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Abstract

A reliable performance loss rate of photovoltaic systems requires accurate and reliable per-
formance metrics. This study proposes a systematic method for assessing the performance
metrics, particularly predicted power models in terms of both accuracy and uncertainty.
The gist of the proposed method is to examine how accurately a predicted power model
predicts the manipulated degradation in a controlled environment. For this, the proposed
method divides a given dataset evenly into base data (to generate reference performance)
and test data (to generate test performance via manipulation) so that the two data have
similar features. The proposed method also utilizes the bootstrap iteration to derive a reli-
able assessment. The novelty of this study is that the proposed method estimates both the
accuracy and uncertainty of arbitrary predicted power models, which is missing in existing
works. Extensive experiments using the proposed method with real-world datasets reveal
the followings. One interesting observation is that a well-known machine learning predic-
tion model, not considered in existing works, exhibits the best performance in terms of
both accuracy and uncertainty. Existing predicted power models require different experi-
ment settings to produce reliable performance. The number of test data is closely related
to uncertainty, but not much related to accuracy.

1 INTRODUCTION

As one of the fastest-growing renewable energy technologies,
photovoltaic (PV) systems are increasing their share in the
energy and power mix worldwide. For example, PV-generated
power had a share of over 10% in eight countries, including Lux-
embourg, Chile, and Australia, in 2021 [1]. Owing to this reason,
it is important to know how the PV power output decreases
over time.

One popular option to predict and assess the long-term per-
formance degradation of PV systems is performance loss rate
(PLR). The PLR is a parameter that indicates the decline of
the power output over time and is provided in %/year. The
PLR does not only indicate the irreversible physical degrada-
tion of PV systems but also measures performance-reducing
events, which can be reversible or preventable through good
maintenance practices. The PLR calculation includes two main
components: performance metrics (e.g. predicted power mod-
els [2–5]) to generate performance time series and statistical
methods (e.g. Year-on-Year [6]) to estimate the PLR from the
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performance time series. Therefore, the quality of PLR is heav-
ily affected by the quality of the performance metrics and
statistical methods.

To obtain a reliable PLR, it is necessary to assess the per-
formance metrics and statistical methods in terms of accuracy
and uncertainty. Existing studies address this issue only par-
tially. Some studies examine performance metrics only in terms
of uncertainty [7–10]. Regarding the statistical methods, some
studies try to understand the sources of uncertainties [9] and
the impact of missing data [11]. Although some studies pro-
pose new performance metrics and statical methods for better
PLRs [12–17], a comparison with existing well-known methods
is missing.

To this end, this study proposes a systematic method to
assess performance metrics in terms of both accuracy and
uncertainty. This study focuses on the performance metrics
solely because that is the basis of the PLR calculation pipeline.
In particular, among various performance metrics, this study
focuses on the predicted power models that are widely used.
The main idea of the proposed method is to examine how
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2 LEE ET AL.

accurately a predicted power model predicts the manipulated
degradation in a controlled environment. For this, a particular
original dataset that includes weather conditions and PV power
output is divided into base data (used to produce reference
performance) and test data (used to produce test performance
after manipulating the PV power output). The intention of this
approach is to calculate PV performance degradation by com-
paring the reference performance and test performance and to
determine how close the calculated PV performance degrada-
tion is to the actual manipulated degradation. To realize the
manipulation-based approach successfully, the original dataset
is evenly divided (i.e. odd-numbered data are classified as base
data and even-numbered data are classified as test data). The
rationale behind this approach is that weather conditions do not
change abruptly across a few data points. To get reliable outputs,
the proposed method applies bootstrap iteration. The proposed
method calculates the performance degradation (i.e. the average
of the results) and uncertainty (i.e. the standard deviation of the
results) through 1,000 experiments with 65% random sampling
of the data.

This study also proposes two approaches to utilizing pre-
dicted power models in calculating performance degradation.
The first approach is to use dual model. Base and test models
are built with the base and test data, respectively. Thereafter,
representative weather conditions are applied to the two models
to determine the reference performance and test performance.
The second approach is to use a single model. A base model
is built with the base data, and the weather conditions of the
test data are applied to the base model to get the reference per-
formance. The PV power output of the test data is used as the
test performance.

