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ABSTRACT Data augmentation is a well-known technique used for improving the generalization perfor-
mance of modern neural networks. After the success of several traditional random data augmentation for
images (including flipping, translation, or rotation), a recent surge of interest in implicit data augmentation
techniques occurs to complement random data augmentation techniques. Implicit data augmentation aug-
ments training samples in feature space, rather than in pixel space, resulting in the generation of semantically
meaningful data. Several techniques on implicit data augmentation have been introduced for classification
tasks. However, few approaches have been introduced for regression tasks with continuous/structured labels,
such as object pose estimation. Hence, we are motivated to propose a method for implicit semantic data
augmentation for hand pose estimation. By considering semantic distances of hand poses, the proposed
method implicitly generates extra training samples in feature space. We propose two additional techniques
to improve the performance of this augmentation: metric learning and hand-dependent augmentation. Metric
learning aims to learn feature representations to reflect the semantic distance of data. For hand pose
estimation, the distribution of augmented hand poses can be regulated by managing the distribution of
feature representations. Meanwhile, hand-dependent augmentation is specifically designed for hand pose
estimation to prevent semantically meaningless hand poses from being generated (e.g., hands generated
by simple interpolation between both hands). Further, we demonstrate the effectiveness of the proposed
technique using two well-known hand pose datasets: STB and RHD.

INDEX TERMS Hand pose estimation, data augmentation, semantic learning, feature learning.

I. INTRODUCTION

Data augmentation is an effective technique for alleviating the
problem of overfitting in training deep neural networks. For
hand pose estimation [1], [2], [3], [4], [5], data augmentation
usually involves applying several random transformations to
existing images (e.g., cropping, rotation, and translation).
These simple transformation methods help neural networks
avoid overfitting the training data. Unfortunately, they can-
not always generate semantically transformed data, such as
changing hand poses or their backgrounds [15]. Recently,
researchers have studied generative adversarial networks
(GANs). After training, GAN generators can synthesize an

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li

84680

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

infinite number of semantically meaningful training sam-
ples [6]. However, a separate GAN model should be trained
to use GANSs for data augmentation, in addition to the target
model. Moreover, according to [9], GANs require nontrivial
training that involves intensive computation.

For efficient semantic data augmentation, implicit data
augmentation [7], [8], [9], [47] has emerged as the new
paradigm that can address the weakness of generative model-
based approaches. It augments training data by selecting
feature representations of a certain layer in neural networks
and by generating new feature representations via interpola-
tion or translation using selected features. Using the newly
augmented features, the method trains models to minimize
predefined loss. Although such methods provide efficient
data augmentation, most approaches have focused on tasks
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FIGURE 1. Overview of the proposed implicit semantic data augmentation for hand pose estimation. The proposed method generates semantically
meaningful samples through interpolation with feature representations selected based on the semantic distance of hand poses. Deliberate selection
makes the distribution of augmented samples more balanced compared to that of randomly selected samples. Detailed procedure is described in

Section IIl.

with discrete labels (e.g., image classification). Whereas, few
approaches consider tasks with continuous and structured
labels.

We propose an implicit semantic data augmentation
method to train deep neural models for hand pose estimation.
The proposed method is motivated by intriguing observations
made in a recent study [10]. The study demonstrates the
importance of understanding the semantic similarity between
images in numerous areas of computer vision (e.g., human
pose estimation, face identification, image retrieval, and
video object tracking). For hand pose estimation, learning the
semantic similarity of hand poses allows neural networks to
be sensitive to joint positions and invariant to illumination,
background, clutter, and occlusions.

Current methods on implicit data augmentation [8], [9]
randomly select two minibatches and then interpolate with a
randomly associated pair of features, leading to a mixed mini-
batch. Regarding hand pose estimation, the random selection
of features without considering the semantic distance of hand
poses may cause a biased distribution of augmented data.
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To address this drawback, we consider features’ distance that
reflects the semantic distance of hand poses to synthesize new
data. By deliberately selecting features based on the semantic
distance of hand poses and by applying interpolation between
them, we can augment new hand poses with a more balanced
distribution than those of existing methods. Figure 1 illus-
trates the conceptual procedure of the proposed method.

