
LSTC-rPPG: Long Short-Term Convolutional Network
for Remote Photoplethysmography

Jun Seong Lee1, Gyutae Hwang2, Moonwook Ryu1, Sang Jun Lee2,∗
1Electronics and Telecommunications Research Institute, Republic of Korea

2 Jeonbuk National University, Republic of Korea
eejunseonglee@gmail.com, gyutae741@jbnu.ac.kr,

moonwook@etri.re.kr, sj.lee@jbnu.ac.kr

Abstract

Remote photoplethysmography (rPPG) is a non-contact
technique for measuring blood pulse signals associated
with cardiac activity. Although rPPG is considered an al-
ternative to traditional contact-based photoplethysmogra-
phy (PPG) because of its non-contact nature, obtaining re-
liable measurements remains a challenge owing to the sen-
sitiveness of rPPG. In recent years, deep learning-based
methods have improved the reliability of rPPG, but they suf-
fer from certain limitations in utilizing long-term features
such as periodic tendencies over long durations. In this pa-
per, we propose a deep learning-based method that models
long short-term spatio-temporal features and optimizes the
long short-term features, ensuring reliable rPPG. The pro-
posed method is composed of three key components: i) a
deep learning architecture, denoted by LSTC-rPPG, which
models long short-term spatio-temporal features and com-
bines the features for reliable rPPG, ii) a temporal atten-
tion refinement module that mitigates temporal mismatches
between the long-term and short-term features, and iii) a
frequency scale invariant hybrid loss to guide long-short
term features. In experiments on the UBFC-rPPG database,
the proposed method demonstrated a mean absolute error
of 0.7, root mean square error of 1.0, and Pearson correla-
tion coefficient of 0.99 for heart rate estimation accuracy,
outperforming contemporary state-of-the-art methods.

1. Introduction

Remote photoplethysmography (rPPG) is an optical
measurement technique that enables non-contact measure-
ment of blood pulse signals related to cardiac activity
[6, 35, 41]. In contrast to conventional photoplethysmog-
raphy (PPG), rPPG does not require direct skin contact for
physiological measurements. Instead, rPPG utilizes facial
videos and analyzes facial color changes to extract blood

pulse signals, referred to as rPPG signals.

The non-contact nature of rPPG makes it an attractive
alternative to conventional contact-based PPG, with a wide
range of prospective applications in the domains of health-
care and human–computer interaction [6, 21, 25, 41]. For
example, by minimizing discomfort or skin irritation to sub-
jects, rPPG can offer a viable solution for patients with
skin sensitivities, who may experience discomfort during
direct skin contact. However, given the non-contact nature
of rPPG, the amplitude of rPPG signals is insufficient and
susceptible to contamination, making it difficult to obtain
accurate and reliable measurements. Therefore, supplemen-
tary measures are necessary to improve the accuracy and
reliability of rPPG signal measurement.

Recent advancements in deep learning techniques have
made it possible to achieve accurate and reliable measure-
ments of rPPG signals. These achievements are largely
based on the spatial and temporal feature extraction capa-
bilities of convolutional neural networks (CNNs) and recur-
rent neural networks (RNNs). The use of these networks fa-
cilitates the modeling of subtle changes in facial color and
periodic fluctuations, both of which are key information for
estimating rPPG signals. Some methods [16, 24] utilize the
sequential application of 2D convolutional neural networks
(2DCNNs) and RNNs to model spatial and temporal fea-
tures, respectively, while others [3, 26, 40] employ 3D con-
volutional neural networks (3DCNNs) to more interactively
model the spatial as well as the temporal features. How-
ever, the aforementioned approaches have some limitations
in modeling and utilizing long-term, i.e., global temporal,
features of rPPG signals such as periodic patterns over the
entire period. Those 3DCNN-based methods often focus
on short-term, i.e., local temporal, features and fail to ex-
ploit the long-term features. In methods that combine 2DC-
NNs and RNNs, although RNNs can theoretically utilize the
long-term features, in practice, the use of the long-term fea-
tures for long input is challenging because of concerns such
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as long-term dependencies and gradient vanishing.
To address these limitations, methods [14, 42] based on

the transformer architecture [34] have been proposed. The
transformer-based methods can refer to long-term features
by using the attention mechanism. Although these meth-
ods have potential benefits, realizing the full benefits of the
transformer in the field of rPPG research remains a chal-
lenge. This is because the transformer requires a substantial
amount of data to fully utilize its capabilities owing to its
low inductive bias, but collecting sufficient data in the field
of rPPG research is challenging in practice.