To examine the feasibility of the proposed method and assess
the predicted power models, this study conducts extensive
experiments with publicly available datasets, including National
Renewable Energy Lab (NREL) datasets [18, 19] and Regional
Test Center (RTC) datasets [20–22]. In addition to the well-
known predicted power models, including XbX [4], PVUSA [2],
and PVWatts [3], this study examines Light Gradient Boosting
Machine (LGBM) [23], which is a well-known machine learn-
ing prediction model. This study first examines the effects of
representative weather conditions in the dual model approach.
For the representative weather conditions, this study considers
standard test conditions (STC), nominal operating cell temper-
ature (NOCT) conditions, and the mean value of the base data
(MEAN). This study also considers the case where the average
of the results of STC, NOCT, and MEAN is used (WSUM).
The experiment results first show that models require differ-
ent representative weather conditions to produce promising
results. XbX, PVUSA, and LGBM show the best performance
with MEAN, NOCT, and WSUM, respectively. XbX, PVUSA,
and LGBM show the worst performance with STC, STC, and
MEAN, respectively. Under the representative weather condi-
tions that result in the best performance for the dual model
approach, this study compares the models in the dual model
approach and the single model approach. The experiment
results show that LGBM and XbX show good performance
in terms of both accuracy and uncertainty. More specifically,

LGBM in the single model approach shows the best per-
formance. Another observation is that models tend to show
different performances in the dual model approach and sin-
gle model approach. XbX shows similar performance in both
approaches. On the contrary, PVUSA and LGBM show bet-
ter performance in the dual model approach and single model
approach, respectively. This study also examines the effect of
test data to see how much data is required to produce a reli-
able performance time series. The experiment results first show
that a small number of data points may be enough to estimate
accurate performance degradation. For example, models with
18 days and with 182 days show similar accuracy. However, the
more data is given, the more reliability (i.e. less uncertainty) can
be achieved.

The main contributions of this study are as follows.

∙ This study proposes a systematic method for assessing the
predicted power models in terms of both accuracy and uncer-
tainty. Please note that most existing works handle accuracy
or uncertainty partially.

∙ This study compares the predicted power models in terms of
both accuracy and uncertainty through extensive experiments
following the proposed methods.

∙ This study shows that a machine learning prediction model,
not considered in existing works, can be used as a predicted
power model for producing a reliable performance time
series. This shows the possibility of using machine learning
or deep learning prediction models as reliable performance
metrics.

The rest of this paper is as follows. Section 2 discusses related
works. Section 3 introduces background about PLR calcula-
tion. Section 4 proposes a systematic method for comparative
analysis of the performance metrics in terms of both accuracy
and uncertainty. Section 5 introduces the results of compara-
tive analysis through extensive experiments. Section 6 finally
concludes this paper.

2 RELATED WORK

Few existing studies conduct comparative analysis regarding the
performance metrics and the statistical methods in the calcu-
lation of PLRs. In [10], the authors propose and compared
different performance metrics to extract reliable long-term
performance indicators in terms of uncertainty. The metrics
include the performance ratio, the performance ratio fitted to
two sinusoidal functions (emulating the climatic influence and
a decaying trend), time-series decomposition, and the metrics
intended to utilize the physical properties of the material to
correct for seasonal fluctuations. In [7], the authors assess IV
curve-based performance metrics including DC performance
ratio ad DC STC performance ratio in terms of uncertainty. In
[8], the authors compare the predicted power models includ-
ing XbX, PVUSA, and 6K in terms of uncertainty. Like the
observations of this study, in this work, XbX leads to the most
stable PLR. In [24], to identify areas of improvement of PV
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LEE ET AL. 3

monitoring solutions, the authors test different performance
metrics (including performance ratio, power performance index
with physical and machine learning-based modeling) in terms
of uncertainty. Most existing work examines the performance
metrics just in terms of uncertainty. On the contrary, this study
examines the performance metrics in terms of both accuracy
and uncertainty.

In [25], the authors compare the statistical methods for
various PV technologies using the results reported in the pub-
lished papers. In [26], the authors examine various combinations
of performance metrics (including performance ratio, XbX,
PVUSA, 6K, and PVWatts) and statistical methods (including
LR, CSD, HW, and YoY). However, they focus on PLR itself,
not the performance metrics. In [9], the authors try to under-
stand sources of uncertainties in PV degradation rates using
physical degradation models. They show that there are three
major sources of uncertainties: climate variables estimation,
PV modules reliability, and statistical methods for calculating
PLRs. In [11], the authors study the impact of the time period
and missing data on PLR. Through experiments with emulated
degradation levels and imputed missing data, they show that the
accuracy of the statistical methods (including YoY, autoregres-
sive integrated moving average (ARIMA) and robust principal
component analysis) is largely affected by the time period. They
also show that the estimated PLR is strongly affected by the
amount of missing data.