To improve the effectiveness of our method, we propose
to apply two additional components: metric learning and
hand-dependent augmentation. Metric learning learns feature
representations to reflect the semantic distance of hand poses,
allowing the regulation of the distribution of augmented
hand pose data by managing the distribution of their feature
representations. Meanwhile, hand-dependent augmentation
imposes an additional constraint dedicated to hand pose esti-
mation. It prevents the generation of semantically meaning-
less data, for example, hand poses synthesized via simple
interpolation between the left and right hands.

The remainder of this paper is organized as follows.
In Section II, previous studies on data augmentation,
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metric learning, and hand pose estimation were discussed.
Section III describes in detail the proposed technique.
In Section IV, we report the experiments we performed to
demonstrate the effectiveness of the proposed method using
two different datasets. Finally, Section V concludes the paper.

Il. RELATED WORK

A. DATA AUGMENTATION

Artificial data created by using data augmentation meth-
ods have been commonly used to alleviate overfitting in
training deep neural networks. Approaches for initial data
augmentation for images mainly include label-preserving
transformations, such as random flipping, scaling, rotation,
and translation [1], [2], [3], [4], [5], [13], [14]. Furthermore,
hue, saturation, brightness, and darkness changes in images
were used to increase the diversity of the generated images
[15], [16]. These methods typically augment images by
retaining semantic information.

Beyond label-preserving transformations, several studies
that generate synthetic images in pixel space have been pro-
posed. Mixup [32], [33] linearly combined two samples in
pixel space and their labels using a weighted linear combi-
nation. The images generated by Mixup were extremely dif-
ferent from the original data and unreal to human perception
when compared to those generated by label-preserving data
augmentation. Recently, GANs have been used to generate
semantically transformed training images [6], [17]. After
training GANs with training data, the generators of GANs
can synthesize an infinite number of samples.

Beyond data augmentation in pixel space, recent stud-
ies [7], [8], [9] augmented data in feature space, called as
implicit data augmentation. This generates features that cor-
respond to the augmented images in pixel space and uses
them to train the models. Wang et al. [7] augmented training
data semantically while preserving the labels by translating
their features along with the feature distributions of each
class. Li et al. [9] proposed implicit augmentation of data by
simultaneously interpolating two training inputs in both the
feature and label spaces. To increase stability, Verma et al. [8]
used the moments (mean and standard deviation) of fea-
tures, by exchanging one training image with another and
interpolating the features and labels. Swapping the moments
between two features facilitates the generation of different
samples with asymmetric proportions to the mean and stan-
dard deviation. These methods were proven to be effective in
terms of classification tasks. However, directly using them in
regression tasks, such as hand pose estimation, is challenging
because of the intrinsic difference in data labels (i.e., discrete
and continuous).

B. METRIC LEARNING

Metric learning plays an essential role in numerous areas
of computer vision, including pose estimation, because it
helps estimate the similarity between images, which is a
basic component of human reasoning [18]. For deep metric
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learning, contrastive loss and triplet loss are standard loss
functions [19], [20], [21]. For instance, given a triplet of
anchor, positive, and negative images, the triplet loss forces
the distance between the anchor and positive images to be
smaller than that between the anchor and negative images.
To learn the similarities between continuous labels, some
studies [34], [35], [36] applied metric learning after mapping
continuous labels into discrete labels. This approach quan-
tized continuous similarities into binary levels through dis-
tance thresholding or nearest-neighbor search. Unfortunately,
both strategies are unusual for continuous metric learning.

