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ABSTRACT Beamforming, user scheduling and transmit power on existing interference management
schemes in multi-cell mmWave networks have been independently controlled due to the high computational
complexity of the problem. In this paper, we formulate a long-term utility maximization problem where
beam activation, user scheduling and transmit power are incorporated in a single framework. To develop a
low-complex algorithm, we first leverage the Lyapunov optimization framework to transform the original
long-term problem into a series of slot-by-slot problems. Since the computational complexity to optimally
solve the slot-by-slot problem is even significantly high like existing schemes, we decompose the problem
into two different time scales: (i) a subproblem to find beam activation probability with a long time-scale
and (ii) a subproblem to find user scheduling and power allocation with a short time-scale. Moreover,
we introduce two additional gimmicks to more simplify the problem: (i) sequentially making decisions
of beam activation, user scheduling, and power allocation, and (ii) considering a critical user for power
allocation. Finally, via extensive simulations, we find that the proposed CRIM algorithm outperforms
existing algorithms by up to 47.4% in terms of utility.

INDEX TERMS Beam ON/OFF scheduling, user scheduling, power allocation, inter-beam interference,
Lyapunov optimization.

I. INTRODUCTION
As UHD (Ultra High Definition) video streaming or MR
(Mixed Reality) services have been emerging as killer appli-
cations in 5G+/6G, mobile data traffic has been drastically
increasing [1]. To cope with such exploding traffic, vari-
ous communication technologies such as massive MIMO
(Multiple Input Multiple Output) [2], CoMP (Cooperative
MultiPoint) [3], UDN (Ultra Dense Networks) [4], and
NOMA (Non-Orthogonal Multiple Access) [5] have been
recently developed. Besides, mmWave has been regarded
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as a promising frequency band for future communication
systems thanks to its significantly wide bandwidth. On the
other hand, mmWave has a limited range and is susceptible
to blockage due to its high frequency and short wavelength
characteristics. Consequently, mmWave communication for
long-distance cellular access is problematic, but it pro-
vides a great opportunity for small cells aiming to support
short-range communication with high traffic demand [6].

Reducing cell size (equivalently, deploying more BSs
(Base Station)) can be one of the ways to enhance the entire
network throughput in the same area. However, such a small
cell network is likely to increase both the strength and the
variation of the inter-cell interference due to the shorter
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distance between cells and more heterogeneous cell deploy-
ment [7]. Accordingly, an efficient and adaptive inter-cell
(and intra-cell) interferencemitigation policymust be devised
to improve the network throughput.

There have been many studies on IM (Interference Man-
agement) in a multi-cell single antenna system [8], [9].
Since the utility maximization problem to jointly make deci-
sions of transmit power and user scheduling for all BSs is
an MINLP (Mixed-Integer NonLinear Programming), most
studies focused on the development of approximation algo-
rithms by reducing the computational complexity. For exam-
ple, Xiao et al. [8] proposed an algorithm based on the
game theory where each BS belongs to more than one clus-
ter, and considered only intra-cluster interference to make
decisions of user scheduling and transmit powers. Moreover,
Liu et al. [9] managed interference by decomposing it into
cross-tier/co-tier interference to reduce the complexity and
by allocating resources separately for utility maximization.

Meanwhile, as an enhanced interference mitigation tech-
nique, the MIMO system was proposed to form a direc-
tional beam which can focus the signal on a specific point
so that it reduces the loss of the spreading signal [2].
Thanks to this advantage, many IM schemes on top of the
MIMO system have been proposed [10], [11]. However,
although the MIMO system can mitigate the inter-cell inter-
ference significantly, joint optimization of beamforming, user
scheduling and transmit power control has high computa-
tional complexity. Therefore, there have been many studies
on the development of low-complex and practical algorithms
rather than theoretically-optimal algorithms [10], [11]. For
example, Cui et al. [10] proposed a joint user scheduling
and power control algorithm with ORBF (Orthogonal Ran-
dom BeamForming) technique to reduce the computational
complexity where the solution strikes a good computational
complexity-optimality trade-off by exploiting the match-
ing theory and successive convex approximation techniques.
Moreover, Song et al. [11] proposed amulti-beams prioritized
transmit power allocation algorithm to guarantee the QoS
(Quality of Service) of users and improve the achievable
data rate while intra-cell interference is ignored for low
complexity.

One step further, by incorporating NOMA in the MIMO
system, it is possible to schedule more than two users in
the same beam thanks to SC (Superposition Coding) and
SIC (Successive Interference Cancellation) so that the sum
capacity for one beam can be increased [13]. There have
been a few works to address IM on top of this NOMA-based
MIMO system [14], [15]. For example, Fang et al. [15] pro-
posed a two-side matching theory-based subchannel assign-
ment and power control algorithm where the objective is
to maximize energy efficiency. However, they assumed that
the number of allocated users for one beam is up to two
users.

Although they provided several IM solutions to enhance
the system performance, the existing works in small cell
systems have two obstacles as follows: (i) The number of

BSs to be managed by one BS controller gets higher as the
cell size becomes smaller; hence more low-complexity IM
is required. (ii) The inter-cell interference becomes higher
due to the shorter distance between cells; hence more effi-
cient transmit power management is required. To overcome
these obstacles, we exploit features of future network as
follows.

Future 6G networks are likely not only to be reluctant to
manage a lot of BSs in a single BS controller due to the
reduced cell size but also pervasively deploy theMEC (Multi-
access Edge Computing) servers attached to BSs [16]. Hence,
the hierarchical cellular architecture is expected where one
MEC server manages a small number of physically close BSs
whereas a cloud server manages such MEC servers with a
long time scale as shown in Fig. 1 [17]. A single MEC server
can manage a small number of multiple BSs within a short
range (e.g., 1km radius of the circle) via a rapid fronthaul
interface (e.g., X2 interface [18]); hence it would be possible
to share the parameters required for cellular operations in
real-time. Moreover, since a smart grid system is known to
be able to measure the power usage and manage the power
supply in real-time within approximately 1km coverage [7],
a single MEC server would be able to manage the transmit
power of BSs in real-time as well. This fact enables an MEC
server to manage the long-term transmit power budget, which
leads to the flexible adaptation of transmit powers to the
spatio-temporally varying interference environment.