Some work try to propose new performance metrics and
statistical methods for better PLRs. In [12], the authors intro-
duce the normalized efficiency of a PV system as an additional
PV performance metric for analysis purposes. The normal-
ized efficiency can be implemented on time scales ranging
from seconds to days and longer. In [13], the authors try to
quantify the effect of dynamic environmental stresses on the
power degradation of the module. For this purpose, they explain
the fusion of the physics-based material degradation mecha-
nism with the statistics-based data modeling approach. They
show that the degradation of PV modules is mainly associ-
ated with the module construction type and climatic conditions.
In [14], the authors first argue that most existing degradation
modeling approaches are susceptible to bias due to inverter
clipping, module soiling, temporary outages, seasonality, and
sensor degradation. Then, they propose a way of determining
PV degradation through modeled clear-sky irradiance data and
a robust year-over-year rate calculation. In [15], the authors pro-
pose a novel unsupervised machine learning approach that can
be applied to PV system degradation estimation. The proposed
approach just requires a measured power as an input. In [16],
the authors propose a novel method for modeling PV system
performance loss rate (PLR) through a self-regulated multi-
step algorithm. The proposed method automatically detects
the number and positions of breakpoints in nonlinear perfor-
mance time series and divides the performance trend into an
adequate number of linear segments. In [17], using the cumula-
tive damage model, the authors establish a mathematical model
between climatic stresses and performance degradation. They
also propose regional clustering based on climatic stressors to
predict the degradation at different locations. Unlike existing

works that try to propose new performance metrics, this study
proposes a systematic method to evaluate existing and newly
proposed performance metrics in terms of both accuracy and
uncertainty.

3 BACKGROUND: PLR CALCULATION

PLR calculation consists of two steps: calculation of per-
formance time series over a certain period of time (with
performance metrics) and estimation of PLR (with statistical
methods) (Figure 1). In this way, the quality of the estimated
PLR heavily depends on the quality of the performance time
series and the statistical methods. In other words, the accuracy
and uncertainty of the performance metrics and the statistical
methods are important for acquiring reliable PLR. This study
is interested in assessing the performance metrics in terms
of both accuracy and uncertainty, which is missing in most
existing works.

3.1 Performance metrics: Predicted power
models

The term performance metric used in this manuscript and other
related materials (e.g. [26]) is used to indicate a certain measure
that provides information about the performance of a PV sys-
tem. In other words, the performance metrics are data-driven
or physics-based models that are used to estimate the predicted
power output of a PV system. Common performance metrics
used to calculate the PV performance can be grouped into (1)
electrical parameters from IV curves [27, 28], (2) normalized
and scaled ratings [29, 30], and (3) predicted power models [2–5,
23]. Among them, this study is interested in the predicted power
models because they are widely used. The predicted power mod-
els work as follows. A power prediction model is built to predict
power output as a function of weather conditions over a period
of time. Then, representative weather conditions are applied to
the built model. This produces a predicted power output at
the given conditions. The followings are the well-known pre-
dicted power models. Throughout this paper, Ppred is used to
indicate the predicted power output derived by the predicted
power models.

3.1.1 PVUSA

PVUSA model [2] is a physics-based model. The PVUSA model
is described as follows.

Ppred = GPOA(𝛽0 + 𝛽1GPOA + 𝛽2Tamb + 𝛽3WS ), (1)

where GPOA is the plane of array (POA) irradiance, Tamb is the
ambient temperature (in ◦C ), and WS is the wind speed (in m/s).
𝛽i are the model’s coefficients to be determined while building
a model for given data. The assumption of this model is that
the current of a PV panel is a function of GPOA, the voltage is a
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4 LEE ET AL.

FIGURE 1 High-level illustration of PLR calculation

function of GPOA, and the module temperature is predicted by
Tamb and WS .