Recently, Kim et al. [10] proposed a new loss called log-
ratio loss for metric learning of retrieval tasks with con-
tinuous labels, including human poses, room layouts, and
caption-aware images. Considering a triplet of an anchor and
two neighbors, the model can approximate the ratio of label
distances using the ratio of feature distances. Inspired by their
work, we used log-ratio loss for hand pose estimation in this
study.

C. HAND POSE ESTIMATION

Reference [22] classified 3D hand pose estimation methods
into two categories: generative [23], [24], [25] and discrimi-
native [11, [2], [3], [4], [5], [26], [27], [28], [40], [41], [42],
[43], [44], [45], [46]. Generative approaches generate hypo-
thetical hand poses and compare them to observed data to
find a solution that minimizes the objective function defined
as a discrepancy between hypothetical and observed hand
poses. Most generative approaches rely on local searches after
initialization and, therefore, are susceptible to local optima.

Conversely, discriminative approaches learn direct map-
ping from observations of hand poses [1], [2], [3], [4], [5],
[26], [27], [28], [40], [41], [42], [43], [44], [45], [46]. With the
advent of convolutional neural networks (CNNs) and large-
scale datasets, discriminative methods have exhibited promis-
ing performance and have proven to be suitable alternatives
to generative approaches. Recently, Moon et al. [5] intro-
duced a CNN-based model, InterNet, achieving significantly
improved performance in terms of hand pose estimation.
InterNet can estimate both hand poses and four components
concurrently: right- and left-hand pose handedness and right
hand-relative left-hand depth.

Discriminative methods [1], [2], [3], [4], [5], [43], [44],
[45], [46] generally use a traditional random data augmenta-
tion comprising various transformations (e.g., rotation, trans-
lation, flip, scale, hue, saturation, jitter) to improve the
estimation performance. Because random data augmenta-
tion does not generate semantically meaningful hand poses,
it restricts the performance improvement of hand pose estima-
tion methods. To the best of our knowledge, our study is the
first attempt to augment semantically transformed samples
for hand pose estimation through implicit data augmentation.

1Ill. PROPOSED METHOD
The proposed implicit data augmentation method was
designed for hand pose estimation tasks, which intrinsically
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FIGURE 2. Implicit semantic data augmentation and metric learning. Here, K is the number of selected anchors. Circles in the figures are anchor
features, squares are other selected features, and stars are augmented features. The number on a feature denotes the rank of the hand pose similarity in
the pixel space between an anchor and a feature. (a) The semantic triplet selection considers hand pose similarities. Thus, the distribution of augmented
samples becomes more balanced than that of random triplet selection. (b) Metric learning makes the features learn to reflect the semantic distance of
hand poses. Consequently, the features are forced to be well-arranged in the feature space according to the hand pose similarity, resulting in a more

balanced distribution of augmented samples.

Algorithm 1: Procedure of the Proposed Method

Input: a minibatch B = {(x;, y;)}Y |
Input: the number of selected anchors, K
Input: learnable parameters 0

Output: updated parameters 0

if random data augmentation is permitted then
| B = Apply random data augmentation to B
for (x,-, y,-) e Bdo
\ Compute f; =
Sample anchors F4 =
for (f¢,y{) € F* do
for (f;, y;) € F"™" do
| Compute D(y{, y;) using Eq. (1)
Construct a triplet 7} and add to T¢;
Construct a triplet T,gl and add to T¢
for T eT:T“UT"do
\ Generate (fk Vi “8) using Eq.(2) and add to F“8
for (fi, yx) € F8 U F™" do
| Compute 3 = Net™(f, 07)
Construct Fo8’ by selecting the samples from F*¢;
Compute Loss using Eq. (6);
Update 0 using backpropagation

Net(x;, 0) and add to F'"*"
{(fa a)k }K from Ftram

involve continuous and structural labels. We added two
additional components, namely, metric learning and hand-
dependent augmentation, to further enhance the performance
of our implicit data augmentation. The detailed description
of each component is presented in the following subsections.
The procedure of the proposed method is also presented in
Algorithm 1.
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A. IMPLICIT SEMANTIC DATA AUGMENTATION