Inspired by the considerations mentioned above, we pro-
pose a deep learning-based method that can effectively uti-
lize long-term features to reliably predict rPPG signals,
even when limited data is available. The proposed method
models long short-term features through a 3DCNN-based
hourglass structure and combines the long short-term fea-
tures to take into account long-term as well as short-term
information. Furthermore, to address the issue of informa-
tion mismatches in the integration of the long short-term
features, we introduce the incorporation of a temporal atten-
tion refinement module. Finally, we suggest a hybrid loss
that consists of time-domain and frequency-domain losses
to jointly learn the long short-term characteristics of tar-
geted rPPG signals such as instantaneous signal changes
and long-term periodicity. The hybrid loss is characterized
by frequency-domain scale invariance, which facilitates the
proposed model to easily converge.

The contributions of this study are as follows:

1. A novel deep learning architecture denoted as LSTC-
rPPG is proposed. LSTC-rPPG robustly predicts rPPG
signals by modeling long short-term features through
a 3D hourglass structure and by combining the long
short-term features.

2. A temporal attention refinement module (TARM) is
proposed. TARM reduces mismatches between long
short-term features in terms of temporal receptive
fields, resulting in more reliable measurements of
rPPG signals.

3. A hybrid loss is proposed. The hybrid loss includes
frequency-domain and time-domain losses to guide
long-term and short-term characteristics, respectively,
of targeted rPPG signals. Furthermore, the frequency-
domain loss is constrained by scale invariance to facil-
itate the proposed model’s training.

4. Experimental results demonstrating superior perfor-
mance compared to state-of-the-art methods are ob-
tained for the UBFC-rPPG dataset, even in the absence
of data augmentation.

2. Related work

2.1. Signal Processing-based rPPG

Early attempts to measure rPPG signals involved the
detection of facial regions in videos, followed by the
spatial averaging of the RGB channels for the facial re-
gions [31, 35]. However, these methods were only appli-
cable in controlled environments such as laboratory set-
tings. Consequently, to facilitate more robust and realis-
tic measurements, methods based on conventional signal
processing have been proposed. These include three ma-
jor methods: region of interest (ROI)-based methods, signal
decomposition-based methods, and color transformation-
based methods. ROI-based methods aim to select improved
ROIs such as ROIs based on facial landmarks [18], dynamic
ROIs [12], and unsupervised skin ROIs [1]. Appropriate
ROIs allow for the reduction of background noise and head
movement artifacts [1, 12, 18, 30]. Signal decomposition-
based methods aim to enhance the signal-to-noise ratio, in-
cluding ICA [20, 27, 28], PCA [37], blind source separa-
tion on random patches [15], matrix completion [33], tem-
poral rotation of the spatial subspace of skin pixels [38], and
mathematical skin reflection [36]. Color transformation-
based methods, such as a linear combination of the chromi-
nance signals [9] and a blood volume pulse signature [10],
weight and combine color channels to yield better results.
Despite their potential benefits, these methods may not fully
utilize spatial and temporal features such as the spatial color
changes of facial skin and the periodic tendencies of rPPG
signals, thus restricting their effectiveness.

2.2. Deep Learning-based rPPG

Early deep learning-based methods for measuring rPPG
signals were based on 2DCNNs that exhibited innovative
performance in pattern recognition through their capabili-
ties to model spatial features. These methods used 2DC-
NNs to capture skin pixel segmentation [4, 32] or subtle
color changes in facial skin [5] and outperformed the con-
ventional signal processing-based methods. However, their
modeling of temporal features for sequential inputs could
potentially be enhanced, given that modeling solely spatial
features within a single image is insufficient in capturing
sequential dependencies present in data.

Inspired by the potential of modeling temporal fea-
tures, several methods have been proposed for spatial
and temporal modeling. These methods include the in-
tegration of 2DCNNs and RNNs [16, 24], the use of
hand-crafted preprocessing for generating spatio-temporal
maps(STmaps) [22, 23], and the utilization of 3DCNNs
[3, 26, 40]. These methods enabled spatial and temporal
modeling and demonstrated their performance, but could
not model and utilize long-term information such as peri-
odicity in rPPG signals.
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Figure 1. Framework of the proposed architecture.