3.1.2 PVWatts

PVWatts model [3] is a simple model as follows:

Ppred = Pmea

GPOA

G0
(1 + 𝛾(Tcell − T0), (2)

where G0 and T0 are the reference irradiance and cell tempera-
ture, respectively. 1,000 W/m2, 25◦C , and −0.004 are typically
used for G0, T0, and 𝛾. GPOA , Pmea, and Tcell are the POA irradi-
ance, PV power output, and cell temperature, respectively. In
this case, there are no model coefficients to be determined.
Therefore, without building a model, the PVWatts model can
be used directly.

3.1.3 XbX

XbX model [4] is a data-driven multiple regression predictive
model. The XbX model is as follows:

Ppred = 𝛽0 + 𝛽1G + 𝛽2T + 𝜖, (3)

where G is the irradiance term, T is the temperature term, 𝛽i

are the model’s coefficients to be determined while building a
model for given data and 𝜖 is the residual error between the
model and the given data. Unlike the models above, XbX has
the flexibility of using POA or Global Horizontal Irradiance
(GHI) for G and air or module temperature for T . The X in
the name refers to a given time step that the power prediction
model is built over. For example, a model built on a day of data
would be DbD. The time step is chosen based on the condition
of the given data and what modeling will be performed on the
given data.

3.1.4 6K

6K model [5] is a data-driven model. The name 6K refers to the
coefficients fit by the model. The 6K model is as follows:

G ′ = GPOA∕GSTC ,

T ′ = Tmod − TSTC ,

Ppred = G ′(PNP + k1ln(G ′ ) + k2ln(G ′ )2 + k3T ′

+ k4T ′ln(G ′ ) + k5T ′ln(G ′ )2 + k6T ′2).

(4)

This model uses POA irradiance (GPOA) and module tempera-
ture (Tmod ) but models them as a fraction of standard irradiance
(GSTC ) and a difference from standard temperature (TSTC ).
Additionally, this model requires a nameplate power input (PNP )
and always predicts PNP at STC conditions. This model has the
model’s coefficients, ki to be determined while building a model
for the given data.

3.1.5 LGBM

In addition to the traditional prediction models above, machine
learning models can also be used as the performance metric
because it shows promising prediction performance in various
areas. One of the popular machine learning prediction mod-
els is LGBM [23]. Unlike the models above that follow the
pre-defined equations, LGBM derives a model automatically
using the given data. In other words, it finds the most-fitting
model f () that shows a relationship between input variables
(i.e. weather conditions) and PV power output as shown in
Equation (5). As long as variables are related to PV power
output, any variable can be used as an input variable. In
this sense, LGBM has much more flexibility than the models
above.

Ppred = f (weather conditions). (5)

3.2 Statistical methods

The goal of the statistical methods is to calculate the
trend of the PV performance time series (i.e. calculated
by the predicted power models) and translate the slope of
the trend to the annual degradation rate in %/year (i.e.
PLR).
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LEE ET AL. 5

3.2.1 Linear regression

The most basic statistical method is linear regression (LR). LR
fits Equation (6) to the PV performance time series.

y′ = 𝛼t + 𝛽, (6)

where y′ represents the fitted values, 𝛼 is the slope of the trend
and 𝛽 is the y-intercept. LR is simple, but it is very sensitive to
outliers and seasonal variations.

3.2.2 Classical seasonal decomposition

Classical seasonal decomposition (CSD) is more advanced than
LR in extracting the underlying trend from the PV perfor-
mance time series and overcoming the limitations of the LR
method. The CSD method separates seasonality and a certain
irregular component from a set of measured time-series data,
using a centered moving average, to determine the performance
trend over time. It assumes that the seasonal component of
PV performance is stable year after year. Therefore, the step
of the seasonal

period is usually set to 12 for monthly data. The CSD method
requires either the additive model (i.e. Equation 7) or the mul-
tiplicative model (i.e. Equation 8) depending on the stability of
the seasonal component.

y′ = Tt + St + et . (7)

y′ = Tt St et . (8)

In Equations (7) and (8), Tt is the trend, St is the seasonal, and
et is the residual component.