Consider training a neural network model Net(-) parameter-
ized by its weights § with a minibatch B = {(x;, yi)}f.V: 1
where y; is a set of positions of J hand joints for ith sample
x; and N is the size of the minibatch. We assume that the
ith feature vector f; = Net(x;, @) is obtained from Nez(-) and
define a feature minibatch F"*" = {(f;, yi)}ﬁ\': |- Note that the
entire model is defined as ¥; = Net+(Net(x;, ), 7).

We constructed a set of triplets T = {T} }%i | to obtain aug-
mented samples, where Tx = ((f%, y%), (", ¥y™), (", y")).
f¢ and y* are an anchor feature and its label, respectively.
Further, (f™, ") and (f", y") are two other pairs carefully
selected. In particular, (f”*, y") and (", y") should be care-
fully selected by considering the discrepancy of hand poses
to make the distribution of augmented data as balanced as
possible. The degree of discrepancy of hand poses provides
the information regarding how much different two hand poses
are. We computed the discrepancy between two hand poses,
yand y’, as follows:

J
D(yi, ) = Y _llyij = ¥ilI3, (1)

J=1

where y; ; is the joint position of a hand pose y;.

To construct a balanced set of triplets, we first randomly
selected anchor pairs, FA = = {(f¢, yk)}kK | from F irain Thep,
we constructed two types of triplet sets: T¢ and T¢. Note that
T =T¢UT?. We constructed T¢ = {Tk‘}kzl, where T} con-
tains an anchor (f%,y%), a feature having the closest distance
from the anchor (f,y""), and a feature having second closest
distance (f”,y"). We constructed T¢ = {T,f}szl, where Ty
contains an anchor feature (f¢, y%), a feature having middle
distance (f™, y™), and a feature having the farthest distance

84683



IEEE Access

K. Seo et al.: Implicit Semantic Data Augmentation for Hand Pose Estimation

(f", ¥"). The strategy of deliberate triplet selection leads to
a balanced distribution of augmented data, as illustrated in
Figure 2.

After constructing the set of triplets, 7', we generated new
samples by interpolating the anchor and selected feature as
performed in [9] as follows:

FUF ) =Axf*+ (1 —2) x f'and
YY) = A xy + (1 —21) xy, 2

where A € [0, 1] is the interpolation constant. Whenever the
augmented data are generated, the interpolation constant is
randomly selected. A single interpolation was performed per
triplet; consequently, a new augmented minibatch F*8 =
{(fka"g, yzug )}iﬁ | was obtained from T'.

B. HAND-DEPENDENT AUGMENTATION

After performing data augmentation, we formed a sample
set F®¢' by including meaningful samples only from the
augmented minibatch F%“¢. F®¢" excludes the samples gen-
erated by combining the features of both hands. For training,
we consequently used the augmented image generated by fea-
tures that include same side hands, but do not include results
generated by left and right hands. Using F' @g’ we obtained
Lossgug as

Lossqug = Z DG, 5, 3)

/
V}’Zug cFaug

where $7® is an estimated hand pose. Because most open
hand datasets provide the information about what hand types
are included, the loss can be easily achieved.

C. METRIC LEARNING
Metric learning aims to learn feature representations capable
of effectively representing the semantic similarity between
hand poses. As shown in Figure 2, metric learning regulates
the distance between features in feature space and eventually
arrange the features by reflecting their pose similarities.
Given triplet (f%, f", f™), we used the log-ratio loss [10]
for metric learning. Log-ratio loss was designed to make the
neural model approximate the ratio of label distances in the
feature space. It is defined as

e, fm
LosSyetric = Z {log —lo
Vitriplet de. fm

d(y*, y")
d(y*, y™)

I @

where d(-) denotes the Euclidean distance.
Finally, Losssqin is defined for training original data as
follows:

N
LosSirain = y_ D(vi, i) (5)
i=1

where y is the ground-truth hand pose and y is the hand pose
estimated by the model.
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TABLE 1. Ablation studies with the STB and RHD datasets. (I: Implicit
data augmentation, H: Hand dependent augmentation, M: Metric
learning, R: Random triplet selection, S: Semantic triplet selection.)

