝐩𝐿𝑛,𝑖 can be defined as a corner point 𝐯𝐿𝑗
or a planar point 𝐡𝐿𝑘 as follows:

𝐕𝐿
𝑡 =

{

𝐯𝐿𝑗 |

|

𝑗 = 1,… , 𝑁𝑣

}

=
{

𝐩𝐿𝑛,𝑖
|

|

|

K̄𝑛,𝑖 > 𝜅𝑣,𝐩𝐿𝑛,𝑖 ∈ 𝐏𝐿
𝑡

}

, (6)

𝐇𝐿
𝑡 =

{

𝐡𝐿𝑘 |

|

𝑘 = 1,… , 𝑁ℎ
}

=
{

𝐩𝐿𝑛,𝑖 ||K̄𝑛,𝑖 < 𝜅ℎ ,𝐩𝐿𝑛,𝑖 ∈ 𝐏𝐿
𝑡

}

, (7)

where 𝐕𝐿
𝑡 and 𝐇𝐿

𝑡 are the point feature groups comprising 𝑁𝑣 corner
points and 𝑁ℎ planar points, respectively.

The corner lines and planar surfaces can be extracted as the geomet-
rical features of the space using the points corresponding to the corners
and planes. Fig. 3(a) presents the extraction of the corner lines and
planar surfaces in detail. The center point of corner line �̄�𝐿𝑗 and unit
vector �̂�𝐿𝑗 can be calculated using two corner points 𝐯𝐿𝛼 and 𝐯𝐿𝛽 nearest
to each other as:

𝐂𝐿
𝑡 =

{

𝐜𝐿𝑗 |

|

𝑗 = 1,… , 𝑁𝑐

}

=

⎧

⎪

⎨

⎪

⎩

(

�̄�𝐿𝑗 , �̂�
𝐿
𝑗

)

|

|

|

|

|

|

|

|

�̄�𝐿𝑗 =
𝐯𝐿𝛼 + 𝐯𝐿𝛽

2
, �̂�𝐿𝑗 =

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐯𝐿𝛼 𝐯
𝐿
𝛽

|

|

|

|

⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐯𝐿𝛼 𝐯
𝐿
𝛽
|

|

|

|

⎫

⎪

⎬

⎪

⎭

,

(8)

where (𝐯𝐿𝛼 , 𝐯
𝐿
𝛽 ) ∈ 𝐕𝐿

𝑡 , and 𝛼 and 𝛽 are different indices. In addition, 𝑁𝑐
sets of 𝐜𝐿𝑗 constitute the corner line group, 𝐂𝐿

𝑡 . Further, the center point
of planar surface �̄�𝐿𝑘 and normal unit vector �̂�𝐿𝑘 can be calculated using
the three planar points, 𝐡𝐿𝛼 , 𝐡𝐿𝛽 , and 𝐡𝐿𝛾 , that are nearest to each other
as follows:
𝐒𝐿𝑡 =

{

𝐬𝐿𝑘 |

|

𝑘 = 1,… , 𝑁𝑠
}

=

⎧

⎪

⎨

⎪

⎩

(

�̄�𝐿𝑘 , �̂�
𝐿
𝑘
)

|

|

|

|

|

|

|

|

�̄�𝐿𝑘 =
𝐡𝐿𝛼 + 𝐡𝐿𝛽 + 𝐡𝐿𝛾

3
, �̂�𝐿𝑘 =

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐡𝐿𝛼 𝐡
𝐿
𝛽 × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐡𝐿𝛼 𝐡

𝐿
𝛾

|

|

|

|

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐡𝐿𝛼 𝐡
𝐿
𝛽 × ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝐡𝐿𝛼 𝐡

𝐿
𝛾
|

|

|

|

⎫

⎪

⎬

⎪

⎭

,
(9)

where (𝐡𝐿𝛼 ,𝐡
𝐿
𝛽 ,𝐡

𝐿
𝛾 ) ∈ 𝐇𝐿

𝑡 , and 𝛼, 𝛽, and 𝛾 are different indices. In
addition, 𝑁𝑠 number of sets of 𝐬𝐿𝑘 constitute the planar surface group,
𝐒𝐿𝑡 .

3.2.2. Local position estimation
Scan matching based on sequential LiDAR-based 3D points estimates

the 6-DoF position in the local coordinate system as follows:

𝐱𝐿𝑡 =
[

𝑥𝐿𝑡 𝑦𝐿𝑡 𝑧𝐿𝑡 𝜙𝐿
𝑡 𝜃𝐿𝑡 𝜑𝐿

𝑡
]𝑇 , (10)

where (𝑥𝐿𝑡 , 𝑦
𝐿
𝑡 , 𝑧

𝐿
𝑡 ) signifies the position in the 3D space and (𝜙𝐿

𝑡 , 𝜃
𝐿
𝑡 , 𝜑

𝐿
𝑡 )

indicates the roll, pitch, and yaw angles, respectively. Assuming that
4

LiDAR moves from 𝐱𝐿𝑡−1 up to 𝐓 and rotates up to 𝐑, the LiDAR position
can be defined as 𝐱𝐿𝑡 , and is calculated as

𝐱𝐿𝑡 (4 ∶ 6) = 𝐱𝐿𝑡−1(4 ∶ 6) + 𝐑,
𝐱𝐿𝑡 (1 ∶ 3) = �̂�

[

𝐱𝐿𝑡−1 + 𝐓
]

,
(11)

where 𝐓 and 𝐑 express translation distance [𝑡𝑥, 𝑡𝑦, 𝑡𝑧]𝑇 and rotation
angle [𝑟𝑥, 𝑟𝑦, 𝑟𝑧]𝑇 , respectively. �̂� is the skew-symmetric matrix calcu-
lated according to Rodrigues rotation matrix formula using rotation
angle 𝐑 [34]. To calculate 𝐓 and 𝐑, the matching distance between the
previous geometrical feature group, (𝐂𝐿