3.2.3 Holt-winters

Another advanced model-based method is Holt-Winters (HW).
The HW method applies triple exponential smoothing to the
time series. The triple exponential smoothing takes into account
seasonal changes, as well as trends, through the minimization
of the squared one-step ahead prediction error, in contrast to
the CSD method, which bases the calculation of trend, seasonal
component, and residuals on a centered moving average. The
HW method requires the following equations:

y′
n+l |n = mn + bn + cn−S+l , l = 1, 2, … ,

mt = 𝛼0(yt − ct−S ) + (1 − 𝛼0)(mt−l + bt−l ),

bt = 𝛼1(mt − mt−l ) + (1 − 𝛼1)bt−l ,

ct = 𝛼2
yt

mt
+ (1 − 𝛼2)ct−S ,

(9)

FIGURE 2 Manipulation-based assessment

where mn is the level component, bn is the slope component,
and cn−S+l is the relevant seasonal component. S is the seasonal
period. 𝛼i lies between 0 and 1.

3.2.4 YoY

The Year-on-Year (YOY) [6] method calculates individual PLR
values from points separated by exactly one year, then cre-
ates a distribution of individual yearly PLR values. The PLR of
the total system is the median of the individual yearly PLRs.
This method was developed to be more robust to outliers
and seasonality than regression methods, but it does require
longer-term data to work effectively.

4 PROPOSED METHOD FOR
COMPARATIVE ANALYSIS

This section proposes a systematic method for assessing the
predicted power models in terms of both accuracy and uncer-
tainty.

4.1 Manipulation-based assessment

Real-world PV-related datasets gathered over several years are
available. However, using the raw data in assessing the perfor-
mance metrics is not preferred because the true performance
degradation is unknown. Therefore, this study proposes a
manipulation-based assessment in a fully controlled environ-
ment.

This study assumes that an original dataset (including weather
conditions and corresponding PV power output) over a cer-
tain period of time (e.g. the 30-min interval over one year) is
given. The first idea of the proposed method is to split the data
into two segments: base data and test data (Figure 2). The base
data is used to produce reference performance. On the contrary,
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6 LEE ET AL.

FIGURE 3 Even distribution of data for successful manipulation-based
assessment

the test data is manipulated (i.e. decreasing PV power output
to simulate the degradation) to produce test performance. The
intention of this approach is to calculate PV performance degra-
dation by comparing the reference performance and the test
performance and to see how close the calculated PV perfor-
mance degradation is to the actual manipulated degradation.
The performance degradation ratio is calculated as follows:

Dratio =
Reference performance - test performance

Reference performance
. (10)

The second idea of the proposed method is to split the data
evenly (Figure 3). To realize the manipulation-based assessment
successfully, the base data and the test data should have similar
features. In other words, the base data and the test data have
to produce similar performance when there is no manipulation
in the test data. To this end, the proposed method splits the
original dataset evenly. The odd-numbered data is assigned to
the base data and the even-numbered data is assigned to the
test data. The rationale behind this approach is that weather
conditions and corresponding PV power output do not change
abruptly across a few data points. Therefore, the base data
and the test data evenly distributed are likely to have similar
features. To further examine this point, this study depicts the
PV power output of one NREL data described in Section 4.
NREL data is 30-min interval data over 1 year. As shown in
Figure 4, the base data and the test data show very similar
patterns.

4.2 Model utilization

This subsection describes how the proposed method utilizes
the predicted power models to calculate the performance
degradation using the base data and the test data.

4.2.1 Dual model approach

A traditional approach for using predicted power models in cal-
culating PLR is as follows: (1) build a model to predict power
output as a function of weather conditions over a period of
time and (2) representative weather conditions are applied to

the built model. The first proposed approach is to use dual
model while adopting the traditional approach (Figure 5a). This
approach first builds a base model using the base data. The rep-
resentative weather conditions are applied to the base model to
estimate a reference performance. Then, this approach builds
a test model using the manipulated test data. The test model
is used to estimate a test performance corresponding to repre-
sentative weather conditions. The performance degradation is
calculated using Equation (10).

This study considers three weather conditions as the repre-
sentative weather conditions as follows:

∙ Standard Test Conditions (STC)
◦ Irradiance = 1,000 W/m2

◦ Module temperature = 25◦C
∙ Nominal Operating Cell Temperature (NOCT) conditions
◦ Irradiance = 800 W/m2

◦ Module temperature = 45+/-3◦C
◦ Ambient temperature = 20◦C

∙ The mean value of the base data (MEAN) [NREL dataset]
◦ Irradiance ≈ 500 W/m2

◦ Module temperature ≈ 24◦C
◦ Wind speed ≈ 2.3 m/s
◦ Dew point ≈ 13◦C
◦ Relative humidity ≈ 55%

The STC is the condition that is typically used by the PV panel
manufacturer. However, it is sometimes difficult to realize the
real-world operation of the modules. On the other hand, the
NOCT conditions are much more representative of normal
operation. In addition to the NOCT conditions and to not cause
extrapolations of a model, this study also considers the MEAN
conditions because their values always remain in the range of
available weather conditions of given data.

