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Abstract

In B5G heterogeneous cellular networks, a rapid increase in the number of small cell base stations (SBSs) to support a massive number of
devices tends to waste a considerable amount of energy. Therefore, intelligent management of SBSs’ power consumption is one of the most
important research issues. We herein propose quasi-distributed Q-learning-based cell breathing (QD-QCB) considering full and partial SBS
collaborations for maximizing network energy efficiency. Also, the concept of an aggregated active SBS set based on regional user distributions
is proposed for computing- and energy-efficient operation. Through intensive simulations, we show that the proposed QD-QCB algorithm can
achieve optimal energy efficiency, and improve the network energy efficiency significantly compared with conventional algorithms such as
no transmit power control, random cell breathing, and greedy cell breathing algorithms.
c⃝ 2021 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Beyond fifth-generation (B5G) cellular networks aim at
supporting tremendous mobile data traffic and a massive num-
ber of mobile devices while improving the entire network
energy efficiency compared to the previous generation mobile
networks [1,2]. In particular, with the explosively increasing
mobile data traffic, small cell networks are emerging as a
promising solution for B5G cellular networks [3–5]. In ad-
dition, it is worth noting that most of the energy in current
cellular networks is consumed by BSs, which is approximately
58% of the total power consumption [6,7]. Thus, to minimize
this severe network energy consumption, several greening
algorithms have been proposed [8–12]. On the other hand, to
support the massive amount of data traffic generated in B5G
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networks, more BSs may be deployed more densely. In other
words, a lot of small cell BSs (SBSs) would be deployed with
macro cell BSs (MBSs). Accordingly, the average inter-site
distance between BSs (SBSs and MBSs) and users is expo-
nentially decreasing, and the link quality and network capacity
could be improved significantly. However, this may cause
severe interference between neighboring SBSs and MBSs,
also ushering in a vast amount of energy consumption in
the entire network [4,13–15]. Therefore, saving this network
energy consumption is one of the most important challenges
for B5G heterogeneous cellular networks in practice.

In [8], Z. Hasan et al. proposed the scheme for BS mode ad-
justment to minimize the network energy consumption. Also,
potential gains and limitations of the ultra-dense networks
(UDNs) were investigated, which considered the impact of
idle-mode operation of BSs, transmission power control, user
density, and user distribution on the network energy efficiency
in [9]. In [12], energy-aware user association and power alloca-
tion algorithms were proposed for millimeter-wave (mmWave)

based UDNs with energy-harvesting BSs. Furthermore, Z. Jian
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Fig. 1. System model for our proposed QD-QCB algorithm in B5G
heterogeneous cellular networks.

et al. proposed a joint optimization framework for an energy-
efficient switching on/off strategy and user association policy
in UDNs with partial conventional BSs in [16].

Machine learning is able to identify patterns in observed
data, create models that explain the digital and physical
worlds, and predict things without having any related ex-
periences, explicit pre-programmed rules, and models [17].
In particular, reinforcement learning (RL) tries to follow the
fundamental way in which humans learn. RL enables an
agent to interact with its environment and to learn from
its previous experiences without a training data-set [18,19].
Therefore, RL-based approaches can be utilized to improve
network energy efficiency in the B5G heterogeneous cellular
networks. Especially, because tabular Q-learning does not
use deep neural networks for functional approximation, it
can significantly reduce computation overhead caused when
performing neural network training in deep reinforcement
learning. As mentioned before, the problem of unnecessary
power waste of SBSs is very severe in these B5G hetero-
geneous cellular networks due to spatially and temporally
varying traffic loads, regional imbalance of user density, and
dynamic user mobility. So, in this paper, we propose an
energy- and computing-efficient quasi-distributed Q-learning
based cell breathing (QD-QCB) algorithm considering an
aggregated active SBS set to maximize the network energy
efficiency.

The rest of this paper is organized as follows. The system
model for our proposed algorithm is described in Section 2.
Also, we propose the QD-QCB algorithm with the aggregated
active SBS set in Section 3. In Section 4, we show the simula-
tion results in terms of the energy efficiency of our proposed
QD-QCB algorithm compared with conventional algorithms:
No TPC, random cell breathing, and greedy cell breathing.
Finally, the conclusions are drawn in Section 5.

