
OR I G I NAL ART I C L E

QPlayer: Lightweight, scalable, and fast quantum simulator

Ki-Sung Jin | Gyu-Il Cha

Future Computing Research Division,
Electronics and Telecommunications
Research Institute, Daejeon, Republic of
Korea

Correspondence
Ki-Sung Jin, Future Computing Research
Division, Electronics and
Telecommunications Research Institute,
Daejeon, Republic of Korea.
Email: ksjin@etri.re.kr

Funding information
Institute of Information &
Communications Technology Planning &
Evaluation (IITP), Grant/Award Number:
2020-0-00014

Abstract

With the rapid evolution of quantum computing, digital quantum simulations

are essential for quantum algorithm verification, quantum error analysis, and

new quantum applications. However, the exponential increase in memory

overhead and operation time is challenging issues that have not been solved

for years. We propose a novel approach that provides more qubits and faster

quantum operations with smaller memory than before. Our method selectively

tracks realized quantum states using a reduced quantum state representation

scheme instead of loading the entire quantum states into memory. This

method dramatically reduces memory space ensuring fast quantum computa-

tions without compromising the global quantum states. Furthermore, our

empirical evaluation reveals that our proposed idea outperforms traditional

methods for various algorithms. We verified that the Grover algorithm sup-

ports up to 55 qubits and the surface code algorithm supports up to 85 qubits

in 512 GB memory on a single computational node, which is against the previ-

ous studies that support only between 35 qubits and 49 qubits.

KEYWORD S
quantum computing, quantum information processing, quantum simulator

1 | INTRODUCTION

Quantum computers are evolving at a rapid pace, shifting
from theoretical ideas to practical developments [1–4].
IBM became the first company to bring quantum com-
puting to the public cloud, allowing users to access quan-
tum computers remotely [5], and Google demonstrated
quantum supremacy using a 54 qubits quantum proces-
sor called Sycamore [6–8]. These trends are raising expec-
tations for innovation in various fields such as quantum
chemistry, cosmology, medicine, and energy physics,
which are intractable with classical computing. However,
because the realization of practical quantum computers
is still in its infancy, a significant number of studies in

this area still rely on quantum simulations using digital
quantum simulators [9].

There are already numerous digital quantum simula-
tors available for various types of quantum algo-
rithms [10], and they have different operation methods,
features, capabilities, and limitations depending on their
pursuit. This diversity of quantum simulators has so far
yielded extensive results in various contexts. Neverthe-
less, digital simulators have an explicit limit on the num-
ber of available qubits because the required physical
memory grows exponentially as the number of qubits
increases [11–13]. For example, the minimum memory
requirement for the quantum states of 50 qubits is 16 PB
[14]. Although several studies have attempted to

Received: 17 November 2021 Revised: 7 April 2022 Accepted: 22 April 2022

DOI: 10.4218/etrij.2021-0442

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2022 ETRI

ETRI Journal. 2022;1–14. wileyonlinelibrary.com/journal/etrij 1

https://orcid.org/0000-0002-1997-3019
mailto:ksjin@etri.re.kr
https://doi.org/10.4218/etrij.2021-0442
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

overcome these problems using distributed simulations
with hundreds or more servers, these efforts do not devi-
ate from the fundamental limitations of the required
exponential increase in memory space. Currently, it is
only possible to simulate 30 qubit circuits on a desktop,
35 qubit circuits on a high-end server, and 49 qubit cir-
cuits on a supercomputer.

This study focuses on the underlying causes of mem-
ory problems when describing quantum states in digital
computers. After careful observation of the time evolu-
tion of quantum states for various quantum algorithms,
we found that all qubits do not always exist in quantum
superposition states for the following reasons: (1) Some
quantum circuits apply a Hadamard gate to only a few
qubits across the entire circuit, (2) applying a Hadamard
gate to the superposed qubit can collapse the quantum
state, and (3) intermediate measurement collapses the
superposed qubit state. For these reasons, the number of
actual quantum states can be smaller than 2n, depending
on the number of superposed qubits.

In this study, we propose selectively tracking solid
quantum states with nonzero amplitudes by utilizing this
analysis instead of loading the entire quantum states into
memory. This method can dramatically reduce the num-
ber of quantum states stored in memory and increase
quantum operation performance. Because our approach
deals with the actual quantum states that have a physical
effect, it always ensures valid quantum operation results
without compromising the global quantum states.

Meanwhile, our experimental evaluation results show
that the proposed idea can be applied to process various
quantum algorithms. We expect our method to be effi-
cient for simulating large-scale quantum algorithms and
studying new algorithms that have previously been diffi-
cult due to the limitations of digital quantum simulators.
We summarize the contributions of this study as follows:

• We present a comprehensive study of digital quantum
simulation, quantum states, quantum operation, and
the characteristics of quantum state evolution. We also
identify significant challenges required to overcome
the limitations of traditional schemes.

• A novel technique to reduce the memory requirement
of general quantum algorithms using the new quan-
tum state representation scheme is also presented. By
this scheme, we confirmed that reducing memory con-
sumption in the quantum simulation can increase the
number of available qubits in an algorithm.

• Further, we present a system design and detailed
empirical evaluation of the proposed idea. We demon-
strate that our concept can provide more qubits and
faster quantum operations with less memory than
before.

• We guarantee a remarkable effect in the case of a spe-
cific quantum algorithm, such as surface code. Despite
supporting larger logical qubits, our scheme provides
thousands of times faster operation performance than
conventional simulators.

• Finally, we provide a scale-up method to maximize the
capabilities of a single server instead of scaling out to
multiple servers. Nevertheless, it can provide more sig-
nificant benefits than a distributed simulation, which
requires massive computing resources.

We organize the rest of this paper as follows. Section 2
describes various studies on digital quantum simulations
and their features. Section 3 analyzes the fundamental
problems of the digital quantum simulator and defines
their challenges. In Section 4, we present our concept,
quantum register, quantum gates, and quantum evolu-
tions. We also explain the benefit of the proposed idea in
memory and performance. Section 5 demonstrates its
validity through various experiments. To this end, we
classify several algorithms into four categories according
to their features and discuss the detailed meanings of
each test result. Finally, Section 6 presents conclusions.

2 | RELATED WORKS

Quantum computing hardware has been steadily improv-
ing since Shor discovered the prime factorization algo-
rithm in 1994 [15]. However, until practical quantum
computers are realized, it is necessary to numerically
simulate quantum circuits in digital computers to predict
the behavior of quantum algorithms. Generally, we can
classify digital quantum simulations into two types
according to the quantum state representation scheme.