STB RHD
Method EPE | MPIPE | EPE | MPIPE
Baseline 7.87 791 16.70 19.59
Baseline + 1 (R) 792 | 793 | 1661 | 19.62
Baseline +1 (S) 775 | 779 | 1654 | 19.62
Baseline + M (R) 805 | 808 | 1640 | I9.11
Baseline + M (S) 7.71 7.88 16.07 18.90
Baseline + I (S) 7.75 7.79 16.54 19.62
Baseline +1(S) + H 769 | 771 | 1594 | 1875
Baseline + 1(S)+H+M (S) | 7.64 | 7.68 | 1588 | 18.50

Considering all discussed aspects, we defined the entire
loss function as

Loss = o X Lossyqgin + B X LoSSqug + v X LoSSpmerric. (6)

For the experiments, we set all components of the loss func-
tion to have the same importance (e = 1,8 =1y = 1).

In addition, we normalized the two intermediate mini-
batches with positional normalization (PONO) [29], which
is beneficial for the convergence of neural networks.

IV. EXPERIMENTS

A. ABLATION STUDIES

We conducted ablation studies to determine the effect of each
component of the proposed method for hand pose estimation.
We set a deep model trained with random data augmentation
to our baseline model. Further, we added various combina-
tions of the proposed components (i.e., implicit semantic data
augmentation, metric learning, and hand-dependent augmen-
tation for comparison).

1) EXPERIMENTAL SETUPS

a: DATASETS

We used two well-known hand pose datasets, namely, STB
and RHD, which have different contexts. STB [30] is a com-
mon dataset used to evaluate the performance of hand pose
estimation techniques. It includes stereo video sequences of
diverse poses of a single person with different backgrounds,
captured in third-perspective views. Meanwhile, RHD [26] is
a large, synthesized image dataset with 20 subjects perform-
ing 31 different actions in random backgrounds, without hand
object interaction.

b: EVALUATION METRICS

For the evaluation, we used two metrics, end-point error
(EPE) and mean per joint position error (MPJPE). EPE is
defined as the mean Euclidean distance between the esti-
mated hand pose and its ground truth, whereas MPJPE [5] is
used to measure the aligned hand pose error, which is defined
as the Euclidean distance between the estimated hand pose
and its ground truth after root joint alignment.
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¢: RANDOM DATA AUGMENTATION

We used a random data augmentation consisting of five trans-
formations (i.e., translation (15%), rotation (45%), scaling
(25%), horizontal flip, and color jittering (20%)), which is
denoted by RA(5), as a part of the baseline model. The five
transformations were reasonably selected because they are
frequently used in hand images.

d: DEEP MODELS AND IMPLEMENTATION

As a deep neural model for hand pose estimation, we used
InterNet [5], which exhibits state-of-the-art performance.
We followed its original learning settings, except for the
original data augmentation. The architecture of InterNet has
two parts: feature extraction and output estimation. We used
ResNet50 as the backbone network.

The backbone network was initialized using the parameters
of ResNet pretrained using the Image dataset. The weights
were updated using the ADAM optimizer [31] with a mini-
batch containing 16 samples. To crop the hand region from
the input image, we used a ground-truth bounding box in
both training and testing stages. The cropped hand image was
resized to 256 x 256 pixels. The initial learning rate was set
to 10~* and reduced by a factor of 10 at the 45¢th and 47th
epochs. Further, we trained our model for 50 epochs on an
NVIDIA TitanX GPU.