Accordingly, in this paper, we propose the CRIM (CRitical
user based Interference Management) algorithm on top of the
future 6G network architecture in which each MEC server
controls a small set of BSs in a centralized manner while
exchanging the lowest amount of feedback information with
each other in a decentralized manner. Specifically, CRIM has
the following characteristics: (i) It reduces the computational
complexity by sequentially solving beam activation, user
scheduling, and power allocation subproblems. (ii) It utilizes
the critical user concept, which considers only the highest
victim of the interference when making a decision of the
transmit power. (iii) It spatio-temporally shares the transmit
powers of BSs managed by a single MEC server. To this end,
we first formulate a long-term utility maximization problem
constrained by a time-average transmit power to each MEC
server to make decisions of beam activation, user scheduling,
and transmit power every time slot. Since the optimal solution
of the original problem probably has extremely high com-
putational complexity, we decompose the original problem
into two subproblems with different time scales where the
solution of the beam activation runs on a slower time scale
than that of the user scheduling and transmit power allocation
problem. Besides, we apply Lyapunov DMU (Drift-Minus-
Utility framework) [19] to the subproblems so that they are
solved every time slot without loss of optimality. However,
the transformed subproblems are still known as NP-hard;
hence we introduce the intuitive idea, namely inner and outer
reference users to optimize the transmit power with low
computational complexity.
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FIGURE 1. An illustration of the considered network architecture.

The contributions of this paper are summarized as
follows.

1) We formulate beam selection, user scheduling, and
transmit power allocation problems on top of future
network architecture with MEC aiming to maximize
the time-averaged sum of utilities of users.

2) We propose a low-complex sequential beam selection,
user scheduling, and transmit power allocation algo-
rithm, namely CRIM where the low-complexity comes
from three steps of approximations as follows. The
first step is the decomposition of time scales between
beam selection and the user scheduling/transmit power
allocation. The second step is to cut the loop among
the beam selection, user scheduling and transmit power
allocation. The third step is to introduce two virtual
queues (i.e., power sharing queue and fairness queue)
and the critical user concept.

3) Extensive simulations based on the real mmWave stan-
dard parameters demonstrate that the proposed CRIM
algorithm outperforms the existing algorithms up to
47.4% in terms of utility.

In the rest of this paper, we begin with the system
model in section II. Next, in Section III, we formulate
the optimization problem and propose the CRIM algorithm.
Then, in Section IV, we evaluate the CRIM algorithm by
extensive simulation. Finally, we conclude this paper in
Section V.

II. SYSTEM MODEL
A. NETWORK MODEL
We consider a mmWave small cell network architecture
where a small number of BSs are managed by a single MEC
server (we call a set of the managed BSs as a cluster) and
each MEC server exchanges sparse information among them
as shown in Fig. 1. In this architecture, there are C clus-
ters and N BSs where C = {1, · · · , c, · · · ,C} and N =

{1, · · · , n, · · · ,N } mean the set of clusters and BSs, respec-
tively. Each cluster c hasNc BSs and the set of BSs included in
cluster c is denoted by Nc = {1c, · · · , nc, · · · ,Nc}. Besides,
there are the set of users denoted by K = {1, · · · ,K }, and
the set of users included in BS nc are denoted by Knc . Each
BS has to be included in a single cluster, and each user has
to be included in a single BS. In the aforementioned system
model, each BS has L transmit antennas and each user has
a single receive antenna. Hence, BS n can generate up to L
precoding vectors Bn = {bn,1, bn,2, · · · , bn,|Bn|}, 1|Bn| ≤ L
and can schedule multiple users to a precoding vector b ∈ Bn
by taking advantage of NOMA.2 Moreover, we consider a
time-slotted system where each time slot is indexed by t ∈
{0, 1, · · · ,T−1} and assume a full buffer trafficmodel mean-
ing that an infinite data packet queue is allocated to all users.
This assumption makes each user achieve a different instan-
taneous data rate based on the time-varying wireless channel

1|·| is the cardinality of a set.
2In the rest of this paper, we name b as beam.
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and the different average data rate. Moreover, achievement of
different data rates among users makes users to be scheduled
in different beams or the same beam. Consequently, each
BS has to make decisions of (i) the beams to be activated,
(ii) the users to be scheduled in the activated beams, and
(iii) the amount of power to be allocated for each activated
beam every time slot.

1) BEAM ACTIVATION
At each time slot t , each BS has to determine which beams
are activated. However, exhaustive search of all beams can be
a computational burden for the BSwhen the number of beams
is high. To avoid high complexity, we define a set of beam
patterns A. It is composed of sets of the activated beams by
ensuring that adjacent beams are not activated simultaneously
as shown in Fig. 2.3 Note that this constraint extremely
reduces the set of candidates of the activated beams [20].
Hence, each BS selects a set of beam activations a from the
predefined set of beam patterns A every time slot and then
activates beams in a. We define Xn,a(t) as pattern selection
indicator where Xn,a(t) = 1 means BS n selects a set of
beam activations a, and Xn,a(t) = 0 otherwise. Moreover,
we denote an(t) as a selected set of beam activations by BS n.∑

a∈A
Xn,a(t) = 1, ∀n ∈ N . (1)

FIGURE 2. Examples of the set of beam activations in L = 8.

2) USER SCHEDULING
Once beam activation is decided, users are scheduled to be
served by the activated beams. First, we define the user
scheduling indicator denoted by I kn,b(t) where I kn,b(t) =
1 implies that user k is scheduled on beam b of BS n at
time slot t , and I kn,b(t) = 0 otherwise. Moreover, since we
consider NOMA system, each BS can schedulemultiple users
on a single beam. To address this, we denote In,b(t) =
{k1, · · · , k|In,b(t)|} by the set of scheduled users in beam b
of BS n. Moreover, we sort In,b(t) in descending order for
computational convenience in SIC. Then, we have:∑

k∈K
I kn,b(t) =

∣∣In,b(t)∣∣ , ∀n ∈ N , ∀b ∈ Bn. (2)

Naturally, beams on which no users are scheduled are deacti-
vated. To represent this, we define ban (t) as the set of activated
beams where ban (t) ⊂ an(t).