2. System model

In this section, we describe the system model for our
proposed algorithm and assumptions used in this paper. We
consider a downlink heterogeneous network configured with
several MBSs and SBSs, as shown in Fig. 1. We assume that
526
MBSs as interferers to users associated with SBSs. In addition,
the SBS is the agent of the proposed multi-agent Q-learning
framework.

2.1. Creation of aggregated active SBS set

In the proposed QD-QCB algorithm, users estimate the
channel quality of the serving cells and neighboring cells
through the reference signal received power (RSRP) measure-
ment report. This RSRP value is a very common parameter
to determine the association of the user in cellular networks.
To consider wireless channel fluctuation by small-scale fading
and noise, we use an infinite impulse response (IIR) averaging
scheme [20]. That is, we can obtain the reliable and stable
RSRP value by exploiting the IIR based averaging scheme.
By using the IIR averaging scheme, the averaged user’s RSRP
measurement (ζ̄i j (t)) of user i from cell j at the t th time step
s calculated as

¯i j (t) = (1 − κ) · ζ̄i j (t − 1) + κ · ζi j (t). (1)

ere, ζi j (t) is the instantaneous measured RSRP value of user
form cell j , and κ is a filter coefficient parameter configured
y the small cell networks.

Then, user i constitutes its active SBS set (Ψi ) with this
veraged RSRP value. If ζ̄i j (t) is greater than the RSRP
hreshold (ζ th

i ), the SBS j is added to Ψi . Among elements in
i , the SBS which provides the best RSRP (or the best signal-

o-interference-plus-noise ratio (SINR)) becomes the serving
BS of user i . Then, user i periodically transmits its Ψi

nformation to its serving SBS. Namely, all users send their
ctive SBS set information to their serving SBSs, respectively.
fter receiving active SBS set information from users, SBS

j forms an aggregated active SBS set (Ψ̃ j ) through a simple
et operation such as intersection or union. By using Ψ̃ j , the
BSs, which are the agents of our proposed QD-QCB algo-
ithm, can manage and utilize their Q-tables for their energy-
nd computing-efficient cell breathing operations. That is, in
ach episode, each agent calculates and updates its Q-table
orresponding to its Ψ̃ to maximize the reward of our proposed
D-QCB algorithm where the reward is the sum of network

nergy efficiency.

.2. Power consumption model for SBS

In this paper, we consider two types of power consump-
ion: static power consumption at t th time step (Pckt

j,mode(t))
aused by baseband signal processing, battery backup, and
ite cooling, and transmit power consumption at t th time step
P t x

j (t)) [21]. Also, we assume that the static power consump-
ion is independent of the transmit power consumption of SBS.
ccordingly, the total power consumption at t th time step

P tot
j (t)) of the SBS j can be represented as

P tot
j (t) = Pckt

j,mode(t) +
1
ω

· P t x
j (t), (2)

here ω is power amplifier efficiency, and Pckt
j,mode(t) and

P t x
j (t) are the amounts of static and transmit power consump-

tion of SBS j , respectively. Here, the mode denotes the current



H. Lee, E. Kim, H. Kim et al. ICT Express 8 (2022) 525–529

s
S

2

s

γ

w
a

t

η

H

3
(

a
j
e
(
o

r

A
l

w
T
i

H
r
t

t
v
r

a
p
v
a
t
n
t
c
t
t
c

ϵ

w

i
a

u

4

e
d
o
e
t
s
t

tate of SBS: active or sleep. According to the mode of the
BS, the amount of power consumption could be different.

.3. SINR and network energy efficiency

The SINR of user i associated with SBS j at the t th time
tep (γi, j (t)) is represented as

i, j (t) =
P S

i, j (t)hi, j (t)d
−βS
i, j

Ii (t) + σ 2
i

. (3)

Ii (t) =

∑
n ̸= j,n∈N

P S
i,n(t)hi,n(t)d−βS

i,n +

∑
m∈M

P M
i,m(t)hi,m(t)d−βM

i,m . (4)

here Ii (t) is the total interference experienced by the user i
t t th time step, and N and M are the sets of SBSs and MBSs,

respectively. P S
i,x (t) is the transmit power of user i from SBS

x , and P M
i,m(t) is the transmit power of user i from MBS m.