𝑡−1,𝐒
𝐿
𝑡−1), and the current point

feature group, (𝐕𝐿
𝑡 ,𝐇

𝐿
𝑡 ), can be calculated as shown in Fig. 3(b). For 𝐜𝐿𝛼

and 𝐬𝐿𝛽 , (�̄�𝐿𝛼 , �̂�𝐿𝛼 ) and (𝐡𝐿𝛽 , �̂�
𝐿
𝛽 ) are used as elements, respectively:

𝑑𝑐 = 𝑓 (𝐂𝐿
𝑡−1,𝐕

𝐿
𝑡 ) =

|

|

|

|

⃖⃖⃖⃖⃖⃖⃖⃖⃗�̄�𝐿𝛼 𝐯
𝐿
𝑗 × �̂�𝐿𝛼

|

|

|

|

, (12)

𝑑𝑠 = 𝑓 (𝐒𝐿𝑡−1,𝐇
𝐿
𝑡 ) =

|

|

|

|

⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗�̄�𝐿𝛽 𝐡
𝐿
𝑘 ⋅ �̂�𝐿𝛽

|

|

|

|

, (13)

where the nearest corner line, 𝐜𝐿𝛼 ∈ 𝐂𝐿
𝑡−1, and planar surface 𝐬𝐿𝛽 ∈ 𝐒𝐿𝑡−1

are from corner point 𝐯𝐿𝑗 ∈ 𝐕𝐿
𝑡 and planar point 𝐡𝐿𝑘 ∈ 𝐇𝐿

𝑡 , respectively.
To calculate 𝐑 and 𝐓 with the smallest value of 𝐝𝑡 composed of 𝑑𝑐

and 𝑑𝑠, the moving position of LiDAR, 𝐱𝐿𝑡 , in the local coordinate system
can be estimated as follows:

𝐱𝐿𝑡 = arg min
[𝐑|𝐓]

(

𝐝𝑡
)

. (14)

𝐑 and 𝐓 can be defined as a nonlinear least-squares problems due to
their dependent relationship and are calculated using the Levenberg–
Marquardt algorithm, which combines the Gauss–Newton and gradient-
descent methods and finds a solution relatively quickly [35,36].

𝐐𝑡 ← 𝐐𝑡 +
(

𝐉𝑇𝑡 𝐉𝑡 + 𝜇𝐈
)−1 𝐉𝑇𝑡 𝐝𝑡, (15)

where 𝜇 is the non-negative damping factor. If 𝐐𝑡 = [𝐑|𝐓], then
𝐉𝑡 signifies the Jacobian matrix of 𝑓𝑐 (⋅) and 𝑓𝑠(⋅) for six elements
[𝑡𝑥, 𝑡𝑦, 𝑡𝑧, 𝑟𝑥, 𝑟𝑦, 𝑟𝑧]𝑇 of 𝐐𝑡. In addition as 𝐯𝐿𝑗 and 𝐡𝐿𝑘 , which are the
variables of 𝑓𝑐 (⋅) and 𝑓𝑠(⋅), the Jacobian matrix is developed according
to the chain rule as follows:

𝐉𝑐 =
𝜕𝑓𝑐
𝜕𝐐𝑡

=
𝜕𝑓𝑐
𝜕𝐯𝐿𝑗

𝜕𝐯𝐿𝑗
𝜕𝐐𝑡

, 𝐉𝑠 =
𝜕𝑓𝑠
𝜕𝐐𝑡

=
𝜕𝑓𝑠
𝜕𝐡𝐿𝑘

𝜕𝐡𝐿𝑘
𝜕𝐐𝑡

. (16)

𝐉𝑡 consists of 𝐉𝑐 and 𝐉𝑠 according to the type of point feature. 𝐐𝑡 can
be calculated using (15) and 𝐱𝐿𝑡 can be estimated using (11).

3.2.3. Global position estimation
Position 𝐱𝐿𝑡 estimated through scan matching is close to the dead-

reckoning data, which accumulates error. In fact, the scan matching
enables a high possibility for accumulating errors because it only uses
the features of the previous step sequential for local position estima-
tion [37]. For instance, if there are few features locally or many features
extracted from moving objects, the position errors of scan matching
might occur owing to the use of the local limited features.

In contrast, map matching can effectively solve the error accumula-
tion problem in scan matching by using features extracted from various
times and locations stored as the map in the world coordinate system.
Through map matching using the features in the world coordinate
system, the global position without the error accumulation should be
estimated as follows:

𝐱𝑊𝑡 =
[

𝑥𝑊𝑡 𝑦𝑊𝑡 𝑧𝑊𝑡 𝜙𝑊
𝑡 𝜃𝑊𝑡 𝜑𝑊

𝑡
]𝑇 . (17)

For the efficiency of map matching calculation, the global position can
be predicted using relative position 𝛥𝐱𝑡 between times 𝑡−1 and 𝑡 in the
local coordinate system as follows:

�̃�𝑊 = 𝐱𝑊 + 𝛥𝐱 , 𝛥𝐱 = 𝐱𝐿 − 𝐱𝐿 . (18)
𝑡 𝑡−1 𝑡 𝑡 𝑡 𝑡−1
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Using predicted global position �̃�𝑊𝑡 , feature points (𝐕𝐿
𝑡 ,𝐇

𝐿
𝑡 ) in the

local coordinate system can be transformed into the world coordinate
system as follows:

𝐕𝑊
𝑡 =

{

𝐯𝑊𝑗
|

|

|

|

𝐯𝑊𝑗 = 𝐑(�̃�𝑊𝑡 )
[

𝐯𝐿𝑗 + 𝐓(�̃�𝑊𝑡 )
]

}

, (19)

𝐇𝑊
𝑡 =

{

𝐡𝑊𝑘
|

|

|

𝐡𝑊𝑘 = 𝐑(�̃�𝑊𝑡 )
[

𝐡𝐿𝑘 + 𝐓(�̃�𝑊𝑡 )
]