2.1 | State evolution

The most general approach is to track quantum state
changes. This approach prepares the full state vector of
the n-qubit consisting of a complex unit vector of dimen-
sion 2n and applies quantum gates by performing matrix–
vector multiplication in chronological order. Because it
guarantees the high fidelity of quantum operations, one
can use them for most universal quantum algorithms and
many studies have adopted this approach [16–20]. The
most remarkable advantage is that this approach can rep-
resent the full information of quantum states at any point
in quantum state evolution [21]. Moreover, the main
interest in recent quantum research is quantum algo-
rithms for noisy intermediate-scale quantum (NISQ)
computers [22], which require frequent intermediate

2 JIN AND CHA

measurements of the surface code during circuit evolu-
tion to correct quantum errors [23–25]. The state evolu-
tion approach can always preserve the whole quantum
state by ensuring fidelity under these conditions. Despite
these advantages, the exponential memory growth with
the number of qubits in quantum simulators restricts the
scale of quantum algorithms.

2.2 | Tensor contraction

This approach for quantum simulation represents quan-
tum circuits using a geometric or topological perspective
[26–28]. A quantum simulator using this approach simu-
lates quantum circuits through tensor network contrac-
tion. The reason is that this scheme relies on the fact that
quantum circuits can always be represented as tensors;
1-qubit gate is a rank-2 tensor, 2-qubit gate is a rank-4
tensor; and n-qubit gate is a rank-2n tensor in general
[29]. Recently, the advantage of representing quantum
circuits mathematically has led to active research
[7,13,21,30]. In this approach, computational and mem-
ory costs depend on the highest rank tensor during con-
traction, and time complexity increases exponentially
with the width of the graph tree. Moreover, because find-
ing the optimal contraction order is generally known as
NP-complete, it must rely on heuristic methods [31,32].
Thus, this approach only simulates low-depth circuits.

Other studies are underway to solve the memory and
computational problems of digital quantum simulators.
The most promising is the distributed simulation using a
supercomputer that combines multiple servers. Some are
general-purpose simulators using a state evolution
approach, whereas others are limited-function simulators
using a tensor contraction approach. The massively paral-
lel quantum computer simulator at the University of
Groningen simulated quantum supremacy circuits up to
40 qubits on a 1000 nodes TACC supercomputer [17].
qHiPSTER simulated 45 qubits by applying a scheduling
technique to reduce inter-node communication costs in
8192 nodes Cori II [18]. QuEST simulated 38 qubits ran-
dom circuits using a 2048 nodes ARCUS supercomputer
[19]. The Quantum Supremacy Circuit Simulation of
Tsinghua University implemented a quantum circuit sim-
ulator in 16 384 nodes Sunway TaihuLight, whose results
show that 49 qubits with depth 39 are reachable for cur-
rent universal random circuits [33]. The common goal of
these studies is to maximize distributed computing capa-
bilities by improving parallelism and reducing communi-
cation overhead through OpenMP [34] and GPU [35].
However, these techniques only focus on utilizing sub-
stantial computing resources, not eliminating the funda-
mental problems of digital quantum simulation.

Moreover, a few researchers have access to these super-
computing environments, and there are barriers that pre-
vent many other quantum simulation researchers from
accessing them.

3 | PROBLEM ANALYSIS

As described in Section 2, state evolution and tensor con-
traction are typical approaches for digital quantum simu-
lations. This study proposes a new state evolution
approach to support the full quantum state and general
quantum algorithms. Here, we analyze the execution
load of memory and computational resources in state
evolution-based simulations.

3.1 | Qubit scalability

A quantum computer generally refers to a two-level
quantum system using qubits whose state can be
described by Ψ >¼ αj j0> þβ j 1> where αj j2þ βj j2 ¼ 1

� �
:

Two basis states j 0> and j 1> are orthonormal and α, β
are complex numbers representing the probability p¼
αj j2 and 1�p¼ βj j2: Measuring qubits collapses them to
either j 0> and j 1> with probability p and 1� p. If a set
of n-qubits is a quantum register of size n, the global
quantum state of the n-qubit quantum register can be
described as in (1).

jΨGlobal >¼
X2n�1

i¼0

αi j i> , where αi �C,
X2n�1

i¼0

αij j2 ¼ 1: ð1Þ

That is, the n-qubit quantum register requires 2n

array vectors containing amplitudes for the full quantum
state. Because each amplitude is a complex number that
requires two 8-byte double data types representing a real
and an imaginary part, the total memory size for the n-
qubit quantum register reaches 2n+4 bytes. Even worse,
the size of the quantum space increases exponentially
with the number of qubits. We call this situation “expo-
nential explosion.” For example, a 35-qubit quantum reg-
ister uses 512 GB of memory; however, increasing one
qubit requires 1 TB of memory twice that of 35 qubits.
The simulation limit for high-end servers with less than
1 TB of memory approximates 35–36 qubits. Therefore, if
we want to simulate the same scale as Google’s 72-qubit
processor, Bristlecone [36], on a digital computer, it will
eventually require 64 ZB of memory, which is practically
impossible.

Furthermore, several studies are underway to over-
come this fundamental barrier using many computing

JIN AND CHA 3

resources through scaling out servers. However, this
approach cannot be an underlying solution because the
number of servers cannot increase indefinitely. Although
many researchers have attempted quantum simulations
using various supercomputers with thousands of servers
over the past decade, they still have not gone beyond the
49-qubit scale limit [17–19, 33].

3.2 | Operation performance

Applying quantum gates to qubits changes the ampli-
tude of n-qubit states, that is, 2n complex numbers of n-
qubit state vectors. Because a gate operation affects the
global quantum states, applying a quantum gate is
equivalent to performing a single unitary matrix of
2n � 2n dimensions on every qubit vector, which usually
involves high computational load. Fortunately, because
quantum matrices have sparse features with many zero-
valued entries, most digital quantum simulators speed
up their computations by applying a reduced matrix–
vector multiplication technique as in (2). This ensures
performance improvements in many quantum opera-
tions. Nevertheless, the computation time is still a chal-
lenge, because it increases exponentially in proportion to
the number of qubits.