As alternatives, some studies have proposed the utiliza-
tion of the principles of the transformer, which enables di-
rect referencing of long-term information, to measure rPPG
signals. These studies involve combining the transformer
with either 3DCNNs [42] or STMap [14]. By utilizing long-
term information, these studies have achieved remarkable
performance. However, owing to the low inductive bias, the
transformer-based methods require a considerable amount
of data to achieve optimal utilization of the transformer.
In the field of rPPG research, where data collection can
be challenging, the complete potential of the transformer-
based methods may sometimes be hindered by this particu-
lar aspect.

3. Methodology
In this section, we first introduce LSTC-rPPG as the

proposed baseline architecture in Sec. 3.1. Subsequently,
the proposed temporal attention refinement module is intro-
duced in Sec. 3.2. Finally, the descriptions of the proposed
hybrid loss are presented in Sec. 3.3.

3.1. Long Short-Term Convolutional rPPG

The framework of LSTC-rPPG is illustrated in Fig. 1,
where dimensions of height (H), width (W ), channel (C),
and time (T ) are denoted using the (C, T , H , W ) format.
As an example, in Fig. 1, the input video has dimensions of
three channels, a height of 128 pixels, a width of 128 pixels,
and a length of 160 frames. LSTC-rPPG performs encod-
ing, decoding, and prediction on an input video of size (3,
160, 128, 128) to estimate a 160-length rPPG signal cor-
responding to the number of frames. The spatial and tem-
poral information of the input video is represented as com-
pressed features through the encoder blocks. Subsequently,
the compressed features are reconstructed along the tempo-
ral axis through the decoder blocks. Finally, the predictor
estimates an rPPG signal from the decoded features.

Detailed descriptions of LSTC-rPPG are presented in
Tab. 1. The notation for height, width, channel, and time

Table 1. Details of the proposed architecture.

Block name Layers Output shape Block name Layers Output shape

Encoder 1

[
3D Conv (3,3,3)@16

ELU

]
× 2

BN
(16,160,128,128) Decoder 6

3D Transposed Conv (5,1,1)@64
3D Conv (3,3,3)@64

ELU
BN

(64,5,4,4)

Encoder 2

3D Avg Pool (2,2,2)[
3D Conv (3,3,3)@16

ELU

]
× 2

BN

(16,80,64,64) Decoder 5

3D Transposed Conv (4,1,1)@64[
3D Conv (3,3,3)@32

ELU

]
× 2

BN

(32,10,4,4)

Encoder 3

3D Avg Pool (2,2,2)[
3D Conv (3,3,3)@32

ELU

]
× 2

BN

(32,40,32,32) Decoder 4

3D Transposed Conv (4,1,1)@64[
3D Conv (3,3,3)@32

ELU

]
× 2

BN

(32,20,4,4)

Encoder 4

3D Avg Pool (2,2,2)[
3D Conv (3,3,3)@32

ELU

]
× 2

BN

(32,20,16,16) Decoder 3

3D Transposed Conv (4,1,1)@32[
3D Conv (3,3,3)@16

ELU

]
× 2

BN

(16,40,4,4)

Encoder 5

3D Avg Pool (2,2,2)[
3D Conv (3,3,3)@64

ELU

]
× 2

BN

(64,10,8,8) Decoder 2

3D Transposed Conv (4,1,1)@16[
3D Conv (3,3,3)@16

ELU

]
× 2

BN

(16,80,4,4)

Encoder 6

3D Avg Pool (2,2,2)
3D Conv (3,3,3)@64

ELU
BN

(64,5,4,4) Decoder 1

3D Transposed Conv (4,1,1)@16[
3D Conv (3,3,3)@3

ELU

]
× 2

BN

(3,160,4,4)

Encoder 7
3D Conv (5,3,3)@64

ELU
BN

(64,1,4,4) Predictor 3D Conv (1,4,4)@1 (1,160,1,1)

used in Fig. 1 is also applied consistently in Tab. 1, and
(T , H , W )@N means the use of N filters of size (T , H ,
W ). Furthermore, the notation 3D Conv denotes 3D convo-
lutional operations, 3D Transposed Conv denotes 3D trans-
posed convolutional operations, 3D Avg Pool refers to the
application of 3D average pooling, ELU refers to the appli-
cation of exponential linear unit [7], and BN indicates the
execution of batch normalization [13]. In all cases, 3D con-
volutional operations are executed with a stride of (1, 1, 1),
while 3D transposed convolutional operations are executed
with a stride of (2, 1, 1) except for Decoder 6, where a stride
of (1, 1, 1) is applied for symmetry.