For implicit data augmentation, we set K to 4. According
to the setting, we randomly chose four features as anchor
features from 16 features and then generated 16 features as
augmented samples per minibatch.

2) EXPERIMENTAL RESULTS

Table 1 presents the results of the experiments. I(R) and I(S)
denote implicit data augmentation with random triplet selec-
tion and semantic triplet selection, respectively. M(R) implies
metric learning with a randomly constructed triplet; M(S),
metric learning with semantic triplet selection; and H, hand-
dependent data augmentation. The results show that each
component of our method helps improve the performance of
hand pose estimation using both datasets. The effect of each
component is presented as follows.

TABLE 2. LOSS;,e¢ric analysis on STB and RHD.

Method STB RHD

Mean | Standard deviation | Mean [ Standard deviation
Baseline | 0.60 0.91 0.54 0.84
Ours 0.51 0.79 0.50 0.79

a: RANDOM VS SEMANTIC TRIPLET SELECTION

When training, the random selection approach may focus
on a limited set of poses because it does not consider the
distribution of features. It can degrade the performance due
to biased learning, as shown in the results of Baseline+I(R)
against those of Baseline+I(S). Conversely, the semantic
triplet selection using the semantic distances of hand poses
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improves the performance of data augmentation. This is
because a semantically balanced distribution of synthetic
hand poses was generated. It therefore improves the gener-
alization performance of deep neural models for hand pose
estimation.

b: WITHOUT VS WITH METRIC LEARNING

The correlation between the distance of feature represen-
tations and the semantic distance of hand poses is rein-
forced through metric learning. The distribution of synthetic
hand poses becomes increasingly manageable because our
implicit semantic data augmentation generates a new hand
pose through interpolation with two existing hand poses.
Unfortunately, previous triplet mining methods that used log
ratio loss [10] was not directly applicable to hand pose estima-
tion as it was designed for task retrieval. Therefore, we pro-
posed a method for constructing a triplet and experimentally
proved the superiority of our method, as shown in the results
of Baseline+M(S) and Baseline+M(R).

To determine the effect of metric learning, we computed
the mean and standard deviation of Loss;esric. We randomly
selected three samples per minibatch and computed the mean
and standard deviation of Losseic for the entire train-
ing dataset. Table 2 shows that applying metric learning
reduces the mean and standard deviation of Loss,esric for both
datasets. Therefore, metric learning enhances the proposed
method in terms of proportionally mapping the distance of
feature representations to the distance of hand poses. This
eventually helped our method deliberately select feature sam-
ples from a balanced distribution of hand poses.

¢: WITHOUT VS WITH HAND-DEPENDENT AUGMENTATION
Our hand-dependent augmentation achieved a more accurate
performance, as demonstrated in the results of Baseline+I(S)
and Base- line+1(S)+H on both datasets. This emphasizes the
importance of the proposed simple technique that excludes
the feature representation of semantically meaningless hand
poses.

B. COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluated our method in the terms of hand pose estimation
with two datasets: STB and RHD. The proposed method was
compared with state-of-the-art data augmentation methods:
Manifold Mixup [9] and MoEx [8]. Note that both Manifold
Mixup and MoEx were originally proposed for classification
tasks. The two counterparts and our method generate labels
for synthetic samples based on Equation 2.

We considered two different random data augmentations,
denoted by RA(5) and RA(12), as part of our baseline model.
RA(5) is the data augmentation that was used in the ablation
study, whereas RA(12) involves 12 widely used image trans-
formations [5], [15] (i.e., identity, auto-contrast, equalization,
rotation, solarization, color jittering, posterization, contrast,
brightness, sharpness, translation, and shear). To preserve the
hand shapes, we excluded shear transformation. For training,
we used the same setups as used in ablation studies.
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TABLE 3. Comparison with state-of-the-art implicit data augmentation methods.