Also, σi is the thermal noise power at user i , hx,y denotes small
scale fading (e.g., Rayleigh fading) between the user x and the
BS y, and dx,y is the distance between the user x and the BS
y. Furthermore, βS and βM mean the path loss exponents for
SBS and MBS, respectively.

With Eqs. (2)–(4), the energy efficiency of SBS j at t th
ime step (η j (t)) can be calculated as

j (t) =

∑
i∈Kj

1
|Kj|

· BW · log2(1 + γi, j (t))

Pckt
j (t) +

1
ω

· P t x
j (t)

. (5)

ere, Kj denotes the set of users associated with SBS j and
BW is the entire bandwidth available at SBS j .

. Quasi-Distributed Q-learning based Cell Breathing
QD-QCB)

In the proposed QD-QCB algorithm, the SBS, which is the
gent of the proposed reinforcement learning framework, ad-
usts its transmit power to maximize the entire network energy
fficiency. The reward of our proposed QD-QCB algorithm
rt ), which is the network energy efficiency (ηtot

j (t)), can be
btained as

t = ηtot
j (t) =

∑
j∈N

∑
i∈Kj

1
|Kj|

· BW · log2(1 + γi, j (t))

Pckt
j (t) +

1
ω

· P t x
j (t)

. (6)

ccordingly, the value function of our proposed reinforcement
earning framework (Q(s, a)) is described as

Q(s, a) = E[rt + µ max
a′

Q(s ′, a′)|s, a], (7)

here µ is the discount factor of our Q-learning framework.
his Q-value at each state is calculated by using the following

terative procedure [18,19].

Qt+1(st , at ) = (1 − αt ) · Qt (st , at )
+ αt [rt+1 + µ · max

at
Qt (st+1, at )]. (8)

ere, αt is the learning rate at t th time step, rt+1 represents the
eward at the current time step, and ‘µ×maxat Qt (st+1, at )’ is

he maximum expected future reward. At the very beginning, m
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he basic transmission power of the agent is set as the default
alue. Also, all Q values are initialized to zero and each agent
andomly selects its transmission power level.

To determine execution action at t th time step (at ), we
pply the decayed ϵ-greedy policy. In brief, with 1 − ϵ(t)
robability, the agent chooses the action with the highest Q∗

alue, Q∗
= maxa Q(s, a), and with probability ϵ(t), the

gent chooses a random action. To achieve the optimal reward,
he appropriate adjustment of exploitation and exploration is
eeded because the agent does not have enough informa-
ion about the environments in general. Initially, the agent
hooses relatively more random actions to find the best action
o achieve the optimal reward. As the episode progresses,
he agent gradually reduces the ratio of random actions by
ontrolling the ϵ(t) value.

(t) = ϵini t (1 − ϵini t )
i

δ×|A| , (9)

here ϵini t is the initial ϵ value, i is the episode index, and δ

is an exploration parameter. Also, |A| is the action set size
of the proposed QD-QCB algorithm. When considering the
aggregated active SBSs set, the total state set of agent j (S j )
can be described as a Cartesian product space, S j = ⊗si ,
∈ Ψ̃ j where si is the state set size of agent i and ⊗ represents
set product. Therefore, using S j and A, the agent can build

its Q-table.
As mentioned in Section 2, the agents of the proposed QD-

QCB algorithm can manage their Q-tables with the aggregated
active SBS set (Ψ̃ j ) obtained from the active SBS set infor-
mation (Ψ j ) of each user. Therefore, in QD-QCB, the agent
does not need to consider the status information of all base
stations: |A|