3Kim et al. [20] showed that activation of neighboring beams affects the
highest interference to the main beams.

3) POWER ALLOCATION
In NOMA system, multiple users can be scheduled in the
same frequency/time resource; hence different transmit pow-
ers are allocated to different users in the resource. Therefore,
each BS has to decide the amount of transmit powers to
be allocated for scheduled users. We denote by pknc,b(t) the
transmit power for user k scheduled on beam b of BS nc at
time slot t , and pnc,b(t) the transmit power for beam b of BS
nc at time slot t where∑
k∈K

pknc,b(t) = pnc,b(t), ∀nc ∈ Nc, ∀b ∈Bnc , ∀c ∈ C.

(3)

Then, we define Pmaxnc and Pmaxnc,b as the maximum transmit
power of a BS and an activated beam, respectively. Accord-
ingly, we have the following power constraints:∑
b∈Bnc

pnc,b(t) ≤ Pmaxnc , ∀nc ∈ Nc, ∀c ∈ C, (4)

pnc,b(t) ≤ Pmaxnc,b,∀nc ∈ Nc, ∀b ∈ Bnc , ∀c ∈ C.
(5)

As mentioned in Section I, real-time transmit power manage-
ment among inner cluster BSs would be possible via an MEC
server in the future 6G networks. Hence, BSs can flexibly
allocate transmit powers over time and space with the average
power constraint at each cluster as follows:

lim
T→∞

1
T

T−1∑
t=0

∑
nc∈Nc

∑
b∈Bnc

pnc,b(t) ≤ P
c
avg, ∀c ∈ C, (6)

where Pcavg means the long-term power budget from the net-
work operator.

B. LINK CAPACITY MODEL
Since each BS has L transmit antennas, a channel gain vector
hn,k between BS n and user k can be described as follows:

hn,k (t) = [αn,k,1(t), · · · , αn,k,L(t)]
√
ρn,k ∈ h, (7)

where αn,k,l means a channel coefficient of each antenna
corresponding to BS n, user k , and antenna l and ρn,k means a
large scale fading including path loss and shadowing between
BS n and user k .
In NOMA system, user k scheduled on beam b can be

interfered by the signal of users scheduled in the same beam
b, i.e., users in In,b(t) who are sorted before user k . Note that
the signal of users in In,b(t) who are sorted after user k can be
ignored thanks to the SC and SIC techniques. Moreover, user
k can be interfered by signals of all beams except for beam b
of BS n. Consequently, the total interference of user k , ηk (t)
can be calculated by

ηk (t) =
i−1∑
j=1

∣∣∣∣√pkjn,bhn,k (t)b∣∣∣∣2
+

∑
m∈N \n

∑
f∈Bm

∣∣√pm,f hm,k (t)f ∣∣2
VOLUME 10, 2022 128369
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+

∑
q∈Bn\b

∣∣√pn,qhn,k (t)q∣∣2 , kj ∈ In,b(t), (8)

where i and j denote index of user k and index of other
users in In,b(t), respectively. Here, the first term implies the
intra-beam interference from users allocatedmore power than
user k . The second term implies interference from other BSs
except for BS n. The third term implies interference from
activated beams of BS n except for beam b. Through this, the
SINR of user k , µk (X(t), I(t), p(t)) can be expressed:

µk (X(t), I(t), p(t))

=

∑
n∈N

∑
b∈Bn

∣∣∣√pkn,b(t)hn,k (t)b∣∣∣2 I kn,b(t)Xn,a(t)
ηk (t)+ σk (t)

, (9)

where σk (t) is a thermal noise of user k at time slot t . Here,
pattern selection indicator is expressed by X(t) = (Xn,a(t) :
∀n ∈ N ,∀a ∈ A), user scheduling indicator is expressed by
I(t) = (I kn,b(t) : ∀n ∈ N ,∀b ∈ Bn,∀k ∈ K), and power
allocation vector is expressed by p(t) = (pkn,b(t) : ∀n ∈
N ,∀b ∈ Bn,∀k ∈ K).
Finally, for given SINR expression (9), we can calculate

the achievable data rate of user k by exploiting Shannon’s
capacity formula [21] as follows:

rk (X(t), I(t), p(t)) = BW log2(1+ µk (X(t), I(t), p(t))),

(10)

where BW denotes the entire system channel bandwidth.

III. PROBLEM FORMULATION AND
ALGORITHM DEVELOPMENT
A. PROBLEM FORMULATION
First, we formulate the utility maximization problem in
NOMA-based mmWave network system as follows:

(P) : max
(X,I,p)

∑
k∈K

Uk (Rk )

s.t.
∑
a∈A

Xn,a(t) = 1, ∀n ∈ N ,

(2), (3), (4), (5), (6).

Without loss of generality, Uk (·) should be concave, strictly
increasing, and continuously differentiable for mathemat-
ical convenience [22]. This indicates the degree of user
satisfaction with their average throughput (i.e., Rk =

rk (X(t), I(t), p(t))).4 In this study, we design the utility
function as Uk (Rk ) = log(1 + Rk ). This design enables the
function to capture both fairness and throughput of users in
two ways: (i) since the sum of the log function is expressed as
a product, similar utility values for different users make the
objective bigger (fairness), and (ii) thanks to the maximiza-
tion operation, the utility function becomes higher as each
Uk (·) gets larger (throughput).

4Note that X means the long-term average function of x(t). (i.e., X =
limT→∞

1
T
∑T−1

t=0 x(t)) and f (X ) = limT→∞
1
T
∑T−1

t=0 E{f (x(t))}).

We should note that there are three obstacles to solve
the problem (P) as follows: (i) (P) is long-term aver-
age utility maximization problem, yet our practical prob-
lem is to find beam activation, user scheduling and power
allocation every time slot, i.e., online-fashioned solution,
(ii) finding joint beam activation, user scheduling and power
allocation is NP-hard problem, (iii) future information on the
time-varying wireless channels cannot be known in advance.
Hence, we exploit Lyapunov optimization framework [19]
to derive practical problem since this well-known dynamic
optimization framework does not require the future wireless
channel information and the time-average constraints, i.e.,
average power constraints can be modeled as the operation
of virtual queue; hence we can easily interpret the algorithm
operation.