The proposed LSTC-rPPG can be characterized by a
3DCNN-based hourglass structure in the temporal dimen-
sion and skip connections (Fig. 1). The hourglass struc-
ture enables long short-term spatio-temporal modeling for
an input video. During the encoding process, short-term
features are progressively compressed into long-term fea-
tures. The resulting compressed features eventually become
one-dimensional in the temporal dimension, fully capturing
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Figure 2. Comparison of receptive fields between encoded and
decoded features in terms of a temporal perspective.

the receptive time of the input video. The decoding process
decompresses the resulting compressed features along the
temporal dimension. Decoded features generated through
the decompression capture the full receptive time of the
input. Consequently, predicting an rPPG signal from the
decoded features enables more accurate measurements of
the rPPG signal by considering the entire time information,
even when estimating individual sample values that consti-
tute the rPPG signal.

However, decoding from the encoded features with sig-
nificant loss of short-term information due to extreme com-
pression is challenging. Skip connections compensate for
this issue. The skip connections are performed by element-
wise summation between the same-length encoded and de-
coded features in the symmetric hourglass structure (Fig. 1).
The difference in the spatial size between the encoded and
decoded features during the element-wise summation is re-
solved by applying spatial average pooling, which aligns the
spatial dimensions of the encoded features with the decoded
features. For instance, the features generated by Encoder 1
(Tab. 1), with a size of (16, 160, 128, 128), are first resized
to (16, 160, 4, 4) using spatial average pooling and then
combined with the decoded features, with the size of (16,
160, 4, 4), generated by the 3D transposed convolutional
operations of Decoder 1 (Tab. 1) through element-wise sum-
mation.

3.2. Temporal Attention Refinement Module

The hourglass structure of LSTC-rPPG generates the
encoded features that capture short-term information and
the decoded features that capture long-term information
(Fig. 2), leading to temporal information mismatches be-
tween these features. This observation suggests that the pro-
posed skip connections, which perform the summation of
individual elements between the encoded and decoded fea-
tures, can be improved by addressing the temporal informa-
tion mismatches. To address the mismatches, we propose a
temporal attention refinement module (Fig. 3), abbreviated

Figure 3. Schematic diagram of temporal attention refinement
module.

as TARM, which calculates temporal correlations between
the encoded and decoded features and utilizes the resulting
correlations to refine the encoded features.

The schematic diagram of TARM is illustrated in Fig. 3.
Let Ei ∈ R(T×H′×W ′) and Di ∈ R(T×H×W ) denote the i-
th channel of encoded and decoded features used as inputs
of the skip connections. Here, T denotes the temporal di-
mension of both Ei and Di. H ′ and W ′ represent the height
and width of Ei, respectively, while H and W represent the
height and width of Di, respectively. Regarding Ei and Di,
TARM performs the following steps. First, the difference
in spatial dimensions between Ei and Di is aligned through
spatial average pooling as follows:

E
′

i = θ(Ei) ∈ RT×H×W , (1)

where θ(·) means the application of the spatial adaptive av-
erage pooling layer. Second, E

′

i and Di are reshaped from
3D feature tensors to 2D matrices as follows:

E
′

i,f = ϕ(E
′

i) ∈ RT×H·W , (2)

Di,f = ϕ(Di) ∈ RT×H·W , (3)

where ϕ(·) is a function that flattens a 3D input into 2D
output. Third, E

′

i,f is temporally refined based on the fol-
lowing formula:

Ri,f = σ(E
′

i,f ×Dt
i,f )× E

′

i,f ∈ RT×H·W , (4)

where σ(·) is the SoftMax function and superscript t de-
notes the transpose of a matrix. Finally, Ri,f is reshaped
into the original 3D feature tensor, and the i-th channel of
temporal attention refined features can be represented as:

Ri = ϕ−1(Ri,f ) ∈ RT×H×W , (5)

where ϕ−1(·) is the inversion of ϕ(·).
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TARM addresses the issue of temporal information mis-
alignment that can occur during the skip connections be-
tween the encoded and decoded features, from the per-
spective of considering the temporal receptive field. Fur-
thermore, from the perspective of the attention mechanism
wherein the encoded features serve as queries, the decoded
features serve as keys, and the encoded features serve again
as values, TARM offers another advantage. Specifically,
TARM enables the selective concentration of more relevant
features at a variety of temporal positions within the input
sequence. For example, in an rPPG signal, TARM helps
features corresponding to a certain peak timing to inten-
sively refer to features corresponding to other peak timings.