OpCount¼ 2n

2
, where n¼ the number of qubits: ð2Þ

In (2), OpCount refers to the number of matrix opera-
tions according to the number of qubits. Because
OpCount is related to the total arithmetic calculations,
increasing the number of qubits requires exponential
computation. For this reason, current technologies are
trying to enhance computation performance by applying
software parallelization libraries such as OpenMP or
hardware accelerators such as GPGPU. These approaches
can relieve some performance constraints, while the
actual benefit is minimal because the effect of increasing
physical cores or software parallelism is relatively insig-
nificant to handle the computations used to track 2n

exponential quantum states.
Figure 1 shows how computation time changes as the

number of qubits increases. We applied the Pauli-X gate
to the QuEST simulator [19] on a 56-core server. Each
core simultaneously performs matrix calculation in the
divided region of the full quantum state because the
QuEST simulator supports parallelism through the
OpenMP library. The figure shows no significant change
in performance below approximately 20 qubits, but the
computational load increases exponentially above
20 qubits. The main reason for the exponential rise in the

processing time is because the computational size that
the simulator must process in time exceeds the computa-
tional power of 56 cores.

3.3 | Amplitude of quantum states

Typical quantum simulators always maintain 2n complex
vector arrays regardless of the amplitude value of each
quantum state. This method makes it easy to manage
changes in the entire quantum state according to quan-
tum mechanics.

However, after carefully observing the temporal
evolution of quantum states for several quantum algo-
rithms, we focused on the fact that the number of
actual, meaningful quantum states is not always 2n. As
many quantum operations progress, the number of
meaningful quantum states repeatedly increase or
decrease. Applying a Hadamard gate increases the
number of quantum states while measuring qubits
intermediately, or using a repeated Hadamard gate
decreases the number of quantum states. Suppose n-
qubits are initialized to j 0> : Then, the number of the
actual quantum state is only one (α j 000� � �00> , where
α= 1), and the remaining 2n�1 states are unrealized
quantum states having a zero-amplitude value. We refer
to a quantum state with a zero-amplitude as “unrealize-
state,” otherwise “realized-state.” Here, it is worthy to
note that matrix calculations for the unrealized-state
always result in the same state. Therefore, the manage-
ment of matrix operations for this unrealized-state is
unnecessary. Nevertheless, conventional simulators per-
form total matrix calculations for 2n of entire quantum
states without any consideration. If there is a way to
manage only the realized-states effectively while preserv-
ing the entire quantum state, we can expect faster quan-
tum simulation with smaller memory than traditional
quantum simulators.

F I GURE 1 Analysis of Pauli-X gate operation time according

to the number of qubits. The x- and y-axes represent the number of

qubits and processing time (in microseconds), respectively

4 JIN AND CHA

4 | QPlayer

4.1 | Design concepts

As discussed earlier, digital quantum simulators are not
free from exponential explosion. So far, many studies
have shown that it is theoretically impossible to
completely solve the problem of exponential explosion.
Therefore, we propose an alternative digital quantum
simulator, the “QPlayer,” to mitigate such problems
instead of eliminating the exponential explosion. Our
novel approach is based on the following principles:

First, we consider a digital quantum simulator having
a state evolution approach that uses quantum vectors to
represent quantum states. We can track quantum infor-
mation at any time in circuit evolution because matrix
operations are applied to quantum states at fixed loca-
tions. This can always guarantee the complete quantum
states without approximating or reducing them. More-
over, it can support most general-purpose quantum gates
and algorithms, just like conventional digital quantum
simulators with state evolution.

Second, an effective simulator that can represent the
full quantum state with only a realized-state is consid-
ered. This new simulator can support algorithms that use
more qubits with less memory and computation than
before. We use an algorithmic approach rather than
using immense physical computing resources, so that
most quantum researchers can now simulate quantum
algorithms on a single server. Even for some quantum
algorithms, this method can work better than using
supercomputers with hundreds or more servers for cer-
tain quantum algorithms. This method also ensures the
same fidelity as conventional digital quantum simulators
despite using only realized-states.

Third, we consider the design of the specially opti-
mized matrix- vector multiplication for realized-states. In
traditional state evolution simulators, matrix operations
are intuitive because all 2n quantum states consist of an
ordered set of array vectors. Parallelization can easily be
applied by dividing the entire vector space evenly and
allocating it to each core. However, because the whole
quantum space consists only of realized-states, our pro-
posed concept cannot divide all the quantum states so
evenly. Thus, we specially designed an optimized mecha-
nism to ensure parallel operations based on sophisticated
control over realized-states.

Finally, we design a digital quantum simulator to
ensure reversibility, a crucial concept in quantum com-
puters. Quantum computers trace quantum state evolu-
tion through reversible operations that change the initial
state of a qubit to its final form using only reversible pro-
cesses [37]. All the quantum gates we provide are

reversible, so every quantum circuit (qc) corresponds to a
specific unit operator Uqc in the Hilbert space, meeting
the criteria: UqcU†

qc ¼U†
qcUqc. There is only one irrevers-

ible element of quantum operation called measurement,
which is the only way to extract useful information from
qubit after the quantum computer’s state acquires its
final form.

4.2 | Realized-state representation

Figure 2 shows how to describe entire quantum states
with only realized-states. For example, suppose that we
have quantum states composed of three qubits, and all
qubits are in Greenberger–Horne–Zeilinger (GHZ) states
[38]. The middle refers to 23 theoretical quantum states
that can be represented in three qubits, and eight states
from j 000> and j 111> can be considered a state index
with an order from 0 to 7.

Furthermore, the left is the typical amplitude array
representation of state vectors in a conventional quantum
state simulator. When initializing the quantum space to
Ψ > ¼j j000> , 23 vectors of amplitude array are always
prepared without considering amplitude values. Then,
when the circuit evolves to the GHZ state, the quantum
states change to Ψ > ¼ αj j000> þβ j 111> according to
the principle of quantum mechanics. As we can see from
the figure, even though there are only two meaningful
quantum states, quantum simulators must always main-
tain eight state entries. Although the remaining zero-
amplitude quantum states do not affect quantum evolu-
tion or measurements, they still occupy memory space.

However, the right side of the figure is a quantum
space, which is described only with realized-states.
Therefore, by excluding the unrealized-states with zero-
amplitude value, our simulator can support more

F I GURE 2 Quantum state representation using only realized-

states. The center refers to a theoretical 2n quantum space. The left

refers to a typical simulator containing all amplitudes, and the right

refers to our quantum representation scheme using only realized-

states

JIN AND CHA 5

realized-states in the same memory space. However, it is
essential to understand that the global quantum states
should not be distorted even if only using realized-states
improves memory efficiency. Therefore, it is necessary to
map the location of each realized-state to the quantum
state index. This method makes it possible to accurately
track all 23 quantum state entries. The example above
can represent a quantum space with eight quantum states
using only two entries.

Our idea uses a less than 2n memory footprint
because it selectively manages only realized-states. More-
over, according to the number of superposed qubits, our
scheme does not always guarantee a smaller memory
footprint than conventional simulations. Therefore, if all
qubits are in the superposed state, the entire quantum
space will eventually be 2n. Equation (3) describes this
situation.