4.2.2 Single model approach

The second proposed approach is to use a single model
(Figure 5b). This approach first builds a base model using the
base data. Then, this approach applies the weather conditions
of the manipulated test data to the base model to estimate a
reference performance. PV power output of the manipulated
test data is used as test performance. The performance degrada-
tion is calculated using Equation (10). The benefit of this single
model approach over the dual model approach is that the single
model approach does not care about the representative weather
conditions as long as the base data and the test data show similar
weather conditions.

4.2.3 PVWatts

PVWatts is a physics-based model. Therefore, unlike other
predicted power models, it does not need to be trained. For
PVWatts model, this study calculates the reference performance
and the test performance as follows:
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LEE ET AL. 7

FIGURE 4 The base data and the test data from the same original dataset

FIGURE 5 Two approaches of utilizing models to generate performance degradation

Reference perf. =
1

Nb

∑
i

Pi
predb

,

Test perf. =
1

Nt

∑
i

Pi
predt

,

(11)

where Pi
predb

is the predicted power of the ith base data, Pi
predt

is the predicted power of the ith test data, Nb is the number
of the base data, and Nt is the number of the test data. The
performance degradation is calculated using Equation (10).

4.3 Accuracy and uncertainty

To calculate reliable performance degradation by the predicted
power models, this study applies bootstrap iteration with-
out replacement (Figure 6). The bootstrap iteration randomly

samples 65% of the base data and the test data indepen-
dently. Then, the sampled base data and the sampled test data
(after applying manipulation) are used as inputs to the pre-
dicted power models. This procedure is repeated 1,000 times.
Finally, final performance degradation is calculated by averag-
ing 1,000 calculated performance degradations. The uncertainty
of a model is also estimated by calculating a standard devia-
tion of 1,000 calculated performance degradations. A model
is considered to be more accurate as its final performance
degradation is close to the actual manipulated degradation. Sim-
ilarly, a model is regarded as more reliable as its uncertainty
decreases.

5 COMPARATIVE ANALYSIS

This section introduces the observations from extensive exper-
iments following the methods described in Section 3.
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8 LEE ET AL.

FIGURE 6 Bootstrap iteration-based approach

5.1 Dataset

For a comparative analysis, this study uses two publicly avail-
able datasets: NREL dataset and RTC dataset. For the NREL
dataset, historical weather data and PV power output data are
downloaded. The weather data acquired from the National Solar
Radiation Database (NSRDB) data viewer [18] is 30-min inter-
val data. The weather data includes GHI, dew point, wind speed,
relative humidity, and temperature. This study uses PV power
output data (acquired from NREL Solar Power Data for Inte-
gration Studies [19]) of Texas, USA. More specifically, this study
uses NREL data of the seven PV plants whose latitude is 33.45
and longitude is −94.35. The PV power output data is 5-min
interval data. Thus, this study transforms the 5-min interval
data into the 30-min interval data by cumulating corresponding
values. The data from NREL is one-year data (i.e. 2006). The
number of data points is 17,516.

The RTC dataset is from the U.S. Department of Energy’s
Regional Test Center Baseline PV systems [20, 21]. The RTC
dataset is freely available from the CWRU-SDLE Research Cen-
ter Open Science Framework page [22]. The RTC Baseline
systems consist of eight PV systems with 1-min interval power
output. The eight PV systems are located at four different sites
in the U.S.: Florida, New Mexico, Nevada, and Vermont. Each
site has a weather station providing 1-min interval weather con-
ditions including GHI, wind speed, and temperature. The eight
systems are nearly identical except for their locations, and there
are two replicated systems at each location. This study uses the
data of four sites (without replicated systems). The number of
data points is from 1,281,387 to 1,789,155.

This study applies a low irradiance cut-off at 100 W/m2 for
both datasets. For the purpose of comparative study, this study
manipulates the PV power output of the test data by applying
a performance degradation ratio from 0 to 0.2 at intervals of
0.005 (i.e. 0.5%).