As a first step, we separate (P) into (P1) and (P-Pattern):

(P1) : max
(I,p)

∑
k∈K

Uk (Rk ),

s.t. (2), (3), (4), (5), (6).

(P-Pattern) : max
X

∑
k∈K

Uk (Rk ),

s.t.
∑
a∈A

Xn,a(t) = 1, ∀n ∈ N .

Note that (P1) and (P-Pattern) have the same objective func-
tion, yet (P1) is the problem to find solutions of user schedul-
ing and power allocation, and (P-Pattern) is the problem to
find solution of beam activation pattern where time scales for
two problems are different.5

1) PROBLEM TRANSFORMATION
Since the objective function of (P1) is not linear, Lyapunov
optimization framework cannot be directly applied in this
problem. Hence, to transform (P1) into the applicable prob-
lem to Lyapunov optimization framework, we introduce a
rectangular constraint and ancillary variables. We define a
rectangle set 0 = {(γ1, . . . , γK ) | γk,min ≤ γk ≤

γk,max ,∀k ∈ K} and the ancillary variable γ (t) =
(γ1(t), · · · , γK (t)) ∈ 0, where γk,min and γk,max are any con-
straints and the ancillary variable γ (t) follows r(t) smoothly
over time. Leveraging Jensen’s inequality [19], we can refor-
mulate the problem (P1) to (P2) as follows:

(P2) : max
(I,p,γ )

∑
k∈K

Uk (Rk )

s.t. (2), (3), (4), (5), (6),

γk ≤ Rk , ∀k ∈ K, (11)

γ (t) ∈ 0, ∀t ∈ T . (12)

where γ = {γ (t) : t ∈ T }. To capture constraints (6) and (11)
in per-slot problem, we add two virtual queues Zc(t) for each
cluster and Wk (t) for each user.6 Here, two virtual queues

5 (P1) should be solved in every time slot whereas (P-Pattern) should be
solved in a longer time scale, e.g., 100 time slots.

6Note that stabilizing two virtual queues implies guaranteeing the
time-average constraints (6) and (11).
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evolve according to the following equations:

Zc(t + 1) = [Zc(t)− Pcavg +
∑
nc∈Nc

∑
b∈Bnc

pnc,b(t)]
+, ∀c,

(13)

Wk (t + 1) = [Wk (t)− rk (I(t), p(t))+ γk (t)]+, ∀k, (14)

where two queues are initialized by finite backlogs, i.e.,
Zc(0),Wk (0) <∞. 7 Next, we define Lyapunov function L(t)
as follows:

L(Q(t)) =
1
2

{∑
c

Z2
c (t)+

∑
k

W 2
k (t)

}
, (15)

where Q(t) = (W1(t), . . .WK (t);Z1(t), . . . ,ZC (t)). Then,
by utilizing the above Lyapunov function, the drift function
1L(Q(t)) can be designed as follows:

1L(Q(t)) = E{L(Q(t + 1))− L(Q(t))}. (16)

Then, we design a Lyapunov DMU function, which makes
a single objective function which captures both objective
function and virtual queue stability in every time slot as
follows:

DMU(p(t), I(t), γ (t))

= 1L(Q(t))− V
∑
c

∑
nc

∑
k

E{log(1+ γk (t))|Q(t)}.

(17)

Then, we derive the upper bound of DMU function (17) using
queueing dynamics equations (13) and (14) and the objective
function as follows:

DMU(p(t), I(t), γ (t))

≤ B−V
∑
k

E{log(1+γk (t))|Q(t)}

−

∑
c

E{(Pavgc −
∑
nc

∑
b

pnc,b(t))Zc(t)|Q(t)}

−

∑
k

E{(rk (p(t), I(t))−γk (t))Wk (t)|Q(t)}, (18)

where B = 1
2 (K (r2k,max + γ

2
k,max) +

∑
c NcBP

2
nc,max +

CP2c,max). Then, by minimizing the RHS (Right-Hand-Side)
in (18) every slot, an optimal objective value in (P2) can be
obtained [19]. Then, the minimization problem of RHS in
(18) can be decomposed into two subproblems as follows:

(SP1) Problem to find optimal γ ∗k (t):

max
γk (t)

V log(1+ γk (t))− γk (t)Wk (t), ∀k ∈ K,

(SP2) Problem to find optimal I∗(t) and p∗(t):

max
(I(t),p(t))

∑
k∈K

rk (I(t), p(t))Wk (t)

−

∑
nc∈Nc

∑
b∈Bnc

pnc,b(t)Zc(t), s.t. (4), (5), (6).

7When running the simulation in this study, both Zc(0) and Wk (0) were
initialized to a value of 1.

Because (SP1) is a convex problem, we can obtain the solu-
tion by differentiating the objective function with γk (t) for
every user as follows:

γk (t) =
[ V
Wk (t)

− 1
]max

min
, ∀k ∈ K, (19)

where min and max of γk (t) are design parameters of the
system. However, the solution of (SP2) is hard to obtain
because it is an MINLP which is a combined problem of
power allocation and user scheduling of different BSs.

Consequently, the original problem (P) is approximated to
two subproblems (P-Pattern) and (P1), and (P1) was trans-
formed into (P2). Then, it is split into (SP1) and (SP2). Since
the (SP1) was solved thanks to its convexity, we propose a
low-complex algorithm, namely CRIM, in next subsection to
solve the remained (P-Pattern) and (SP2).

B. ALGORITHM DEVELOPMENT
Now, we propose a low-complexity algorithm to solve
(P-Pattern) and (SP2) as shown in Fig. 3. First, we introduce
an idea of beam pattern selection probability. It is sparsely
updated, e.g., every 100 time slots, to satisfy (P-Pattern). The
intuition behind this idea is that variation of path loss in wire-
less channel is not extremely different for each user within
short time, e.g., 0.1 sec. Second, we propose an approximated
method to satisfy (SP2) by sequentially making decisions of
user scheduling, and power allocation.