M¼ 2SQþ4þQIS
� � M :Total memory consumption

SQ :Number of superposed qubits
QIS :Quantum index space

8><
>:

9>=
>;
:

ð3Þ

The memory efficiency of our scheme is affected by
the number of superposed qubits (SQ) and the quantum
index space (QIS). If there is no SQ, SQ becomes zero,
which means the number of all meaningful quantum
states becomes one. On the contrary, if all qubits are
superposed, SQ will be equal to the number of actual
qubits on the typical quantum space, and the total num-
ber of quantum states will be 2n. Moreover, QIS that is
associated with the number of realized-states also
increases proportionally as SQ increases. Therefore, the
number of SQ mainly determines the efficiency of the
memory space. The experiments in Section 5 show a sig-
nificant benefit until the number of SQ is within 80% of
the total number of qubits.

4.3 | Quantum register

Figure 3 shows the architecture of a quantum register for
managing the global quantum states using only realized-
states. The quantum register manages an index repository
to store all realized-states and consists of several con-
tainers for processing quantum operations in parallel.
Given an arbitrary quantum state, the quantum register
block determines the appropriate container location
using the equation “state index value % the number of
containers.” All realized-states in the quantum register
are stored according to their state index values, as shown
by the dotted lines in Figure 3. Entries in each container

are stored in ascending order of their state index values,
which is the same as the state order in the entire 2n quan-
tum space.

Each container consists of its metadata and data
entries. The area of container metadata includes the
number of data entries and lock information used to
ensure concurrency in parallel operations. The area of
data entries stores realized-states in ascending order of
state index value, and each entry has an amplitude.
For example, assuming the quantum state is
Ψ > ¼ αj j00010> , the corresponding data entry of the
container stores the amplitude value “α” and the quan-
tum state index value “2.” To effectively express the
quantum state index, our scheme designs a “qsize_t” data
type that can describe a large number, ideally by provid-
ing quantum space with 21024 states.

4.4 | Quantum gates

As described in Section 4.1, the digital quantum simula-
tors should support a wide variety of general quantum
algorithms. Our simulator also provides quantum gates,
as shown in Table 1.

4.5 | State evolution

In quantum computing, quantum gates are applied in
matrix form to global quantum states. Applying a single
qubit gate U to the kth qubit is described as a 2n � 2n

unitary transformation I�n�k�1�U�I�k. However, most
typical simulators generally use the reduced matrix–
vector multiplication technique because it is costly to
apply matrix operations to the full quantum state of 2n.
But a matrix operation for a 2� 2 matrix still must per-
formed 2n� 1 times.

Figure 4 shows the difference between the proposed
method and other conventional methods in performing a

F I GURE 3 Architecture of a quantum register that stores only

realized-states. It consists of several containers for fast parallel

quantum operations

6 JIN AND CHA

one-qubit gate operation. For example, suppose we apply
the Hadamard gate to the first qubit (q0) on the global
quantum state Ψ >¼j j000>.

The left side illustrates when a Hadamard gate is
applied to the first qubit using the state evolution tech-
nique. This intuitively performs a 2 � 2 matrix computa-
tion on all pairs of target states regardless of the
amplitude value. On the contrary, our method (the right
side) performs a selective matrix operation on the
realized-states, which is more efficient. Matrix operations
applied to unrealized-states always produce zero vectors;
therefore, excluding these calculations can increase the
efficiency of the simulator. Our simulator computes only
the quantum state where at least one of the state pairs is
in the realized-state. Because each matrix operation
requires multiplying four times and adding two times,
the total number of calculations can be described as
follows:

Calculations¼ 2SQ

2
� 4�Multiplyþ2�Addð Þ, ð4Þ

where SQ is the number of superposed qubits. In contrast
to typical simulators requiring 2n�1 operations, our

scheme is only affected by the number of SQ. That
means, the proposed scheme can guarantee a smaller
number of SQ, thus, a more significant performance
improvement.

4.6 | Operation algorithm

In the previous section, we explained quantum opera-
tions using only realized-states with an intuitive example.
The digital quantum simulator should always perform all
quantum operations assuming a logical 2n quantum
space. However, applying a gate operation to an arbitrary
qubit over the quantum algorithm is not straightforward
because unrealized-states with a zero-amplitude value
cause a state index hole in the entire 2n quantum space.
Therefore, an algorithm must be designed to guarantee
the accuracy of quantum operations using only realized-
states.

Algorithm 1 shows the operational procedure imple-
menting a one-qubit gate using only the realized-states.
Inputs of this algorithm are a target qubit number and a
2 � 2 matrix.

To explain further, we refer to abbreviate a realized-
state as RS. The algorithm sequentially performs all RSs
in the quantum register, such as in line 5. Because all
RSs are stored in the state index order, the logical execu-
tion order guarantees the index order of the logical 2n

TAB L E 1 Quantum gates list

Gates Meaning Gates Meaning

I Idle or identity RX X-axis rotation

X Pauli-X (bit flip) RY Y-axis rotation

Y Pauli-Y (bit + phase flip) RZ Z-axis rotation

Z Pauli-Z (phase flip) S SQRT(Z) phase

H Hadamard T SQRT(S) phase

CX Controlled-NOT T+ Conjugate of T

CZ Controlled-Phase S+ Conjugate of S

CY Controlled-Y SWAP Swap

CCX Toffoli M Measurement

F I GURE 4 Gate operation comparison. The left side is gate

operations on the typical entire state vector, and the right side is

gate operations on our realized-states

JIN AND CHA 7

quantum space. In line 6, we first determine two state
pairs for matrix calculation by shifting the current RS
index and the given qubit number. In lines 7 and 9, we
inspect the evolution of the selected states pair. Further,
the completion of the matrix computation for the target
pair goes back to the beginning of the loop statement. In
lines 10–15, we look up the amplitude of each RS pair,
which is related to matrix calculations. If the RS does not
exist, the amplitude is set to zero. The 2 � 2 matrix is
applied to two amplitude pairs at lines 16–18. Finally, the
newly computed amplitudes are updated to the global
quantum states, as shown in lines 19–24. At this point,
the calculated amplitude value and the presence of the
target RS determine the update method. According to the
newly calculated amplitude, RS entries are added
(zero ! no zero), modified (no zero ! no zero), or
deleted (no zero ! zero).

Algorithm 2 shows the operational procedure of the
2-qubit controlled gate. Input parameters include two
qubits: a control qubit and a target qubit. In the 2-qubit
controlled gate, matrix operations are applied to the tar-
get qubit only when the state bit of the control qubit is
j 1> . Therefore, we perform matrix operations on the
states pair of the target qubit only if the state bit of the
control qubit isj 1> in lines 2–6.