5.2 Effects of representative weather
conditions

This study applies the three representative weather conditions
(i.e. STC, NOCT, and MEAN) to the dual model approach.
Therefore, this subsection compares the effects of represen-
tative weather conditions on the accuracy of performance
degradation calculation. In addition to the three representative
weather conditions, this study also considers one additional case
(WSUM) where the performance degradation is calculated as
the average of the calculated performances of STC, NOCT,
and MEAN. In the case of LGBM, this study uses all avail-
able weather conditions. Here, this study only considers XbX,
PVUSA, and LGBM models. This study does not consider the
6K model, because it requires a nameplate power input, which
is unavailable in the public dataset. This study also ignores
PVWatts here because it does not follow the representative
weather condition-based approach.

Table 1 shows the best- and worst-performing representa-
tive weather conditions of the models. To determine the best
and the worst weather conditions for models, this study simply
counts the number of datasets of seven NREL datasets and four
RTC datasets showing the best and worst performances. The
best and worst-performing weather conditions are determined
to show the best and worst performance on the most data. The
numbers in parentheses refer to the number of datasets that a
corresponding model performs bests or worst with. XbX shows
the best performance with MEAN for both NREL and RTC
datasets. LGBM shows the best performance with WSUM for
both NREL and RTC datasets. On the contrary, PVUSA shows
the best performance with NOCT for the NREL dataset and
with STC for the RTC dataset. This result first shows that differ-
ent models are likely to require different representative weather
conditions to show promising results. Another observation is
that traditional representative weather conditions such as STC
and NOCT may not be a good choice to have accurate perfor-
mance degradation. In particular, XbX and PVUSA show the
worst performance with STC.

Figure 7 shows some exemplary results of XbX, PVUSA, and
LBGM. In Figure 7, absolute error indicates the absolute differ-
ence between the actual manipulated ratio and the estimated
performance degradation ratio by models. Relative error indicates
estimation error in the form of mean absolute percentage error
(MAPE) as follows:

|Manipulated degradation - est. degradation|
Manipulated degradation

∗ 100%. (12)

One common observation is that the absolute error and the
relative error decrease as the manipulated degradation ratio
increases. In particular, the relative error drops quickly. This
first means that it is not easy to estimate accurate performance
degradation when actual degradation is marginal. This is due to
the fact that the marginal degradation is likely to reside on an
error bound of a model built over the base data. The result also
means that performance degradation accuracy increases sharply
as the actual degradation increases. For example, in the case of
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LEE ET AL. 9

TABLE 1 Performance comparison of models with different representative weather conditions

Data NREL [7 datasets] RTC [4 datasets] ALL [11 datasets]

Models XbX PVUSA LGBM XbX PVUSA LGBM XbX PVUSA LGBM

Best MEAN(3) NOCT(5) WSUM(4) MEAN(2) STC(2) WSUM(2) MEAN(5) NOCT(5) WSUM(6)

Worst STC(3) STC(3) MEAN(5) STC(2) MEAN(2) NOCT(2) STC(5) STC(4) MEAN(5)

FIGURE 7 Exemplary results of XbX, PVUSA, and LGBM in dual model approach

XbX, the relative error of STC, NOCT, MEAN, and WSUM
become less than 10% (5%) when the manipulated degradation
ratio is 0.04, 0.035, 0.02, and 0.035 (0.085, 0.075, 0.045, and
0.07), respectively. Another interesting observation is that XbX
shows a non-increasing function of the manipulated degrada-
tion ratio, which can be considered stable. On the contrary,
PVUSA and LGBM show some fluctuations even though they
show decreasing patterns.

In the following, this study uses XbX with MEAN, PVUSA
with NOCT, and LGBM with WSUM for the dual models

approach because those combinations show the best perfor-
mance.

5.3 Comparison of predicted power models

This subsection compares all candidate models. For the sake of
simplicity, the terms XbX_DM, PVUSA_DM, and LGBM_DM
are used to indicate XbX, PVUSA, and LGBM of the dual
model approach. The terms XbX_SM, PVUSA_SM, and
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10 LEE ET AL.

FIGURE 8 Performance comparison of models in terms of accuracy (an exemplary case)

TABLE 2 Performance comparison of models (with all datasets)

Accuracy Uncertainty

Best LGBM_SM(5) LGBM_SM(11)

XbX_DM(3)

XbX_SM(2)

PVUSA_DM(1)

Worst PVUSA_SM(9) LGBM_DM(9)

XbX_SM(2) PVUSA_DM(2)

LGBM_SM are also used to indicate XbX, PVUSA, and LGBM
of the single model approach.