}

, (20)

where translation 𝐓(�̃�𝑊𝑡 ) and rotation 𝐑(�̃�𝑊𝑡 ) correspond to the first to
third elements �̃�𝑊𝑡 (1:3) and fourth to sixth elements �̃�𝑊𝑡 (4:6) of �̃�𝑊𝑡 ,
respectively. In addition, if the geometrical feature map, comprising
geometrical features of the world coordinate system up to time 𝑡′, is
defined as (𝐂𝑀

𝑡′ ,𝐒
𝑀
𝑡′ ), then the global position 𝐱𝑊𝑡 can be estimated by

matching the map with the current point feature group, (𝐕𝑊
𝑡 ,𝐇𝑊

𝑡 ).
This map matching follows the same process from (11) to (16) in
Section 3.2.2.

Unlike scan matching, map matching utilizes the geometrical maps
accumulated up to a certain time. Both scan and map matchings require
a step in which the nearest geometrical feature is determined from the
point feature. Unlike scan matching, the map matching uses a map
with accumulated geometrical features and hence, searching requires
a considerable amount of computation even when using an algorithm
such as a 𝑘-d tree [38]. As such, real-time mapping is a challenging
task.

Accordingly, in this study, an FVF is proposed that effectively con-
trols the number of features in the geometrical map by detecting motion
and spatial changes according to the variations in the sequential motion
data and radio signals of 𝐙𝑡 and 𝐙𝑡−1 acquired from mobile phone. The
probability that FVF 𝜆𝑡 comprises motion probability 𝑝𝑚(𝛥𝐦𝑡) and spa-
tial probability 𝑝𝑟(𝛥𝐫𝑡) can be confirmed with only slight computational
complexity as follows:

𝜆𝑡 = 𝑝(𝐙𝑡,𝐙𝑡−1) = 𝑝𝑚(𝛥𝐦𝑡) ⋅ 𝑝𝑟(𝛥𝐫𝑡), (21)

where the motion probability is expressed as the product of the prob-
abilities according to the changes in acceleration 𝛥𝑎𝑡, angular velocity
𝛥𝜔𝑡, magnetic field 𝛥𝜇𝑡, and ambient atmospheric pressure 𝛥𝜌𝑡 between
𝐙𝑡−1 and 𝐙𝑡:

𝑝𝑚(𝛥𝐦𝑡) = �̄�𝑎(𝛥𝑎𝑡) ⋅ �̄�𝜔(𝛥𝜔𝑡) ⋅ �̄�𝜇(𝛥𝜇𝑡) ⋅ �̄�𝜌(𝛥𝜌𝑡),

�̄�[⋅] (𝛥) =

(

1 − 1
√

2𝜋𝜎2[⋅]
exp −(𝛥)2

2𝜎2[⋅]

)

,
(22)

where �̄�[⋅] indicates the normal probability density function with vari-
ance 𝜎2[⋅]. In addition, spatial probability 𝑝𝑟(𝛥𝐫𝑡) is calculated according
to the difference in the RSS value as follows:

𝑝𝑟(𝛥𝐫𝑡) = �̄�𝑟
(

∑
(

𝛥𝑟𝑗𝑘
)

)

,

𝛥𝑟𝑗𝑘 = |

|

|

𝑟𝑗 − 𝑟𝑘
|

|

|

= |

|

|

(

1027.55−20 log(𝑓 )
) (

10|𝑟𝑗 |−|𝑟𝑘|
)

|

|

|

,
(23)

where (𝑚𝑐𝑗 , 𝑟𝑗 ) ∈ 𝐙𝑡 and (𝑚𝑐𝑘, 𝑟𝑘) ∈ 𝐙𝑡−1, and RSS values 𝑟𝑗 and 𝑟𝑘
in which 𝑚𝑐𝑗 = 𝑚𝑐𝑘 are selected. Here, residual value is calculated
using a formula that transforms the RSS from decibel units to metric
units based on the free-space path loss [39]. Metric units can be used
to accurately detect the physical changes in space. The RSS with low
accuracy is used rather than distances obtained from LiDAR because the
radio signals are closely affected by spatial changes. i.e., it is possible
to effectively detect whether there are changes in the movement space
through changes in distances of RSS.

A greater probability of FVF 𝜆𝑡 indicates a larger change in the
surrounding space. Therefore, if the value of 𝜆𝑡 is greater than thresh-
old 𝜆𝑚, the spatial structure is considered to have changed owing to
movement. Furthermore, geometrical features (𝐂𝑊

𝑡 ,𝐒𝑊𝑡 ) in the world
coordinate system accumulate as geometrical map (𝐂𝑀

𝑡′ ,𝐒
𝑀
𝑡′ ) passes

through voxel-grid filter 𝑓𝑉 (⋅), and the updated time, 𝑡′, changes to
current time 𝑡:

𝐂𝑀
𝑡′ ← 𝑓𝑉

(

𝐂𝑀
𝑡′ + 𝐂𝑊

𝑡
)

, 𝐒𝑀𝑡′ ← 𝑓𝑉
(

𝐒𝑀𝑡′ + 𝐒𝑊𝑡
)

; 𝜆𝑡 > 𝜆𝑚, (24)

where (𝐂𝑊
𝑡 ,𝐒𝑊𝑡 ) is calculated using (19) and (20) with (𝐂𝐿

𝑡 ,𝐒
𝐿
𝑡 ) and

global position 𝐱𝑊 .
5

𝑡

Fig. 4. (a) Voxel map that expresses the presence of an object in a given index, (𝑖, 𝑗, 𝑘),
as an occupancy probability, 𝑜𝑖,𝑗,𝑘, represents the probability of an object in the cell
area between 0 and 1. (b) The LiDAR distance range is divided into an empty region
and an occupied region. (c) A 2D plane image with the membrane structure removed
can be obtained using the average of the occupancy probability values in the vertical
direction.