4.7 | Parallelism

Even if quantum states are described only with realized-
states, avoiding the increasing computational cost is
challenging, because the number of matrix calculations
increases in proportion to the number of SQ; therefore,
performance improvement through parallelization is
essential. Consequently, we apply the OpenMP library to
our simulator to support parallel calculations through
multiple CPU cores. However, we assign index con-
tainers to the OpenMP thread because quantum space
cannot be statically divided like a typical state vector
simulator. To maximize computing resource utilization,

we define the number of index containers as twice the
number of CPU cores. Furthermore, because the state
pairs for matrix operations sometimes span two con-
tainers, it guarantees concurrency through locks defined
in each container.

5 | EXPERIMENTS AND
EVALUATION

5.1 | Experimental setup

In this section, we simulate various quantum algorithms
using QuEST and our newly developed state evolution
simulator, QPlayer, and analyze the results from many
viewpoints.

5.1.1 | Hardware environment

Experiments were performed on a Dell PowerEdge T640
single server with two Intel Xeon Gold 6132 CPUs
(56 cores total) and 512 GB of memory. We did not use
hardware acceleration devices, such as GPGPU, but we
used only the OpenMP library provided by Linux for the
simulation parallelism.

5.1.2 | Benchmark environment

Digital quantum simulators play a key role by supporting
many general quantum algorithms; thus, we define four
algorithm categories and analyze their simulation results
to verify that our simulator works properly for general
algorithms: (1) QASMBench [38] provides many quan-
tum algorithms with various quantum circuit sizes. The
benchmark of QASMBench is summarized in Table 2,
and it is divided into three categories (small, medium,
and large scales) according to the number of quantum
qubits. This was used to evaluate the performance of digi-
tal quantum simulators compatible with general-purpose
quantum gates. (2) Other generic algorithms commonly
used in quantum computing, including Grover search
[39] and quantum Fourier transform (QFT) [40]. (3) Sur-
face code [23–25] is a quantum error correction algo-
rithm that generates highly reliable logical qubits using
physical quantum qubits with errors, as shown in
Figure 5A. For the beyond-NISQ era, research in this
field has been rapidly growing in recent years. (4) Based
on Arute et al. [8], random circuit sampling (RCS) is an
algorithm for randomized quantum circuit testing, as
shown in Figure 5B.

8 JIN AND CHA

5.2 | Experimental analysis

5.2.1 | QASMBench

Figure 6A shows the memory consumption when exe-
cuting QASMBench algorithms. Their ideal memory
requirement is only a few MB according to the 2n rule
because small- and medium-scale algorithms use less
than 20 qubits. In this case, QuEST’s memory consump-
tion is similar to or slightly less than that of QPlayer.
Even if the number of qubits is small or medium,
QPlayer requires additional memory to manage state
index space for realized-states. However, in large-scale
algorithms, the memory consumption of QPlayer
becomes much smaller than that of the QuEST. The
effect of tracking only realized-states outweighs the
additional memory cost required to manage the state
index.

Figure 6B shows the execution time of each algo-
rithm. The execution times of QPlayer and QuEST are
similar to memory consumption patterns on a small to
medium scale. But, in the large-scale algorithms,
QPlayer’s computational performance is much better
than that of the QuEST. As illustrated in Figure 1,
exponential explosions in more than 20 qubits signifi-
cantly reduce the parallel execution effect in QuEST.
However, QPlayer shows relatively higher performance
than QuEST, even on a large scale. Numerically,
QPlayer is 1.4 times faster in cat, 37 times faster in
multiplier, five times faster in bwt, 1.3 times faster in
ghz, and 1.8 times faster in sqaure_root compared with
QuEST.

5.2.2 | Generic algorithms

The Grover algorithm, designed to apply superposed
states to only a subset of all qubits, searches for a spe-
cific quantum state among many quantum states.
Figure 7 shows the change in the simulation time as
the number of qubits gradually increases. As a result,T

A
B
L
E

2
Q
A
SM

B
en

ch
qu

an
tu
m

ci
rc
ui
ts

Sm
al
l
sc
al
e

M
ed

iu
m

sc
al
e

L
ar
ge

sc
al
e

B
en

ch
m
ar
k

D
es
cr
ip
ti
on

Q
u
bi
ts

(g
at
es
)

B
en

ch
m
ar
k

D
es
cr
ip
ti
on

Q
u
bi
ts

(g
at
es
)

B
en

ch
m
ar
k

D
es
cr
ip
ti
on

Q
u
bi
ts

(g
at
es
)

de
u
ts
ch

D
eu

ts
ch

al
go
ri
th
m

2
(5
)

bb
84

K
ey

di
st
ri
bu

ti
on

8
(2
7)

ca
t_
st
at
e

Q
ua

n
t.
ar
it
h
m
et
ic

22
(2
2)

qa
oa

Q
A
O
A
al
go
ri
th
m

3
(1
5)

is
in
g

Is
in
g
m
od

el
10

(4
80
)

m
ul
ip
le
r

Q
ua

n
t.
m
ul
ti
pl
ie
r

25
(3
72
3)

qe
c

E
rr
or

co
rr
ec
ti
on

5
(2
5)

se
ca

E
rr
or

co
rr
ec
ti
on

11
(2
16
)

bw
t

Q
ua

n
t.
ar
it
h
m
et
ic

21
(1
12
80
6)

te
le
po

rt
T
el
ep
or
ta
ti
on

3
(8
)

bv
B
er
n
st
ei
n

14
(5
6)

gh
z_
st
at
e

G
H
Z
pr
ep
.

23
(2
3)

lp
n

L
ea
rn
in
g
pa

ri
ty

5
(1
1)

si
m
on

Si
m
on

al
go
ri
th
m

9
(1
23
)

sq
ar
e

C
al
c.
Sq

ua
re

ro
ot

26
(2
80
)

N
ot
e:
A
cc
or
di
n
g
to

th
e
n
um

be
r
of

qu
bi
ts
,a
lg
or
it
h
m
s
ar
e
di
vi
de
d
in
to

th
re
e
ca
te
go
ri
es
.

F I GURE 5 (A) The surface code algorithm, (B) example

circuit for the RCS algorithm

JIN AND CHA 9

two significant consequences were obtained. First,
QuEST cannot support more than 35 qubits as it
always requires a 2n quantum space regardless of the
state amplitude. However, because QPlayer minimally
keeps track of superposed states, it can even support
Grover’s algorithm with a scale of 55 qubits. Second,
at the same qubit scale, QPlayer is significantly faster
than QuEST. For example, the execution of Grover
with 35 qubits takes 1.2 s for QPlayer and 6471 s for
QuEST indicating that QPlayer is approximately 5000
times faster than QuEST.