3.3. Frequency scale invariant hybrid loss

Time-domain losses and frequency-domain losses im-
pose distinct constraints when supervising deep neural
models for rPPG [39,42]. The time-domain losses predom-
inantly enforce instantaneous constraints such as the ampli-
tude of target rPPG signals [5, 40], whereas the frequency-
domain losses tend to guide periodic features of the signals
across their entirety, such as their frequency spectrum [23].
In this regard, LSTC-rPPG, which utilizes long-term as
well as short-term features, can be expected to benefit from
more effective guidance by jointly utilizing time-domain
and frequency-domain losses.

Motivated by this, we propose a novel hybrid loss. The
proposed hybrid loss is made up of a time-domain loss and
a frequency-domain loss as follows:

Lhybrid = α · Ltime + β · Lfreq, (6)

where α and β are the weight factors for balancing the
losses and are equal to 1.0 and 0.5, respectively. The mean
square error between the estimated and ground-truth rPPG
signal is adopted for Ltime. Lfreq employs the scale invari-
ant error [11] and is defined as follows:

Lfreq =
1

n

n∑
i=1

d2i −
λ

n2

( n∑
i=1

di

)2

, (7)

di = log p̂i − log pi, (8)

where the power spectral density (PSD) of the estimated
rPPG signal and the PSD of the ground-truth rPPG signal
are denoted by p̂i and pi, respectively, both having length n
indexed by i and the hyperparameter λ is 0.2.

There have been attempts to improve the performance
of deep neural models for rPPG by defining losses in the
frequency domain [23, 39, 42]. However, the proposed hy-
brid loss differs in that it aims to utilize the relative mag-
nitude in the frequency domain for learning. The proposed
frequency-domain loss helps measure the relationships be-
tween powers in PSD, irrespective of the absolute global

scale. Inferring the relative magnitude of PSD is a less com-
plex task than predicting the absolute magnitude of PSD,
which makes it easier for deep neural models to learn. Fur-
thermore, for the task of inferring HR, which can corre-
spond to the dominant frequency of PSD, the frequency
scale invariant loss is suitable for reducing errors in the per-
formance metrics.

4. Experiments
First, a benchmark dataset is introduced in Sec. 4.1, fol-

lowed by the descriptions of experimental implementation
details and performance metrics in Sec. 4.2. Subsequently,
in Sec. 4.3, we compare the proposed method with previous
methods. Section 4.4 provides the visualizations of exper-
imental results, while the effectiveness of each component
consisting of the proposed method is represented in Sec. 4.5
through ablation studies.

4.1. Dataset

UBFC-rPPG [2] is a dataset for rPPG analysis and in-
cludes 42 videos along with corresponding ground-truth
rPPG signals and HRs from 42 subjects. The UBFC-rPPG
dataset was generated through the utilization of customized
C++ software for capturing videos, utilizing a cost-effective
and uncomplicated webcam (Logitech C920 HD Pro) at a
frame rate of 30 frames per second, and capturing at a reso-
lution of 640 × 480 in uncompressed 8-bit RGB format. To
acquire PPG signals and HRs as the ground truth of the cap-
tured videos, a CMS50E transmissive pulse oximeter was
utilized. During the recording process, there was a varying
amount of sunlight and indoor illumination. The subjects
were seated approximately 1 meter away from the camera,
with their face fully visible. They were instructed to engage
in a time-sensitive mathematical game intended to raise
their HR, intending to simulate a natural human–computer
interaction scenario.

4.2. Implementation Details and Metrics

Following previous studies [17,42], we used RGB video
clips of size 128 × 128 pixels with a frame length of 160
as the input for the proposed method. In the initial stage
of our experiments, we detected a facial region within the
first frame of each video in the UBFC-rPPG dataset using
MTCNN [43]. Subsequently, we fixed and cropped facial
ROIs that were 1.6 times larger than the detected facial re-
gion across each video and then resized the facial ROIs into
128 × 128 pixels. Each resized video was divided into clips
of 160 frames. Based on the criteria from previous stud-
ies [8, 17], we partitioned the set of 42 videos into two sub-
sets, comprising 28 and 14 videos for training and testing,
respectively. For the training data, video clips were cre-
ated by shifting 30 frames, resulting in an overlap of 130
frames between adjacent clips without any augmentation.
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Table 2. Performance comparison with previous methods.