3.3. Map generation

The global position in the world coordinate system and the 3D
points of the node can be used to generate a 3D-point cloud and
a 2D-plane image, from which dynamic obstacles are removed and
incorporated into the spatial map. The global position and radio signals
can also be used to build a radio map. As the constructed spatial
and radio maps use the same global position, the coordinate system
is automatically linked.

3.3.1. Spatial map
Point cloud 𝐌𝑃

𝑡 accumulated up to time 𝑡 can be extracted using 3D
points 𝐏𝐿

𝑡 of the node and global position 𝐱𝑊𝑡 as follows:

𝐌𝑃
𝑡 = 𝐏𝑊

1∶𝑡, 𝐏
𝑊
𝑡 = 𝐑(𝐱𝑊𝑡 )

[

𝐏𝐿
𝑡 + 𝐓(𝐱𝑊𝑡 )

]

, 𝑝𝑠(𝛥𝐫𝑡) > 𝜆𝑟. (25)

By adding 3D points to the point cloud only when spatial probability
𝑝𝑟(𝛥𝐫𝑡) of FVF in (23) exceeds threshold 𝜆𝑟 (i.e., the spatial change), the
space representation can be compressed using only a few points. In ad-
dition, 𝐓 and 𝐑 are the translation and rotation matrices, respectively,
corresponding to global position 𝐱𝑊𝑡 .

The 3D voxel map can be created using 3D points 𝐏𝑊
𝑡 and global

position 𝐱𝑊𝑡 , through which the 2D-plane image can be extracted. As
shown in Fig. 4(a), the voxel map divides the 3D space into uniform
cells of cubic areas and expresses the presence of an object in each cell
according to the occupancy probability value. The set of the occupancy
probability can be defined as voxel map 𝐌𝑉

𝑡 when 3D points 𝐏𝑊
1∶𝑡 and

global position trajectory 𝐱𝑊1∶𝑡 accumulated up to time 𝑡 are inputted as
follows:

𝑝(𝐌𝑉
𝑡 |𝐱

𝑊
1∶𝑡,𝐏

𝑊
1∶𝑡) =

∏

𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊
1∶𝑡), (26)

where index (𝑖, 𝑗, 𝑘) is determined according to the global position and
3D points. In addition, each cell independently updates the occupancy
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probability value regardless of the neighboring cells. Therefore, current
occupancy probability 𝑜𝑖,𝑗,𝑘𝑡 can be updated using the previous voxel

ap, 𝐌𝑉
𝑡−1, and current 3D point 𝐏𝑊

𝑡 as follows:

(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊
1∶𝑡) = 𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊

𝑡 ,𝐌𝑉
𝑡−1), (27)

here 𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊
1∶𝑡) = 𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊

𝑡 )𝑝(𝑜𝑖,𝑗,𝑘𝑡−1 |𝐏
𝑊
1∶𝑡−1) and 𝑝(𝑜𝑖,𝑗,𝑘𝑡−1 |𝐏

𝑊
1∶𝑡−1) =

𝑝(𝐌𝑉
𝑡−1). The ratio of occupied probability 𝑝(𝑜𝑖,𝑗,𝑘𝑡−1 ) and emptied prob-

bility 𝑝(⌣𝑜 𝑖,𝑗,𝑘𝑡−1 ) in each cell can be defined as an odd value, 𝜉, which is
expressed according to the Bayes rule as follows:

𝜉 =
𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊

𝑡 ,𝐌𝑉
𝑡−1)

𝑝(⌣𝑜 𝑖,𝑗,𝑘𝑡 |𝐏𝑊
𝑡 ,𝐌𝑉

𝑡−1)
= 𝑝(𝐏𝑊

𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) ×
𝑝(𝑜𝑖,𝑗,𝑘𝑡−1 )

𝑝(⌣𝑜 𝑖,𝑗,𝑘𝑡−1 )
, (28)

where 𝑝(𝐏𝑊
𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) is an unknown value and can be defined using an

inverse measurement model. This can be designed according to the
characteristics of the LiDAR. An inverse measurement model represents
the certainty of a measured value, as shown in Fig. 4(b), which depicts
the empty and occupied regions, through which the beam passes; these
regions are respectively divided into 𝑝𝑒(𝐏𝑊

𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) and 𝑝𝑜(𝐏𝑊
𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) and

can be calculated as follows:

𝑝𝑒(𝐏𝑊
𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) =

𝑑𝑖,𝑗,𝑘
𝑑max

, 𝑝𝑜(𝐏𝑊
𝑡 |𝑜𝑖,𝑗,𝑘𝑡−1 ) = 𝜂. (29)

he empty region is calculated as a value proportional to the maximum
etectable distance, 𝑑max, which indicates that uncertainty increases
ith increase in the distance from LiDAR 𝑑𝑖,𝑗,𝑘. The occupied region

s defined as a constant 𝜂 greater than 1. The greater the value of 𝜂,
he greater is the change in the occupancy probability. Finally, as the
um of occupied probability 𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊

𝑡 ,𝐌𝑉
𝑡−1) and emptied probability

(⌣𝑜 𝑖,𝑗,𝑘𝑡 |𝐏𝑊
𝑡 ,𝐌𝑉

𝑡−1) becomes 1, the occupancy probability of cell (𝑖, 𝑗, 𝑘)
at time 𝑡 can be obtained using the odd value as follows:

𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊
𝑡 ,𝐌𝑉

𝑡−1) = 𝜉∕(1 + 𝜉). (30)

Using the generated voxel map, a 2D plane image showing the
outline of the space can be extracted. If the occupancy probability
value of the voxel map is projected onto the 2D plane in this form,
the membrane structures (e.g., ceilings and floors) complicate the clear
identification of solid outlines such as walls and columns. To extract
a clearer outline, occupancy probability 𝑝(�̄�𝑖,𝑗𝑡 ) of the 2D plane image
is calculated as the average of the occupancy probability values in the
vertical direction of the voxel map as follows:

𝑝(�̄�𝑖,𝑗𝑡 ) = 1
𝑁𝑘

𝑁𝑘
∑

𝑘=1
𝑝(𝑜𝑖,𝑗,𝑘𝑡 ), 𝑝(𝑜𝑖,𝑗,𝑘𝑡 ) ≠ 0.5, (31)

here the occupancy probability of an unknown area reflects only
he occupancy probability of 𝑁𝑘 cells instead of 0.5 in the average
alculation. Finally, as shown in Fig. 4(c), the 2D plane image, 𝑝(𝐌𝐼

𝑡 ),
omprises cases in which 𝑝(�̄�𝑖,𝑗𝑡 ) exceeds the unknown-area occupancy
robability of 0.5:

(𝐌𝐼
𝑡 ) =

∏

{

𝑝(�̄�𝑖,𝑗𝑡 ) ||
|

𝑝(�̄�𝑖,𝑗𝑡 ) > 0.5
}

. (32)

3.3.2. Radio map
Radio map 𝐌𝑅

𝑡 up to time 𝑡 used for localization is composed of
𝑁𝑏 number of 𝐛𝑖 fingerprints using the radio signal of 𝐙1∶𝑡 and global
position trajectory 𝐱𝑊1∶𝑡 with the same coordinate system as the 2D plane
image. This radio map is expressed as

𝐌𝑅
𝑡 = 𝑓𝑟(𝐱𝑊1∶𝑡,𝐙1∶𝑡) =

{

𝐛𝑖 ||𝑖 = 1,… , 𝑁𝑏
}

. (33)

The fingerprint is the basic unit of the radio map and contains radio
signals �̂�𝑖 of the surrounding Wi-Fi and Bluetooth devices as well as the
positions of the key points required for localization in space, and it is
defined as follows:

(

̂
)

̂
{( )

|

}

6

𝐛𝑖 = �̂�𝑖, �̂�𝑖, 𝐫𝑖 , 𝐫𝑖 = 𝑚𝑐𝑗 , �̂�𝑗 |

𝑗 = 1,… , 𝑁𝑟 . (34)
Fig. 5. Generation of a radio-map fingerprint.

In general, RSS values contain unintended errors because of radio
signal delays or disturbances caused by spatial obstructions. To reduce
the effect of these errors, RSS values of fingerprints are compensated
with the average of RSS values obtained from neighboring nodes [40,
41]. In particular, when the placement distances among nearby nodes
are large, the location and RSS values of fingerprints are determined
by the spatial interpolation modes, such as the Kriging method and
Voronoi diagram, to reflect spatial characteristics [41,42]. However,
SRS can measure the nodes densely, hence the neighboring nodes
include similar spatial information. Therefore, an intermediate location
of neighboring nodes can be selected as the fingerprint position. Using
the global position, each node can be clustered at a Euclidean distance
of 𝑑𝑟 by using the 𝑘-d tree [38]. As shown in Fig. 5, when 𝑁 nodes are
contained in the 𝑖th cluster, fingerprint position (�̂�𝑖, �̂�𝑖) is defined as the
middle value of the global position of the nodes in

(

�̂�𝑖, �̂�𝑖
)

= 1
𝑁

𝑁
∑

𝑛=1

(

𝑥𝑊𝑛 , 𝑦𝑊𝑛
)

, �̂�𝑗 =
1
𝑁

𝑁
∑

𝑛=1
𝑟𝑛, (35)

where RSS value �̂�𝑗 corresponding to MAC address 𝑚𝑐𝑗 uses the average
value of the radio signals. This result is obtained by adopting a median
filter to smoothen the noise due to dynamic changes, such as floating
population, in the environment.

4. Experimental evaluation

4.1. Experimental setup

To analyze the mapping accuracy, real-time performance, efficiency,
and localization applicability as the main contributions of SRS, we
constructed a backpack-type mapping system equipped with a main
PC, router, mobile phone, and 3D LiDAR, as shown in Fig. 6(a).
The backpack was equipped with 16-channel LiDAR that can scan
objects at 360◦ with a speed of 10 Hz. The interval angle between the
LiDAR channels was 2◦ in the vertical direction, and the maximum
detectable distance was 100 m. For reference, a typical 3D LiDAR
raises the vertical resolution by a multiple of 16 channels according
to the internal mirror specification. The higher-resolution channels are
more expensive, but LiDAR with over 16 channels basically provides
the function to downgrade to 16 vertical resolution in hardware. To
assure the backward compatibility of LIDAR, 16-channel LiDAR with a
minimum vertical resolution was used for the experiment.

An Android OS-based mobile phone was used that was installed
with an app that could collect data on acceleration, angular velocity,
magnetic field, atmosphere pressure, and radio signals at 10 Hz. Owing
to the slow scan speed of the radio signals, the RSS of the surrounding
Wi-Fi and Bluetooth devices was updated at periods of 1 and 5 s,
respectively. The main PC was equipped with an Intel i7 3.5-GHz

dual-core CPU, with a 16-GB RAM and M.2-type 2-TB SSD.
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Table 1
Sensor-specific variance values as the hyperparameters to calculate FVF probability.

Acc. [m/s2] Ang. vel. [rad/s] Mag. field [μT] Atm. pres. [hPa] Radio dist. [m]

Variance 2.32096 0.00085 1.65520 0.00035 705.77690
Fig. 6. Experimental setup. (a) Backpack-type portable spatial-tagged radio-mapping
system. (b) Departure and arrival points for mapping (start1 and end1); movement
trajectory for fingerprinting localization to verify the applicability of the constructed
radio map (lines connecting start2 and end2)

The 3D points and radio signals collected from the LiDAR and
mobile phone were transmitted to the main PC in real time through
LAN and WLAN at 10 Hz. In this case, to resolve the problem of unsta-
ble communication of WLAN, TCP/IP was used as the communication
protocol. In addition, in the main PC, a new node was created only
when the acquisition time of the two data transmitted from the LiDAR
and the mobile phone was within 0.1 s. Through this method, even in
the case of latency, accurate data synchronization can be achieved.