As shown in Figure 8, the trend with which the
simulation time of the QFT algorithm changes is
slightly different from that of the Grover algorithm. All
qubits used in this simulation gradually change to
superposed states with circuit evolution in the QFT
algorithm. As a result, QPlayer supports roughly
33 qubits under similar conditions, while QuEST sup-
ports 35 qubits. The difference is because QPlayer
requires an additional index space for the realized-
states. In other words, QPlayer also uses 2n realized-
states, just like all quantum spaces, as all qubits eventu-
ally evolve into a superposition state. Comparing the
performance at the identical 33 qubits takes 841 s for
QuEST and 3256 s for QPlayer, indicating that QuEST
is about four times faster than QPlayer.

5.2.3 | Surface code

The surface code is an algorithm for quantum error cor-
rection where several qubits are combined and used as
one logical qubit. To generate one logical qubit, SC13
requires 13 qubits, and SC17 requires 17 qubits [24]. As
the number of logical qubits increases, the required physical
qubits multiply by (the number of logical qubits � 9) + 4
for SC13 and (the number of logical qubits � 17) for
SC17. The important thing about the surface code is
that the number of realized-states of the logical qubit

F I GURE 6 Experimental result of QASMBench according to the quantum algorithm and the number of qubits: (A) shows memory

consumption for each quantum circuit, and (B) shows quantum circuit operation time

F I GURE 7 Comparison in the execution time of the Grover

algorithm

10 JIN AND CHA

is not 2n. The surface code fixes all quantum states into
stabilized states, where the number of stabilized states
required for a single logical qubit is only 24 or 25. To
build an SC17-based logical qubit, QuEST requires
quantum space with 217 quantum states, while QPlayer
uses only quantum space with 25 quantum states.

Figure 9 shows the performance comparison in gener-
ating up to five logical qubits using surface code. As
described above, to generate five logical qubits, SC13
requires 49 qubits, and SC17 requires 85 qubits. In
Figure 9, QPlayer supports up to five logical qubits for
both SC13 and SC17, whereas QuEST can only generate
three logical qubits for SC13 and two logical qubits for
SC17. It should be noted that QuEST only supports up to
35 qubits due to physical memory limitations on a single
server. Besides, for the same number of logical qubits,
QPlayer provides significantly faster performance than
QuEST. For example, generating three logical qubits with
SC13 takes 179 s for QuEST and 0.173 s for QPlayer, indi-
cating that QPlayer is about 1032 times faster.

Figure 10 compares the performance of logical opera-
tions in surface code on QuEST and QPlayer. The Error
Syndrome Measurement (ESM) detects errors in one logi-
cal qubit, Teleport transfers quantum information
between two logical qubits, and CNOT is a logical
controlled-not operation using three logical qubits
[23–25]. As shown in Figure 10, QPlayer performs better
in all operations than QuEST. Notably, the increase in
used qubits widens the performance gap in the following
order: ESM, Teleport, and CNOT operations. In ESM
operation, QPlayer is 2.1 times faster in SC13 and 9 times
faster in SC17 than QuEST. QPlayer has an excellent per-
formance of 8 times faster in SC13 and 11 773 times fas-
ter in the Teleport operation of SC17. In CNOT
operation, QPlayer is 13 192 times faster in SC13 than
QuEST.

As confirmed by our analysis, QPlayer reveals innova-
tive features for limited algorithms such as surface code.

Most quantum error correction algorithms use only a few
stabilized states and require precise tracking of quantum
states with frequent intermediate measurements. Given
these conditions, QPlayer can always represent the per-
fect logical quantum states of 2n only using some
realized-states.

5.2.4 | RCS

RCS is a technique for building a quantum circuit
through random gate placement, as shown in Figure 5B.
It can cover a variety of quantum circuit scenarios from
the worst case to the best case in the perspective of simu-
lation cost because RCS does not have a specific structure
of circuit gates. It is even possible to analyze the behav-
ioral pattern of quantum algorithms by setting specific
parameter conditions. Table 3 shows the RCS circuit’s
simulation results in which the superposition ratio of the

F I GURE 9 Logical qubit scalability in (A) SC13 and (B) SC17

F I GURE 1 0 Comparison in logical operation performance:

(A) SC13 ESM, (B) SC13 teleport (C) SC13 cnot, (D) SC17 ESM,

(E) SC17 teleport, and (F) SC17 cnot

F I GURE 8 Comparison in the execution time of the QFT

algorithm

JIN AND CHA 11

qubits is assigned as a parameter. Each simulation set the
superposed qubit ratio within the range of 0%–100% and
applied 30 qubits at a circuit depth of 20.

QuEST takes a similar execution time of about 90 s
regardless of the superposition qubit ratio. However,
QPlayer has different performance patterns depending on
the superposed qubit ratio. Compared with the result of
QuEST, QPlayer performs approximately hundreds of
times faster at a 0%–50% superposed ratio and dozens of
times faster at a 60%–70% superposed ratio.

However, when the superposed qubit ratio reaches
≥80%, the number of realized-states approaches 2n,
which increases the index management cost, so QPlayer
is somewhat slower than QuEST.

Meanwhile, a similar pattern is shown in memory
consumption. QuEST always uses 16 GB of memory,
while QPlayer uses 2 MB at the superposed qubit ratio of
less than 50%, resulting in approximately 8000 times
memory savings. However, in the 90%–100% ratio,
QPlayer uses two to eight times more memory. This dif-
ference is because QuEST always processes 2n quantum
states, while QPlayer has the different number of quan-
tum states depending on the number of SQ.

6 | CONCLUSIONS

In this paper, we addressed fundamental questions of
limitations of digital quantum simulators. Over the past
decade, researchers are yet to resolve the exponential
explosion problem of memory and computation in digital
quantum simulators. Here, we proposed a novel simula-
tor, called QPlayer. It provides more qubits and faster

quantum operations with smaller memory than before.
Our simulator selectively tracks limited realized-states
instead of loading the full quantum state into memory.
Our empirical evaluation showed that QPlayer provides
more robust scalability and high performance than the
state-of-the-art digital quantum simulators. We demon-
strated its effectiveness with several quantum algorithms
in QASMBench and verified that the simulation of Gro-
ver algorithms is possible with 55 qubits. QPlayer sup-
ports up to five logical qubits using surface code-17,
corresponding to 85 physical qubits. In the RCS experi-
ment, we found significant benefits at the superposed
qubit ratio of less than 80%.