|N|. That is, each agent calculates and updates its
Q-table corresponding to its Ψ̃ to maximize the reward of
QD-QCB where the reward is the sum of energy efficiency.
By using Ψ̃ j , our proposed QD-QCB algorithm can perform
energy- and computing-efficient cell breathing operations. The
Q-table size of the centralized Q-learning algorithm augments
exponentially according to the increase in the number of SBSs.
However, because the proposed algorithm only considers the
neighbor SBSs included in the aggregated active SBS set,
the proposed QD-QCB algorithm has a constant Q-table size
corresponding to the aggregated active SBS set size. In this
paper, we consider two kinds of SBS collaboration: partial and
full. In full SBS collaboration (FSC), the agent uses both Ψ̃ j

and rt , however in partial SBS collaboration (PSC), the agent
ses only rt when performing QD-QCB.

. Simulation results

As shown in Table 1, we consider a heterogeneous network
nvironment consisting of 3 MBSs and 4 SBSs. Cell radii for
eploying users are 300 m and 400 m, respectively. To show
ptimal cell breathing performance, we included the energy-
fficiency (EE)-optimal cell breathing curve, and we can find
hat our proposed QD-QCB can efficiently follow the optimal
olution compared to a random cell breathing algorithm. Here,
he EE-optimal curve is obtained through an exhaustive search

ethod. In the no transmit power control (TPC) algorithm, the
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imulation parameters.

Parameter Value Parameter Value

N 4 M 3
K 20 R 300 m or 400 m
Pckt

j,active 0.25 W Pckt
j,sleep 0.025 W

P S
i, j 0 ∼ 2.0 W σi −174 dBm/Hz

βS &βM 3 ω 1
αt 0.1 µ 0.9
ϵini t 0.99 δ 330

Fig. 2. Accumulated energy efficiency when N = 4, M = 3, K = 20, and
R = 300 m.

Fig. 3. Accumulated energy efficiency when N = 4, M = 3, K = 20, and
R = 400 m.

BS decides its mode considering the initial user deployment.
n the No TPC algorithm, if a certain SBS has no users
ssociated with it, this SBS becomes sleep. Furthermore, in the
reedy cell breathing algorithm, the SBS controls its transmit
ower based on Q-learning, however only considers its state
nd its reward, not the entire network energy efficiency.

As shown in Fig. 2, when N = 4, M = 3, K = 20, and
R = 300 m, we can show that our proposed QD-QCB with
SC rapidly converges to the EE-optimal value. When the
528
gent applies PSC, the saturated energy efficiency is less than
hat of the QD-QCB with FSC. Although QD-QCB with PSC
as a smaller energy efficiency compared with that of QD-
CB with FSC, QD-QCB with PSC uses relatively less status

nformation to determine the next action. So, according to the
omputing capability of the SBS, the amount of SBSs’ collab-
ration can be adaptively adjusted. The greedy cell breathing
here the agent uses only its state and reward has relatively

maller energy efficiency compared with QD-QCB algorithms.
n addition, QD-QCB with FSC and QD-QCB with PSC have
etter network energy efficiency compared with random cell
reathing and No TPC.

The overall trend of Fig. 3 is similar to Fig. 2. However,
ecause the cell radius in Fig. 3 is larger than that in Fig. 2,
he performance difference is relatively larger. Also, we can
how that our proposed QD-QCB rapidly converges to the EE-
ptimal value. In particular, when the number of episodes is
50 ∼ 450, we can see that the fluctuation of the accumulated
nergy efficiency occurs because of imperfect Q-table building
nd high probability of exploration.

. Conclusions

To improve the network energy efficiency in B5G het-
rogeneous networks, we proposed QD-QCB algorithms con-
idering full and partial SBS collaborations. For computing-
nd energy-efficient operation for QD-QCB, we proposed the
oncept of the aggregated active SBS set based on the regional
ser distributions. In addition, for the more computing-efficient
peration, we can determine the amount of SBSs’ collabora-
ion corresponding to the computing capability of SBSs: FSC
nd PSC. Through intensive simulations, we showed that the
roposed QD-QCB algorithm could achieve the optimal solu-
ion and improve the network energy efficiency significantly
ompared to No TPC, random cell breathing, and greedy cell
reathing.
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