1) PATTERN-BASED BEAM SELECTION
As mentioned in Section II, we define a set of beam activa-
tions. Although the number of possible activated beams is
reduced by introducing constraint, finding the set of beam
activations every time slot has high computational complex-
ity. Hence, we define the pattern selection probability πna
to each BS n, and intermittently change the probability to
approximate the activated beam selection procedure. The
definition of πna can be as follows:∑

a∈A
πna = 1, ∀n ∈ N . (20)

Then, in a long-time scale, π = {πna },∀a ∈ A,∀n ∈ N is
updated to satisfy (P-Pattern) as follows:

(SP-Pattern) :

max
π

∑
k∈K

Uk (Rk ) =
∑
k∈K

(∑
a∈A

φk,a · πa · rk,a
)
,

s.t. (20),

where φk,a ∈ [0, 1] denotes the probability that the user k is
scheduled when the beams in pattern a are activated. In addi-
tion, rk,a means the average data rate of user k for pattern a
during Ta � 1 time slots. Referring to the concept of [23],
standard gradient projection can be applied to determine π .
Therefore, BS nc computes the partial derivative D(nc)

a of the
utility U (nc) regarding the activation probability of pattern a
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FIGURE 3. The proposed solution with complexity reduction from the ideal solution.

as shown in (21).

D(nc)
a

.
=
∂U (nc)

∂πa
=

∑
k∈K

U ′k (Rk ) ·
∂Rk
∂πa

, (21)

where ∂Rk/∂πa = φk,ark,a = πk,ark,a/πa. Then, the
calculation result is transmitted to the MEC server and used
to update the πnc . Now, each MEC server calculates the
probability of beam pattern for each BS by collecting these
partial derivatives of the local utility to increase the total
network utility as follows:

π ← Proj∑
a∈A πa=1,(π + βD). (22)

Once πna is decided at long-time scale, each BS n selects
beam pattern a with a probability of πna every time slot.

The intuition behind this average-based update is that the
average channel gain does not significantly vary for short
time. This feature gives a great opportunity to reduce compu-
tational complexity by spanning control time scale of beam
activation. However, (SP2) has an issue of high computa-
tional complexity in solving user scheduling and power allo-
cation simultaneously even for given set of beam activations.
Hence, we find the solution by sequential decision-making to
further reduce the complexity as shown in Fig. 3.

2) USER SCHEDULING AFTER BEAM SELECTION
First, we make a decision of the user scheduling for given set
of beam activations. Here, we assume that the transmit power
of activated beams is evenly allocated for simplicity. Then,
the solution of user scheduling can be obtained by solving
(SP2) as follows:

Ib,k =


1, if k = k(n, b)

= argmax rk (pn,b)Wk ,

0, otherwise.

(23)

Note that the user scheduling problem for given set of beam
activations and transmit power is a binary decision problem
to satisfy (SP2) as shown in equation (23).

3) POWER ALLOCATION AFTER USER SCHEDULING
Each BS allocates transmit power again to users scheduled by
(23). However, it requires the entire interfering channel gain
information across all activated beams in all BSs. Moreover,
the calculation of interference with the entire information
also has high computational complexity. Hence, we adopt a
heuristic idea to reduce the complexity with a consideration
of only one critical user as a reference user of which interfer-
ence approximates the entire interference from all scheduled
users in the network.

A critical user is defined as a scheduled user who receives
the highest interference from other beams. To select the
critical user, we first define two users as follows: (i) inner
reference user irunc,b who suffers the highest interference
from the inner cluster BSs (see (24)), and (ii) outer reference
user orunc,b who suffers the highest interference from the
outer cluster BSs (see (25)). For example, in Fig. 4, the inner
and outer reference users of BS 31 are indicated in blue- and
red-colored arrows, respectively. Then, the critical user crinc,b
is designated as a user with the biggest interference among the
determined inner and outer reference users (see (26)). Once
the critical user is determined, the critical user is representa-
tive of all scheduled users to receive the interference.

irunc,b = argmax |hn,k(x,νax )b|2, (24)

∀x ∈ S(nc), ∀νax ∈ Bax ,
orunc,b = argmax |hn,k(y,υay )b|

2, (25)

∀c′ ∈ C′, ∀y ∈ E(mc′ ), ∀υay ∈ Bay ,
crinc,b = max(irunc,b, orunc,b), ∀c ∈ C, nc ∈ Nc,

b ∈ B, (26)

where S(nc) and E(mc′ ) denote the set of inner cluster BSs
except for BS nc and the set of outer cluster BSs, respectively.
Now, optimal power allocation can be obtained by satisfy-

ing KKT (Karush-Kuhn-Tucker) conditions [24] for any user
scheduling and critical user selection as follows:

pk(nc,b) =
[ Wk(nc,b)/ ln 2
λnc + taxnc,b + Zc

−
ηk(nc,b) + σk(nc,b)

|hnc,k(nc,b)b|2

]Pmax
nc

0
,

(27)
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FIGURE 4. The process of critical user selection.

FIGURE 5. The proposed framework and operation of CRIM algorithm.

where

taxnc,b =
Wcrinc,b |hnc,crinc,bb|

2µcrinc,b/ ln 2∑
v∈N

∑
w∈Bv |

√
pv,whv,crinc,bw|

2 + σcrinc,b
,

(28)

λnc (
∑
b∈Bnc

pnc,b − P
max
nc ) = 0, (29)

where taxnc,b is designed to impose a penalty on the power
allocation. For instance, if a critical user crinc,b suffers high
interference from the BS nc, taxnc,b increases as a penalty for
it. Due to the strong penalty, pnc,b would decrease to reduce
interference towards the critical user, and vice versa. Now,
an initialized positive value λnc is updated in the following
steps. First, pnc,b is calculated based on taxnc,b and initialized
λnc . Second, λnc is updated according to whether the sum
of allocated powers exceeds Pmax

nc : if exceeds, λnc is updated
with a higher value to reduce pnc,b in (27), and vice versa.
Next, using updated λnc , re-calculate pnc,b. We repeat this
operation until the equation (29) satisfies via fast bisection

method. In addition, if there is no value of λnc that holds
the equation (29), then λnc becomes zero. Consequently,
we obtain the solutions of both (SP-Pattern) and (SP2), and
the total solution of the problems is called as CRIM algo-
rithm. Now, we summarize what information is exchanged
and how CRIM operates on the NOMA-based mmWave net-
work system as illustrated in Fig. 5.