The experiment was conducted in an indoor shopping center of size
32,040 m2, as shown in Fig. 6(b). While holding the mobile phone and
wearing the backpack, the operator moved 1.75 km from the designated
starting point to the destination point and acquired 15,301 nodes. The
nodes are used for generating a 3D-point cloud, 2D-plane image, and
radio map linked to the unified coordinate system, as shown in Algo-
rithm 1. In addition, the number of nearby Wi-Fi routers in the space
affects the fingerprinting localization [43]. When the number of Wi-Fi
7

Table 2
Accuracy of a spatial map for each section (unit: [m]).

Section Map distance Real distance Error

A 22.25 22.20 0.05
B 43.75 43.72 0.03
C 48.90 48.96 −0.06
D 51.20 51.18 0.02
E 36.45 39.52 −0.07
F 48.70 48.73 −0.03
G 121.75 121.8 −0.05

routers is less than three, fingerprinting localization becomes severely
inaccurate, and Wi-Fi routers with over 100 cause the sensing delay
phenomenon [44,45]. This experimental site is suitable for evaluating
radio mapping and fingerprinting localization in terms of accuracy and
real-time performance because 47 Wi-Fi signals were detected per node
on average.

Table 1 shows the variance of the probability density function used
for each sensor to calculate the probability of the FVF to improve the
mapping efficiency. In Eq. (22), the variances are the hyperparameters
that need to be predetermined before operating the FVF. To ensure gen-
erality, the variances of measurements obtained from sensors on mobile
phones were used. Actually, the motion data and radio signals obtained
in 10 spaces, including offices, shopping centers, and subway stations,
were analyzed and calculated the sensor-specific variance values for
FVF probability. In addition, the threshold of the FVF probability was
set at 0.65 for detecting motion and spatial changes in the surrounding
area. The larger the threshold value, the larger the spatial change
required for the FVF to store geometrical features in the geometrical
map.

4.2. Experimental results

To analyze the performance of the SRS, an experiment was con-
ducted considering three cases: Epoch1, Epoch3, and FVF. In Epoch1,
all the generated geometrical features were accumulated in the ge-
ometrical map and used. In Epoch3, only one of three nodes were
accumulated, and the starting and destination points for the mapping
were displayed as circular points, as shown in Fig. 6(b).

4.2.1. Mapping accuracy
Fig. 7 shows the 3D-point cloud and 2D-plane image generated

through the FVF. As shown, the generated 2D-plane image and outline
of the actual experimental space in Fig. 6(b) are similar. To evaluate
the accuracy of the 2D-plane images, the real distance for each section
in Fig. 7(b) was measured using plus total station. Consequently, as
shown in Table 2, we can see that an error of up to 7 cm occurs in
the map accuracy depending on the section. In addition, to analyze
the SRS radio map accuracy, Fig. 8(a) shows the X–Y axis displaying
the 2D movement trajectory of the three modes. In Fig. 8(a), Epoch1
and FVF appear as one movement trajectory with nearly identical local-
ization performances for mapping. In contrast, in the case of Epoch3,
localization failed during mapping execution. To reduce the processing
time, Epoch3 updated the geometrical map according to a fixed period;
the key geometrical features of the process were not included in the
map. Consequently, an erroneous matching occurred. Conversely, FVF
probabilistically analyzed the operator’s motion and changes in the
surrounding space and uniformly registered geometrical features for all
areas in the map; this enabled the FVF to achieve localization accuracy
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Algorithm 1 Mapping Process of Spatial-tagged Radio Mapping System
Input: 3D point 𝐏𝑡 and radio signal 𝐙𝑡
Output: 3D-point cloud 𝐌𝑃

𝑡 , 3D voxel map 𝐌𝑉
𝑡 ,2D plane image 𝐌𝐼

𝑡 , radio map 𝐌𝑅
𝑡

Parameter: threshold of feature variance filter probability 𝜆𝑚
1: begin
2: for new input data 𝑡 ← 𝑡 + 1 do
3: <Synchronization>
4: node generation: 𝐍𝑡 = {𝐏𝐿

𝑡 ,𝐙𝑡}
5: <Localization for Map Construction>
6: local point and geometrical features extraction: (𝐕𝐿

𝑡 ,𝐇
𝐿
𝑡 ), (𝐂𝐿

𝑡 ,𝐒
𝐿
𝑡 )

7: local position estimation through scan matching: 𝐱𝐿𝑡
8: global position prediction: �̃�𝑊𝑡
9: point features transformation to world: (𝐕𝑊

𝑡 ,𝐇𝑊
𝑡 )

0: if feature variance filter: 𝜆𝑡 > 𝜆𝑚 then
1: geometrical features transformation to world: (𝐂𝑊

𝑡 ,𝐒𝑊𝑡 )
2: geometrical map update using voxel grid filter: 𝐂𝑀

𝑡′ ← 𝑓𝑉
(

𝐂𝑀
𝑡′ + 𝐂𝑊

𝑡

)

, 𝐒𝑀𝑡′ ← 𝑓𝑉
(

𝐒𝑀𝑡′ + 𝐒𝑊𝑡
)

3: time update of geometrical map: 𝑡′ ← 𝑡
4: end if
5: global position estimation through map matching: 𝐱𝑊𝑡
6: <Map Generation>
7: point cloud: 𝐌𝑃