Hethod EPE MPJEIZB Time EPE MPJI:)I}{SD Time
hour/epoch hour/epoch
RA(5) 7.87 7.91 0.18 16.70 19.59 0.24
RA(5)+Mixup [9] 791 8.02 0.28 15.94 18.75 0.38
RA(5)+MOoEx [8] 7.80 7.88 0.28 16.21 18.78 0.38
RA(5)+Ours 7.64 7.68 0.30 15.88 18.50 0.40
RA(12) 7.55 7.43 0.18 16.56 19.17 0.24
RA(12)+Mixup [9] | 7.76 7.78 0.28 16.64 19.17 0.38
RA(12)+MoEx [8] 7.54 7.57 0.28 16.63 19.23 0.38
RA(12)+Ours 7.49 7.31 0.30 16.43 18.95 0.40

Ground
truth

InterNet
+RA(5)

InterNet
+RA(5)
+Ours

(a STB

(b) RHD

FIGURE 3. Qualitative comparison between InterNet trained using a random data augmentation technique and the proposed method.

TABLE 4. Comparison with state-of-the-art hand pose estimation
methods using the STB dataset.

[ Method [ STB (EPE) ]
Zimm et al. [26] 8.68
Yang et al. [28] 8.66
Spurr et al. [3] 8.56
Wu et al. [41] 8.38
Moon et al. [5] 7.95
Seo et al. [40] 7.92
InterNet [S] + Ours | 7.49 (RA(12))

TABLE 5. Comparison with state-of-the-art hand pose estimation
methods using the RHD dataset.

[ Method [ RHD (EPE) ]
Zimm et al. [26] 30.42
Yang et al. [28] 19.95
Spurr et al. [3] 19.73
Moon et al. [5] 20.80
Liu et al. [42] 19.30
InterNet [5] + Ours | 15.88 (RA(5))

Table 3 shows the results of the experimental comparison.
Evidently, in some cases, either Mixup or MoEx degrades
the performance of the baseline models. The possible reason
for the occasional performance degradation is because both
methods were originally developed for classification tasks
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and were not designed for hand pose estimation tasks. Con-
versely, the proposed method enhances the performance of
hand pose estimation in every case.

We also found that complicated random data augmenta-
tions, RA(12), can improve the performance on STB. How-
ever, it can unnecessarily increase learning complexity and
provide degraded performance on RHD. On the other hand,
our method improved the performance of both datasets. This
implies that our approach would be helpful in alleviating this
phenomenon in future.

Table 4 and 5 show the results of the comparison with
current state-of-the-art methods, which were outperformed
by the proposed approach in terms of EPEs on the two
datasets. Figure 3 shows several examples of qualitative com-
parisons. These examples show that InterNet trained using
the proposed method more accurately estimates hand poses
than when trained with only RA(5). The results show that the
proposed method maintains a high accuracy in terms of hand
pose estimation, even with cluttered backgrounds and hand
occlusion.

V. CONCLUSION

In this paper, we presented a novel implicit semantic data aug-
mentation method to complement existing data augmentation
techniques for hand pose estimation. Unlike most existing
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methods on implicit data augmentation that focus on clas-
sification tasks with discrete labels, the proposed approach,
designed to address the hand pose estimation problem,
focused on regression tasks with continuous and structural
labels. By considering the semantic distances of hand poses,
the proposed method implicitly generates extra training sam-
ples in feature space. We proposed two additional techniques:
metric learning, allowing us to regulate the distribution of
augmented hand poses by reflecting the semantic distance of
the data to feature space, and hand-dependent augmentation,
preventing semantically meaningless hand poses from being
augmented. Using two well-known datasets, we empirically
showed that the proposed method improves the performance
of hand pose estimation compared with several state-of-the-
art techniques. In the future, we will explore the possibility of
applying our method to different regression tasks with contin-
uous/structured labels for their performance improvement.
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