The exchange of all messages in the proposed frame-
work can be summarized as follows (see Fig. 5). First,
we can classify the messages into two types. The first type is
small-sized messages such as activated beam indices, sched-
uled user indices, fairness queues and power sharing queues,
and the second type is large-sized messages such as the RSS
(Received Signal Strength), interference, and thermal noise
of all users. In the case of large-sized ones, they can be
exchanged among inner cluster BSs in real-time thanks to
the short distance between BSs and fast interface (e.g., X2
interface). However, they should be minimally exchanged
between clusters due to the long distance between clusters
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and slow interface. Hence, small-sized messages can be
exchanged in near real-time whereas large-sized messages
can be intermittently exchanged with a form of average value.

Then, the inner cluster BSs can exploit all types of mes-
sages in real-time whereas the outer cluster BSs can exploit
only small-sized ones in real-time, and can intermittently
exploit the time-averaged large-sized ones. In other words,
the proposed framework exchanges messages as much as
possible within the cluster to increase network utility, yet
minimally exchanges large-sized ones among inter-clusters
to reduce feedback overhead and latency. Since the proposed
CRIM algorithm is operated in two different time scales as
well, the large-sized messages can be separately exploited in
the short time-scale CRIM algorithm (i.e., making a decision
of beam pattern) and long time-scale CRIM algorithm (i.e.,
making decisions of user scheduling and transmit power),
respectively.

In the short time-scale (i.e., every time slot t), BS nc
receives small-sized messages a© from server c, and makes
decisions of beam activation, user scheduling and transmit
power using CRIM as shown in Fig. 5. Then, BS nc transmits
the small-sized ones b© to server c, and the server exchanges
the small-sized ones c© among servers in the neighbor clus-
ters. In the long-time scale (i.e., every Ta time slots), BS nc
computes the partial derivative using (21). Then, the calcu-
lated partial derivative (a) is sent to server c to update the
probability of beam pattern selection πnc as shown in Fig. 5.
Then, the large-sized messages (b) are exchanged between
servers in the outer clusters, and the large-sized ones (c) are
returned to each inner cluster BS.

Algorithm 1 (for every time slot): Each MEC server c
receives the abovementioned small-sized messages from the
inner cluster BSs. Then, it exchanges small-sized ones with
MEC in the outer cluster c′. Once the message exchange
is done, the MEC server provides entire messages obtained
above to the inner cluster BSs. Next, if the transmit power
allocation of BSs is decided, the power sharing queue is
updated by the server in the same cluster. Each BS nc ∈ Nc
randomly selects the set of beam activations a with prob-
ability of πnca updated by the MEC server c. Once the set
of beam activations is selected, the BS nc allocates equal
transmit power to the selected beams. Then, each BS makes
decisions of user scheduling and critical user using (23) and
(26), respectively. Then, BS nc calculates its transmit power
using a fast bisection method until pnc,b converges. Finally,
data rates, auxiliary variables and fairness queues for all users
are updated.

Algorithm 2 (for every Ta � 1 time slots): Each MEC
server c receives the partial derivative from the BSs nc ∈
Nc to calculate the gradient vector D. Then, MEC server c
updates the beam pattern selection probability π using (22).
Moreover, MEC server c exchanges large-sized messages
such as time-average RSS and interference plus noises to
BSs in the outer cluster during Ta time slots. Thanks to
long-time message exchange, the average feedback latency

Algorithm 1 CRIM for Every Time Slot
At each MEC server ∀c ∈ C,
Receive information from BS nc :
activated beam indices b(nc)(t), ∀nc.
scheduled users’ indices k(nc)(t), ∀nc.
fairness queues Wk(nc)(t), ∀nc.
received signal strength RSSnc,bk(nc)

, ∀nc, ∀b.

interference plus noise ωnc,bk(nc)
+ σ

nc,b
k(nc)

, ∀nc, ∀b.
Send to neighbor MEC server c′ :
activated beam indices b(nc)(t), ∀nc.
scheduled users’ indices k(nc)(t), ∀nc.
fairness queues Wk(nc)(t), ∀nc.

Receive from neighbor MEC server c′ :
activated beam indices b(nc′ )(t), ∀nc′ ∈ Nc′ , ∀c

′
∈ C′.

scheduled users’ indices k(nc′ )(t), ∀nc′ ∈ Nc′ , ∀c
′
∈ C′.

fairness queues Wk(nc′ )(t), ∀nc′ ∈ Nc′ , ∀c
′
∈ C′.

Send to BS nc :
activated beam indices B(t), scheduled users’ indices K(t).
fairness queues Wk (t),∀k.
user’s received signal strength of inner cluster
RSS(x,ν

ax )
k(nc)

, ∀νax ∈ Bax , ∀x ∈ S(nc), ∀nc.
user’s interference plus noise of inner cluster
ω
(x,νax )
k(nc)

+ σ
(x,νax )
k(nc)

, ∀νax ∈ Bax , ∀x ∈ S(nc), ∀nc.
power sharing queue Zc(t).

Receive from BS nc :
pnc,b(t),∀b ∈ Bnc ,∀nc for updating power sharing queue.

Update: power sharing queue Zc(t + 1), using (13).

At each BS ∀nc ∈ Nc, ∀c ∈ C,
Beam selection: Each BS nc selects beam pattern a based on
probability of beam pattern πnc .
Setting initial transmit power: pbnc (t)← Pmax

nc /|Ban |.
User scheduling: Each BS nc schedules a user using (23) based on
selected pattern a.
Send to MEC server c:
activated beam indices b(nc)(t)
scheduled users’ indices k(nc, b)(t), fairness queues Wk (t), ∀k.
received signal strength RSS(nc,b)k(nc)

, ∀k.

interference plus noise ω(nc,b)k(nc)
+ σ

(nc,b)
k(nc)

, ∀k.
Receive from MEC server c:
activated beam indices B(t), scheduled users’ indices K(t).
Inner cluster scheduled users’ received signal strength
RSS(nc,b)k(x,νax ), ∀x ∈ S(nc), ∀ν

ax ∈ Bax .
Inner cluster scheduled users’ interference plus noise
ω
(nc,b)
k(x,νax ) + σ

(nc,b)
k(x,νax ), ∀x ∈ S(nc), ∀ν

ax ∈ Bax .
fairness queues from inner and outer cluster scheduled users,
Wk(x),∀x ∈ S(nc) and Wk(y),∀y ∈ S(nc′ ), respectively.
power sharing queue Zc(t).