𝑡 ← 𝐌𝑃
𝑡−1 + 𝐏𝑊

𝑡

8: voxel map using point cloud: 𝐌𝑉
𝑡 =

∏

𝑝(𝑜𝑖,𝑗,𝑘𝑡 |𝐏𝑊
𝑡 ,𝐌𝑉

𝑡−1)
9: plane image using occupancy probability of voxel map: 𝑝(𝐌𝐼

𝑡 ) =
∏

𝑝(�̄�𝑖,𝑗𝑡 ); 𝑝(�̄�𝑖,𝑗𝑡 ) =
∑𝑁𝑘

𝑘=1 𝑝(𝑜
𝑖,𝑗,𝑘
𝑡 )∕𝑁𝑘, 𝑝(𝑜𝑖,𝑗,𝑘𝑡 ) ≠ 0.5

0: radio map using radio signal: 𝐌𝑅
𝑡 = 𝑓𝑟(𝐱𝑊1∶𝑡,𝐙1∶𝑡)

1: end for
2: end
Table 3
Position errors of Epoch3 and FVF compared to those of Epoch1 for mapping after moving 1.75 km (unit: [m] or [rad]).

Moving distance Mode X Y Z Yaw Pitch Roll

500 Epoch3 3.75 −8.19 −0.12 0.05 −0.04 −0.05
FVF 0.05 −0.09 −0.03 0 0 0.01

1000 Epoch3 −19.54 15.28 −2.59 0.09 0.02 −0.51
FVF 0.07 0.06 −0.06 −0.01 0.01 0

1500 Epoch3 15.45 41.38 −1.45 0.07 0.05 −0.95
FVF 0.12 0.05 −0.04 0.03 0.02 0.02

1750 Epoch3 27.3 56.69 −0.98 0.09 0.08 −5.67
FVF 0.1 0.08 −0.01 0.02 0 −0.01
for mapping similar to that of Epoch1. Table 3 lists the numerical
analysis results of the 6-DoF localization accuracy for mapping on the
movement trajectory. Based on Epoch1, the results show the difference
between the estimated positions of Epoch3 and FVF for each 500 m
when operator moved 1.75 km. As observed, FVF showed errors within
0.12 m and 0.03 rad, while Epoch3 diverged up to 56.69 m and 5.67
rad.

4.2.2. Real-time performance
Real-time evaluation was performed by measuring the mapping

speed while verifying the mapping accuracy; this is described in Sec-
tion 4.2.1 using the main PC described in Section 4.1. Considering that
the main factors affecting the computation speed of the three methods
such as Epoch1, Epoch3, and FVF are the number of features in the geo-
metrical map, an experiment was conducted to analyze the relationship
between the number of registered features in the geometrical map and
the processing time.

As shown in Fig. 9(a), feature points and geometrical features can
be generated in the local coordinate system according to the input
points obtained from LiDAR. The results demonstrated that the point
and geometrical features are uniformly extracted regardless of the
operator’s movement and changes in the surrounding space. In the
local coordinate system, the LiDAR measured an average of 24,491
points per node as mapping input data. As the feature points, the corner
and the planar points were generated by 1194 and 4697, respectively.
8

As the geometrical features for scan matching, the corner lines and
the planar surfaces were generated by 596 and 1565, respectively. In
the world coordinate system, as shown in Fig. 9(b), the number of
features entered in the geometrical map according to Epoch1, Epoch3,
and FVF differ. In Epoch1, all the generated geometrical features are
registered in the map, whereas in Epoch3, they are registered with a
period of 1/3 nodes to reduce the computational burden. In Epoch1 and
Epoch3, geometrical features of 15,301 and 5100 nodes, respectively,
were stored in the geometrical map for map matching. In FVF, only the
features of the geometrical map with 3772 nodes are updated; this is
the point at which the moving space is determined to have changed, as
represented by the cross marks in Fig. 8(b).

Comparing Epoch1 and Epoch3 in Fig. 9(b), the number of the
geometrical features is not linearly proportional to thrice the difference,
which is the number of nodes used in building the geometrical map,
because of the voxel grid filter common to all methods. Specifically,
the leaf sizes of the voxel-grid filter for the corner lines and planar
surfaces were 0.2 and 0.4 m, respectively. The voxel grid filter prevents
locally overlapping features from registering them in the geometrical
map. In other words, there is a limit to effectively reducing the num-
ber of features in the geometrical map only with a simple periodic
method, such as Epoch3. The number of features in the geometrical
map sharply increased with Epoch1, followed by Epoch3, and finally
FVF, confirming the effect of FVF.

Fig. 10 shows the processing times required for one node of the
actual mapping with 6-DoF localization. The average processing times
in Epoch1 and Epoch3 were 2.8813 and 11.4298 Hz, respectively. Com-

paratively, FVF was faster at 19.2432 Hz. This is because of two major
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Fig. 7. Mapping result of the (a) 3D-point cloud, (b) 2D-plane image, and (c) radio map.
factors: (1) the voxel grid filter requires classifying the features into the
regions when updating the geometrical map, (2) the k-d tree algorithm
needs to search the correspondences between the current observation
features and the geometrical map when performing the map matching.
The voxel grid filter and k-d tree algorithm are affected by the number
of nodes used for composing with the geometrical map and the number
of features in the geometrical map, respectively. Therefore, the FVF
with the smallest number of nodes and features composing the geo-
metrical map shows the best performance in processing time. It can be
experimentally confirmed that the FVF offers a significant contribution
in terms of real-time performance. Considering that the scan speed of
LiDAR is 10 Hz, Epoch3 secured real-time performance; however, the
accuracy estimation confirmed the possibility of erroneous localization.
Therefore, it can be said that only the FVF operates in real time with
an accuracy similar to that of Epoch1.