The models are first compared in terms of accuracy. Table 2
shows the results. The numbers in parentheses refer to the num-
ber of datasets that a corresponding model performs best or
worst with. LGBM_SM shows the best performance in five
datasets. It also shows competitive performance even when
it does not show the best performance. On the contrary,
PVUSA_SM shows the worst performance in most datasets.
Figure 8 shows an exemplary comparison of models in terms
of accuracy. PVUSA_DM and LGBM_DM show fluctuating
results with respect to the manipulated degradation ratio. On
the contrary, PVUSA_SM and LGBM_SM show stable per-
formance. XbX and PVWatts also show stable performance.
XbX_DM and XbX_SM do not show noticeable differences.
On the contrary, PVUSA and LGBM show a noticeable dif-
ference in the dual model and the single model approaches.
PVUSA and LGBM show better performance in the dual model
and the single model approach, respectively. PVWatts does not
show good performance. LGBM_SM shows the lowest abso-
lute error. LGBM_SM shows a relative error of less than 5%
from the manipulated degradation ratio of 0.015 (i.e. 1.5%).

The models are also compared in terms of uncertainty.
Table 2 shows the results. LGBM_SM shows the lowest uncer-
tainty in all datasets. XbX_SM and XbX_DM also show
competitive performance. On the contrary, LGBM_DM shows
the worst performance in most datasets. Figure 9 shows an
exemplary comparison of models in terms of uncertainty. Like
the case of accuracy, PVUSA_DM and LGBM_DM show fluc-

FIGURE 9 Performance comparison of models in terms of uncertainty
(an exemplary case)

tuating results with respect to the manipulated degradation ratio.
The other models show stable performance.

In summary, LGBM_SM, XbX_DM, and XbX_SM show
good and stable performance (i.e. high accuracy and low uncer-
tainty). Considering that they are data-driven approaches, they
are good choices for generating reliable performance time series
as long as enough data used to train a model is available.

5.4 Effects of test data size

This subsection examines the effect of the test data size. The
intention of this examination is to see how much data is required
to estimate reliable performance degradation. For this, the test
data is manipulated to have 10% degraded PV power output.
The number of test data used for the experiment is changed
(i.e. from 100% to 10%). In the case of the NREL dataset, 10%
means 875 data points over around 18 days. For a given percent-
age, the test data is randomly chosen. The bootstrap iteration is
also applied for this experiment. Figure 11 shows the effects of
the test data size on the accuracy and uncertainty. One common
observation is that the accuracy does not change as the amount
of test data decreases, except for LGBM_DM. LGBM_SM
shows the best performance. On the contrary, the uncertainty
increases as the number of test data decrease in all models.
Please note that the uncertainty is the standard deviation of
1,000 predictions with the bootstrap iteration. Therefore, con-
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LEE ET AL. 11

FIGURE 10 Boxplots of 1,000 predictions through the bootstrap iteration

FIGURE 11 The effects of the test data size (an exemplary case)

sidering that one dataset to which the bootstrap iteration is
applied has the same distribution, it is natural that the more
samples are extracted, the less deviation is achieved. To exam-
ine this from another perspective, we depict the boxplots of
three representative cases in Figure 10. In Figure 10, the dark
circles indicate the true degradation. As shown in Figure 10,
as the number of test data decreases, the length between the
25th percentile and the 75th percentile and between the lower
fence and the upper fence increases while the median value does
not change. This result first shows that a small number of data
points may be enough to estimate accurate performance degra-
dation. However, the more data is given, the more reliability can
be achieved.

6 CONCLUSION

Toward a reliable PLR, this study proposes a systematic method
to assess the predicted power models in terms of both accuracy

and uncertainty, which is missing in existing works. Following
the proposed method, this study conducts extensive exper-
iments using real-world datasets to assess the well-known
predicted power models including XbX, PVUSA, PVWatts,
and LGBM. The observations from the experiments may help
researchers select appropriate models for their purpose. Consid-
ering that the characteristics of data vary depending on the area
where PV systems are installed, determining a proper model
requires additional analysis. In other words, given the data to
which the predicted power model is to be applied, a closer study
of the data itself and the variables that can be applied to the
model is needed to determine which model will work best. For
this, as future work, the proposed systematic method can be
used to conduct such a study.
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