Critical user selection: Determine the critical user from inner and
outer reference users (26).
Power allocation:
[i, j]← [0, λmaxnc ].
while |

∑
b∈Bnc pnc,b(t)− P

max
nc | < δ do

Set λnc = (i+ j)/2 and update pn,b(t) using (27).
if
∑

b∈Bn pn,b(t) > Pmaxnc then
[i, j]← [λnc , j].

else if
∑

b∈Bn pn,b(t) < Pmaxnc then
[i, j]← [i, λnc ].

end if
end while.
Update: rk (t), γk (t), and Wk (t + 1),∀k ∈ Knc

using (10), (19), and (14), respectively.
Send to MEC server c : pnc (t) for updating power sharing queue.
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Algorithm 2 CRIM for Every Ta � 1 Time Slots
At each MEC server ∀c ∈ C,
Calculate gradient vector: MEC server computes the gradient
vector Dnc = (Dnc1 , · · · ,D

nc
A ) by collecting Dnca .

Update pattern portion:MEC server updates the probability of
beam pattern π using (22).
Send to neighbor MEC server c′ :
avg. RSSs of all associated users in cluster c

RSSnc,bk ,∀k ∈ Knc , ∀b ∈ Bnc , ∀nc.
avg. interference plus noise of all associated users in cluster c

ω
nc,b
k + σ

nc,b
k , ∀k ∈ Knc , ∀b ∈ Bnc , ∀nc.

Receive from neighbor MEC server c′ :
avg. RSS of all users in outer clusters

RSS
mc′ ,b
k ,∀k ∈ Kmc′ , ∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ , ∀c

′
∈ C′.

avg. interference plus noise of all users in outer clusters

ω
mc′ ,b
k + σ

mc′ ,b
k ,∀k ∈ Kmc′ ,∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ ,∀c

′
∈ C′.

Send to BS nc :
beam pattern portion of BSs πnca , ∀a ∈ A,∀nc
avg. RSSs of all users in BSs in outer clusters

RSS
mc′ ,b
k ,∀k ∈ Kmc′ , ∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ , ∀c

′
∈ C′.

avg. interference plus noise of all users in BSs in outer clusters

ω
mc′ ,b
k + σ

mc′ ,b
k ,∀k ∈ Kmc′ ,∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ ,∀c

′
∈ C′.

At each BS ∀nc ∈ Nc, ∀c ∈ C,
Calculate partial derivative c :
computes the partial derivative Dnca using (21). ∀a ∈ A.
Send to MEC server c : partial derivative Dnca . ∀a ∈ A.
Receive from MEC server c :
avg. RSS of users in BSs in outer clusters

RSS
mc′ ,b
k ,∀k ∈ Kmc′ , ∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ , ∀c

′
∈ C′.

avg. interference plus noise of users in BSs in outer clusters

ω
mc′ ,b
k + σ

mc′ ,b
k ,∀k ∈ Kmc′ ,∀b ∈ Bmc′ ,∀mc′ ∈ Nc′ ,∀c

′
∈ C′.

and overhead between servers can be further reduced and the
CRIM algorithm can be practically operated.

IV. PERFORMANCE EVALUATION
In this section, we evaluate the proposed CRIM algorithm and
existing algorithms via simulations with the realistic channel
model and parameters in 5G standard [25].

A. SETUP
For the wireless channel model, we use UMi-street
canyon pathloss model with 28GHz of center frequency
(mmWave) [25]. In our simulation scenarios, each BS is
assumed to have 10 transmit antennas, and the maximum
transmit power of each BS and long-term transmit power
budget of each cluster are set to 2W and 1W multiplied by
the number of BSs included in each cluster, respectively.
We carry out the simulations based on the real BS topol-
ogy in South Korea to see the GAT performance of algo-
rithms. In addition, to show the different impact of various
parameters on the system performance, positions of BSs
are stochastically generated by PPP (Poisson point process)
model [26] which captures the realistic heterogeneity of the

cellular networks.8 For all simulation scenarios, 4 clusters
are considered, and we manually locate each cluster so as
to contain a similar number of BSs.9 Moreover, each user
belongs to a single BS, and the positions of each users
are randomly determined. The total operation time of each
simulation is set to 5000 time slots where each time slot is set
to 1 millisecond.

We compare the existing algorithms, i.e., Greedy [27],
IGS [28], and ON/OFF [29] with CRIM. In the Greedy
algorithm, each user selects a beam greedily so as to achieve
the highest SINR in conjunction with proportional fairness
(PF) scheduling policy. Next, the IGS algorithm selects user
and beam pairs sequentially. When selecting each pair, the
user selects a beam that can achieve the highest SINR with a
consideration of the interference from the previously selected
pairs. The ON/OFF algorithm is designed based on the 3GPP
standard [29]. First, users are scheduled according to the
PF scheduling policy assuming that all beams in all BSs
are activated. Next, each BS checks whether the strength of
interference to users scheduled in other BSs is higher than the
pre-defined threshold or not. If the interference is larger than
the threshold, then the corresponding BS is deactivated, vice
versa.

To compare the existing algorithms with CRIM, we
consider three metrics: GAT (Geometric Average user
Throughput), Avg. throughput (Average user Throughput),
and allocated power.Maximizing theGAT (inMbps) is equiv-
alent to maximizing our objective value, i.e., (P)meaning that
it takes into account both fairness and throughput of users.
The Avg. throughput (in Mbps) is time average throughput of
users in the entire network. The allocated power (in Watt) is
the amount of transmit power allocated to the scheduled user.