4.2.3. Mapping efficiency
For experimental validation, radio maps were constructed using SRS

and PMC, as shown in Fig. 7(c). According to the results, SRS requires
50 min to extract 984 fingerprints at 1-m intervals on the 2D-plane
image from the collected node data, as shown in Fig. 8(b). This time
includes the operation conducted to generate the 2D-plane image. This
result could be achieved because the spatial probability of FVF allows
9

only the point cloud data of 950 nodes in space (Fig. 8(b)) to be utilized
for building the 2D-plane image. In contrast, PMC required 4 h owing
to manual work. Arithmetically, SRS exhibited a mapping efficiency 4.8
times faster than that of PMC. These experimental results demonstrate
that SRS can not only generate 2D-plane image but also achieve better
mapping efficiency than PMC.

4.2.4. Applicability to LBS
To verify the SRS applicability of the constructed radio map with

respect to the LBS, an experiment was conducted to analyze the ac-
curacy of fingerprinting localization and check whether heterogeneous
mobile phones are supported. Even in the case of indoor localization
competitions, high cost is required because special equipment must be
used to produce reference datasets containing ground-truth informa-
tion [46,47]. Therefore, in this study, as can be seen in Fig. 6(b), a
diamond-shaped path consisting of straight line sections was accurately
calibrated and adjusted using the manual method of PMC to con-
struct reference datasets. Additionally, for the analyzing the accuracy
of localization, the empirical-model-based Radar [48] and statistical-
model-based Horus [49], which are widely used in the LBS application
field, were adopted as fingerprinting localization methods.

Fig. 11(a) shows the localization accuracies when using the radio
maps constructed by SRS and PMC. Objectively, to compare the ap-
plicability of maps generated by SRS and PMC, two radio maps were
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Fig. 8. (a) Localization trajectory for mapping. (b) Major nodes for mapping by FVF:
3772 nodes for geometrical features, 950 nodes for point cloud data, 984 nodes for
fingerprints at 1-m intervals.

converted with the same procedure according to the naïve procedure of
Radar and Horus. Both Radar and Horus methods employ the tracking
effects of radio signals, and they compute the mean RSS values as the
observation using the sequential radio signals. The RSS observation
is used for matching with the radio map to perform the LBS. In the
experiment, Radar and Horus utilized 10 and 2 radio signals, respec-
tively, in the past to calculate the RSS observation that were equally
applied to all fingerprinting localization. The reason for using the same
tracking parameters was to verify the LBS applicability of radio maps
constructed by SRS compared with PMC, rather than to improve the
fingerprinting localization algorithm.

The SRS radio map did not result in a large difference in localization
performance compared to that of the PMC radio map. In the case of the
Radar method, the use of SRS and PMC achieved an error of 3.83491
and 4.18096 m, respectively, at the 80th percentile; therefore, the SRS
showed a slightly higher accuracy. In the case of combination with
inertial-based PDR, more accurate localization results can be obtained,
but there is a limitation in analyzing the effect of pure SRS radio
maps that affect the localization accuracy. Considering that the 75th
percentile mean accuracy of research teams using the inertial-based
PDR in combination with fingerprinting algorithms in the recent well-
known LBS competition is 5.4 m, it is believed that the applicability of
the proposed SRS radio map to the actual LBS is high [30]. Fig. 11(b)
shows the localization results obtained with application of the SRS-
based radio map to other types of mobile phones. The trend of the
localization accuracy was divided into two categories according to the
Radar and Horus algorithms. However, the localization performance
10
did not significantly differ according to the device. Thus, the exper-
imental results verify the practical applicability of the SRS-generated
radio maps in terms of localization accuracy and heterogeneous mobile
phone support.

5. Conclusions and discussions

In this study, we proposed an SRS that can simultaneously generate
spatial and radio maps even in large indoor environments. The SRS
effectively fuses the sensing data obtained from two devices, i.e., a
LiDAR scanner and a mobile phone, to generate spatial and radio
maps in real time. The novelty of SRS is that it complementarily
uses the distance range of LiDAR and radio signals and motion data
of the mobile phone to secure high mapping accuracy and real-time
performance. SRS was created in the form of a portable backpack,
and experiments were performed to generate maps on the field. The
results demonstrated that SRS achieves high accuracy, real-time perfor-
mance, efficiency advancement, and localization applicability in both
spatial and radio mapping. Furthermore, the applicability of the SRS
to actual LBS was confirmed by utilizing the constructed maps to
well-known fingerprinting localization algorithms and heterogeneous
mobile phones.

SRS requires specialized equipment such as LiDAR, thus it is suitable
for creating an initial radio map in an unknown environment by map
building operators instead of public users. Considering the accessibility
of SRS equipment, in the case of a site where the radio maps are
provided in advance, the cloud collection method that can update the
existing maps with only mobile phones might be more effective than
SRS in terms of map management cost.

In the future works, therefore, we will aim to add a function to
update the radio map constructed by SRS using a cloud strategy. Be-
cause the cloud method constructs radio maps in various ways, uniform
accuracy cannot be ensured. Nevertheless, with the cloud method,
if high-accuracy radio maps are available, the maps can be updated
by continuously adapting to spatial changes. Accordingly, we need to
adopt a strategy in which SRS is used for providing initial radio map
with high accuracy and cloud method is used for updating the changed
radio map. In terms of the continuity of the radio map constructed by
SRS, the use of a cloud strategy in updating radio map is expected to
serve as a highly effective method for practical indoor LBS.
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Fig. 9. (a) Number of input points, point features, and geometrical features in the local coordinate system; (b) number of features in the geometrical map in the world coordinate
system.
Fig. 10. Analysis of processing time required for one node of mapping: (a) Epoch1 (mean: 2.8813, variance: 12.7707), (b) Epoch3 (mean: 11.4298, variance: 88.2202), (c) FVF
(mean: 19.2432, variance: 33.4038)
Fig. 11. Localization results using fingerprinting algorithms, Horus and Radar. (a) Location accuracy using radio maps constructed by PMC and SRS. (b) Location accuracy using
the SRS radio map and a heterogeneous device.
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