In future studies, further optimization for QPlayer
and several new ideas should be explored as follows:
(1) The efficient management of realized-states to further
reduce memory usage and increase simulation speed,
(2) support of industry-standard interface in quantum
computing such as OpenQASM [41] to improve compati-
bility with the general quantum algorithm, (3) the study
of quantum noise models with quantum errors such as
bit flip, dephase, and decoherence.

You can obtain both a free copy of QPlayer test pro-
grams by (1) contacting the first author or (2) visiting
https://github.com/eQuantumOS/QPlayer.

ACKNOWLEDGMENTS
This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT)
(No. 2020-0-00014, A Technology Development of Quan-
tum OS for Fault-tolerant Logical Qubit Computing
Environment).

TAB L E 3 Random circuit sampling simulation: 30 qubits, circuit depth 20

Assigned
superposed
qubit ratio

Execution time Memory consumption Number of quantum states

QuEST QPlayer QuEST QPlayer QuEST QPlayer

0% 88 s 119 ms 739� 16 GB 2 MB 8000� 1 073 741 824 1

10% 89 s 130 ms 677� 16 GB 2 MB 8000� 1 073 741 824 8

20% 89 s 161 ms 547� 16 GB 2 MB 8000� 1 073 741 824 64

30% 88 s 208 ms 423� 16 GB 2 MB 8000� 1 073 741 824 512

40% 88 s 282 ms 312� 16 GB 2 MB 8000� 1 073 741 824 4096

50% 88 s 434 ms 203� 16 GB 2 MB 8000� 1 073 741 824 32 768

60% 90 s 2 s 44� 16 GB 52 MB 315� 1 073 741 824 262 144

70% 91 s 19 s 5� 16 GB 387 MB 42� 1 073 741 824 2 097 152

80% 88 s 244 s 3� (slow) 16 GB 2.8 GB 6� 1 073 741 824 16 777 216

90% 89 s 1218 s 14� (slow) 16 GB 24 GB 2� (high) 1 073 741 824 134 217 728

100% 90 s 1 h 17 min 53� (slow) 16 GB 129 GB 8� (high) 1 073 741 824 1 073 741 824

12 JIN AND CHA

https://github.com/eQuantumOS/QPlayer

CONFLICT OF INTEREST
The authors declare that there are no conflicts of interest.

ORCID
Ki-Sung Jin https://orcid.org/0000-0002-1997-3019

REFERENCES
1. B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P.

Almeida, I. Kassal, and A. G. White, Towards quantum chem-
istry on a quantum computer, Nat. Chem. 2 (2010), 106–111.

2. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits
for quantum information: an outlook, Science 339 (2013),
1169–1174.

3. B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F.
Zähringer, and C. F. Roos, Universal digital quantum simula-
tion with trapped ions, Science 334 (2011), no. 6502, 57–61.

4. J. Casanova, A. Mezzacapo, L. Lamata, and E. Solano, Quan-
tum simulation of interacting fermion lattice models in trapped
ions, Phys. Rev. Lett. 108 (2012), 190502.

5. D. Castelvecchi, IBM’s quantum cloud computer goes commer-
cial, Nature 543 (2017), no. 7644, 159.

6. R. Courtland, Google aims for quantum computing supremacy,
IEEE Spectr. 54 (2017), no. 6, 9–10.

7. L. Gomes, Quantum computing: Both here and not here, IEEE
Spectr. 55 (2018), no. 4, 42–47.

8. F. Arute, K. Arya, R. Babbush, and J. M. Martinis, Quantum
supremacy using a programmable superconducting processor,
Nature 574 (2019), no. 7779, 505–510.

9. A. Zulehner and R. Wille, Advanced simulation of quantum
computations, IEEE Tran. Comput.-Aided Des. Integr. Circuits
Syst. 38 (2018), no. 5, 848–859.

10. List of QC simulators grouped by programming language, 2021,
Available from: https://quantiki.org/wiki/list-qc-simulators
[last accessed August, 2021].

11. I. Buluta and F. Nori, Quantum simulators, Science 326 (2009),
no. 5949, 108–111.

12. R. P. Feynman, Simulating physics with computers, Theor.
Phys. 21 (1982), 467–488.

13. J. Doi, H. Takahashi, R. Raymond, T. Imamichi, and H. Horii,
Quantum computing simulator on a heterogenous HPC system,
(Quantum computing simulator on a heterogenous HPC
system, Alghero, Italy), Apr. 2019, pp. 85–93.

14. J. Chen, F. Zhang, and C. Huang, Classical simulation of
intermediate-size quantum circuits, arXiv preprint, 2018.
https://doi.org/10.48550/arXiv.1805.01450

15. P. W. Shor, Algorithms for quantum computation: discrete loga-
rithms and factoring, (Proceedings 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, USA),
Nov. 1994, pp. 124–134.

16. H. Thomas and D. S. Steiger, 0.5 petabyte simulation of a 45-
qubit quantum circuit, (Proceedings of the International Con-
ference for High Performance Computing, Networking, Stor-
age and Analysis, Denver, CO, USA), 2017, pp. 1–10.

17. H. Raedt, K. Michielsen, H. B. Trieu, G. Arnold, M. Richter,
and N. Ito, Massively parallel quantum computer simulator,
Comput. Phys. Comm. 176 (2007), no. 2, 121–136.

18. M. Smelyanskiy, N. P. Sawaya, and A. Aspuru-Guzik, qHiP-
STER: The quantum high performance software testing

environment, arXiv preprint, 2016. https://doi.org/10.48550/
arXiv.1601.07195

19. T. Jones, A. Brown, I. Bush, and S. C. Benjamin, QuEST and
high performance simulation of quantum computers, Sci. Rep. 9
(2019), no. 1, 1–11.

20. H. Raedt, F. Jin, D. Willsch, M. Willsch, N. Yoshioka, N. Ito,
and K. Michielsen, Massively parallel quantum computer simu-
lator, eleven years later, Comput. Phys. Comm. 237 (2019),
47–61.

21. E. S. Fried, N. P. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero,
and A. Aspuru-Guzik, qTorch: The quantum tensor contraction
handler, PloS one 13 (2018). https://doi.org/10.1371/journal.
pone.0208510

22. J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2 (2018). https://doi.org/10.22331/q-2018-08-06-79

23. A. G. Fowler, A. C. Whiteside, and L. C. Hollenberg, Towards
practical classical processing for the surface code, Phys. Rev.
Lett. 108 (2012). https://doi.org/10.1103/PhysRevLett.108.
180501

24. Y. Tomita and K. M. Svore, Low-distance surface codes
under realistic quantum noise, Phys. Rev. A 90 (2014), no. 6.
https://doi.org/10.1103/PhysRevA.90.062320

25. A. Erhard, H. P. Nautrup, M. Meth, L. Postler, R. Stricker, M.
Stadler, and T. Monz, Entangling logical qubits with lattice sur-
gery, Nature 589 (2021), no. 7841, 220–224.