On top of this setup, we conduct four simulations as
follows: (i) simulation on the real network topologies in
South Korea, (ii) simulation for different BS intensities in
PPP model, (iii) simulation for different the average number
of users in each BS in PPP model, and (iv) simulation for dif-
ferent multiple access schemes on CRIM in PPP model. Via
simulations, we could observe interesting points as follows:
(i) CRIM outperforms the existing algorithms in terms of
GAT and Avg. throughput, (ii) the impact of spatio-temporal
power sharing is significant, and (iii) the advantage of NOMA
is more pronounced in CRIM than in the existing algorithms.
We describe these observations in detail as follows.

First, we compare the GAT performance of CRIM and the
existing algorithms on the real network topologies deployed
in themetropolitan area of South Korea. As depicted in Fig. 6,
two network topologies are considered and named as Seoul1
and Seoul2. Each topology has 25 and 21 BSs, respectively,
with 4 clusters positioned to contain 4 to 7 BSs. As shown
in Fig. 7, it can be confirmed that CRIM outperforms the
existing algorithms in terms of GAT for both topologies. For

8In this model, we define the average number of BSs in the network as the
intensity.

9Note that the optimization of clustering BSs can be considered as another
research issue, but it is out of scope of this paper.
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FIGURE 6. The real network topology in South Korea.

FIGURE 7. GAT for different network topologies.

FIGURE 8. Performance comparison for different intensities.

example, in Seoul1, the GAT improvements from the existing
algorithms to CRIM are 27.3% (in IGS), 47.4% (in Greedy)
and 164.9% (in ON/OFF).

B. THROUGHPUT PERFORMANCE
C. IMPACT OF SPATIAL POWER SHARING
To see the impact of spatial power sharing that shares transmit
power within the same cluster, simulations are conducted
while increasing the intensity of BSs in PPP model. As the
intensity increases, the distances between the BSs decrease,
which results in greater interference to users. Fig. 8 shows that
the performance of all algorithms decreases when intensity
becomes higher. However, in the case of CRIM, it can be

FIGURE 9. Ratio of transmit powers of BSs in cluster 2.

seen that the performance degradation is smaller than that
of the other algorithms. In aspects of fairness, BSs have to
allocate more transmit power to edge users who suffer more
interferencewhen intensity increases. If BSs use a fixed trans-
mit power budget (i.e., other algorithms), center users will
be allocated less transmit power inevitably. On the contrary,
CRIM can exploit spatial power sharing to share transmit
power among BSs in the same cluster while keeping the
average transmit power constraint. Moreover, Fig. 9 shows
the ratio of transmit power usage of each BS included in
cluster 2 in case of CRIM and Greedy. As shown in Fig. 9(a)
and Fig. 9(b), the results show that CRIM differently allocates
transmit power to BSs in different time slots. In other words,
if higher transmit powers in BSs are allocated in previous
time slots, then lower transmit powers in the BSs are allo-
cated in future time slots, and vice versa. On the other hand,
in Fig. 9(c) and Fig. 9(d), the results depict that Greedy
allocates the same transmit powers in BSs for both time
slots.

D. IMPACT OF TEMPORAL POWER SHARING
We conduct simulations to observe GAT performance as
a function of the average number of users. For the simu-
lation topology, 4 clusters and 7 BSs at each cluster are
deployed according to the PPP model. As shown in Fig. 10,
the performance degradation of CRIM is smaller than that
of the other algorithms as the average number of users
increases. This is because CRIM can exploit the degree of
freedom for temporal power sharing, which flexibly uses
a certain amount of transmit power budget for long-time
period. Fig. 11 depicts the transmit power allocated to users
scheduled in a certain BS (i.e., BS 2) for selected time slots10

when the average number of users is set to be 12 and 20,
respectively, and user indices of legend are assigned in

10We select these time slots randomly.
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FIGURE 10. Performance comparison for different the average number of
users.

FIGURE 11. Allocated transmit power to users for selected time slots for
different the average number of users in BS 2.

order of distance from the BS. As shown in Fig. 11(a)
and Fig. 11(b), CRIM takes advantage of temporal power
sharing, and as the number of users increases, CRIM uses
more transmit power to edge users than fewer users without
significant reduction of transmit power allocated to other
users. On the other hand, in Fig. 11(c) and Fig. 11(d), IGS
uses the same transmit power budget (1W) and decreases
transmit power allocated to center users to allocate more
transmit power to edge users as the average number of users
increases.

E. IMPACT OF DIFFERENT PHY TECHNOLOGIES
We compare the GAT performance of CRIM for different
multiple access schemes, i.e., OFDMA and NOMA as shown
in Fig. 12. When the OFDMA scheme is applied, if users are
scheduled in the same beam, the system channel bandwidth
is divided to be orthogonal for each user. Thanks to the
orthogonal system channel bandwidth, intra-beam interfer-
ence can be ignored. However, the average data rate becomes
smaller in proportion to the number of users scheduled in

FIGURE 12. GAT for different multiple access schemes.

same beam due to the divided system channel bandwidth.
On the other hand, when the NOMA scheme is applied,
if users are scheduled in the same beam, intra-beam interfer-
ence can be reduced by leveraging SC and SIC techniques.
Moreover, there is no concern about the degradation of data
rate as the system channel bandwidth is not divided for
different resource blocks. Because of this, CRIM can obtain
approximately 35% of performance increment in NOMA
than in OFDMA. Moreover, since the spatio-temporal degree
of freedom is greater in CRIM than that in other algo-
rithms, we can see that the performance increment of
CRIM from OFDMA to NOMA is better than the other
algorithms.

V. CONCLUSION
In this paper, we proposed a low-complex beam activation,
user scheduling, and power allocation algorithm for network
utility maximization. To reduce the computational complex-
ity of the original problem, we introduced several heuristic
but practical methods which approximate our problem with
low complexity: (i) time scale decomposition, (ii) sequen-
tial decision making of beam activation, use scheduling and
power allocation, and (iii) abstraction of interference into a
single critical user. These methods are likely to be tailored to
a future network architecture where small BSs are managed
by a single MEC server and the MEC server can manage
transmit power budget in real-time. Via realistic simulations,
we verified that the proposed CRIM algorithm outperforms
the existing algorithms by showing 47.4% better utility per-
formance. We believe that the design of low-complex and
practical algorithms which exploit the different characteris-
tics of the novel network architecture would be pervasive in
the future.
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