26. G. F. Viamontes, I. L. Markov, and J. P. Hayes,
Graph-based simulation of quantum computation in the density
matrix representation, Quantum Inf. Comput. II 5436 (2004),
285–296.

27. I. L. Markov and Y. Shi, Simulating quantum computation by
contracting tensor networks, SIAM J. Comput. 38 (2008), no. 3,
963–981.

28. J. Biamonte and V. Bergholm, Tensor networks in a nutshell,
arXiv preprint, 2017. https://doi.org/10.48550/arXiv.1708.
00006

29. S. Boixo, S. V. Isakov, V. N. Smelyanskiy, and H. Neven, Simu-
lation of low-depth quantum circuits as complex undirected
graphical models, arXiv preprint, 2017. https://doi.org/10.
48550/arXiv.1712.05384

30. Z. Y. Chen, Q. Zhou, C. Xue, X. Yang, G. C. Guo, and G. P.
Guo, 64-qubit quantum circuit simulation, Sci. Bull. 63 (2018),
no. 15, 964–971.

31. S. Arnborg, D. G. Corneil, and A. Proskurowski, Complexity of
finding embeddings in a k-tree, SIAM J. Algebraic Discrete
Methods 8 (1987), no. 2, 277–284.

32. E. Amir, Approximation algorithms for treewidth, Algorithmica
56 (2010), no. 4, 448–479.

33. R. Li, B. Wu, M. Ying, X. Sun, and G. Yang, Quantum suprem-
acy circuit simulation on Sunway TaihuLight, IEEE Trans. Par-
allel Distri. Syst. 31 (2019), no. 4, 805–816.

34. K. S. Jin, S. M. Lee, and Y. C. Kim, Adaptive and optimized
agent placement scheme for parallel agent-based simulation,
ETRI J. 44 (2021), 313–326. https://doi.org/10.4218/etrij.2020-
0399

35. Y. W. Kim, M. H. Oh, and C. Y. Park, Multi-communication
layered HPL model and its application to GPU clusters, ETRI J.
43 (2021), no. 3, 524–537.

36. B. M. Terhal, Quantum supremacy, here we come, Nat. Phys. 14
(2018), no. 6, 530–531.

JIN AND CHA 13

https://orcid.org/0000-0002-1997-3019
https://orcid.org/0000-0002-1997-3019
https://quantiki.org/wiki/list-qc-simulators
https://doi.org/10.48550/arXiv.1805.01450
https://doi.org/10.48550/arXiv.1601.07195
https://doi.org/10.48550/arXiv.1601.07195
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevLett.108.180501
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.48550/arXiv.1708.00006
https://doi.org/10.48550/arXiv.1708.00006
https://doi.org/10.48550/arXiv.1712.05384
https://doi.org/10.48550/arXiv.1712.05384
https://doi.org/10.4218/etrij.2020-0399
https://doi.org/10.4218/etrij.2020-0399

37. M. Noorallahzadeh and M. Mosleh, Efficient designs of revers-
ible latches with low quantum cost, IET Circ. Dev. Syst. 13
(2019), no. 6, 806–815.

38. A. Li and S. Krishnamoorthy, QASMBench: A low-level QASM
benchmark suite for NISQ evaluation and simulation, arXiv
preprint, 2020. https://doi.org/10.48550/arXiv.2005.13018

39. L. K. Grover, A fast quantum mechanical algorithm for data-
base search, (Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing, Philadelphia, PA, USA),
1996, pp. 212–219. https://doi.org/10.1145/237814.237866

40. M. A. Nielsen and I. L. Chuang, Quantum computation and
quantum information, Cambridge University Press, 2010.

41. OpenQASM 3.x Live Specification. https://qiskit.github.io/
openqasm [last accessed October, 2021].

AUTHOR BIOGRAPHIES

Ki-Sung Jin received his BS and MS
degrees in Computer Engineering
from Jeonbuk National University,
Jeonju, Republic of Korea, in 1999
and 2001, respectively. Since 2001,
he has been with the Electronics and
Telecommunications Research Insti-

tute, Daejeon, Republic of Korea, where he has
worked on developing the cluster database, distrib-
uted parallel filesystem, dual-mode big data platform,

and simulation technology for the digital twin. He is
currently a principal researcher. His current research
interests include distributed systems, extreme storage
systems, and quantum operating systems.

Gyu-Il Cha received his BS and MS
degrees in Computer Science from
Korea University, Seoul, Republic of
Korea, in 1998 and 2000, respec-
tively. Since 2000, he has been with
the Electronics and Telecommunica-
tions Research Institute, Daejeon,

Republic of Korea, and is currently a principal
researcher. His research interest is a quantum operat-
ing system for fault-tolerant quantum computing. He
has been involved in the technology development of
operating systems, memory virtualization, supercom-
puting, microservice architectures, and extreme stor-
age systems.

How to cite this article: K.-S. Jin and G.-I. Cha,
QPlayer: Lightweight, scalable, and fast quantum
simulator, ETRI Journal (2022), 1–14. https://doi.
org/10.4218/etrij.2021-0442

14 JIN AND CHA

https://doi.org/10.48550/arXiv.2005.13018
https://doi.org/10.1145/237814.237866
https://qiskit.github.io/openqasm
https://qiskit.github.io/openqasm
https://doi.org/10.4218/etrij.2021-0442
https://doi.org/10.4218/etrij.2021-0442

	QPlayer: Lightweight, scalable, and fast quantum simulator
	1 INTRODUCTION
	2 RELATED WORKS
	2.1 State evolution
	2.2 Tensor contraction

	3 PROBLEM ANALYSIS
	3.1 Qubit scalability
	3.2 Operation performance
	3.3 Amplitude of quantum states

	4 QPlayer
	4.1 Design concepts
	4.2 Realized-state representation
	4.3 Quantum register
	4.4 Quantum gates
	4.5 State evolution
	4.6 Operation algorithm
	4.7 Parallelism

	5 EXPERIMENTS AND EVALUATION
	5.1 Experimental setup
	5.1.1 Hardware environment
	5.1.2 Benchmark environment

	5.2 Experimental analysis
	5.2.1 QASMBench
	5.2.2 Generic algorithms
	5.2.3 Surface code
	5.2.4 RCS

	6 CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	REFERENCES