Method MAE ↓ RMSE ↓ r ↑ Data aug.

CHROM [9] 3.44 4.61 0.97 ×
POS [36] 2.44 6.61 0.94 ×

DeepPhys [5] 2.90 3.63 0.98 #
PhysNet [40] 2.95 3.67 0.98 #

AND-rPPG [19] 2.67 4.07 0.96 #
TDM [8] 2.32 3.08 0.99 #

Physformer [42] 1.36 2.41 - #
PhysNet+PFE+TFA [17] 0.76 1.62 - #

Ours 0.70 1.00 0.99 ×

For the testing data, video clips were created without any
overlap. The proposed model was trained on PyTorch and
two NVIDIA RTX 3090 GPUs. The Adam optimizer was
used with a learning rate of 5e-5.

To validate the proposed method, we adopted the most
commonly used performance metrics for rPPG evaluation,
including the mean absolute error (MAE), root mean square
error (RMSE), and Pearson’s correlation coefficient (r) be-
tween the ground-truth HR and the estimated HR through
predicted signals. The estimated HR was computed by find-
ing a dominant frequency using PSD of the estimated rPPG
signal. Similar to previous studies [5, 8], a band-pass filter
with cutoff frequencies of 0.7–4 Hz was applied to the esti-
mated rPPG signal before HR calculations. In addition, we
utilized the number of parameters and multiply-accumulate
operations (MACs) using a PyTorch-based counting tool
[29] to assess the computational efficiency of the proposed
method.

4.3. Comparison with previous methods

Table 2 presents the performance comparison between
the proposed method and previous methods [5, 8, 9, 17,
19, 36, 40, 42] on the UBFC-rPPG dataset. The two tra-
ditional methods (CHROM, POS) achieved lower overall
performance compared to the deep learning-based methods
(DeepPhys, PhysNet, AND-rPPG, TDM, Physformer, and
PhysNet+PFE+TFA). DeepPhys based on vanilla 2DCNNs
and PhyNet based on vanilla 3DCNNs showed improved
stability by presenting comparable MAE and lower RMSE
compared to the two traditional methods. Physformer,
which leverages the transformer architecture for consider-
ing long-term features, presented notable advancements in
performance relative to the previous methods (CHROM,
POS, DeepPhys, PhysNet, AND-rPPG, and TDM), demon-
strating that global features are a crucial factor for reliable
measurements of rPPG signals. Our proposed method ex-
hibited superior performance across all performance met-
rics compared to all other methods, achieving an MAE of
0.70, an RMSE of 1.00, and an r of 0.99.

When compared to the latest state-of-the-art method

Table 3. Computational complexity analysis.

Method # Params. ↓ MACs ↓

PhysNet [40] 0.77 M 70.21 G
Physformer [42] 7.03 M 47.01 G

PhysNet+PFE+TFA∗ [17] 1.34 M 46.34 G

Ours 0.91 M 28.62 G

∗ We attempted to reproduce the number of parameters and
MACs using the code available at https://github.com/LJW-
GIT/Arbitrary Resolution rPPG, which resulted in a parameter
count of 2.24 M and MACs count of 169.82 G. Nonetheless, we
utilized the values reported by Li et al. [17].

(PhysNet+PFE+TFA), our proposed method showed a
slight improvement in MAE by 0.06, but a substantial im-
provement was observed in RMSE, which decreased to
1.00. These results demonstrated the enhanced stability
of the proposed method. In addition, compared to Phys-
former, our proposed method achieved better performance
even without any data augmentation. This demonstrated
that our proposed method effectively utilizes long-term as
well as short-term features in a more appropriate manner,
even with less data. Furthermore, in contrast to all other
deep learning-based methods, the performance of our pro-
posed method was achieved without even performing data
augmentation. This observation suggests that our proposed
method can be more stable and generalizable, leading to
more reliable and consistent performance in practical sce-
narios.

In order to analyze the computational efficiency of the
proposed method, the number of parameters and MACs
were calculated and compared with the previous methods
[17, 40, 42] in Tab. 3. Regarding the number of parame-
ters, PhysNet demonstrated the best performance with 0.77
M, while for MACs, the proposed method showed the best
performance with 28.62 G. Our proposed method is based
on 3DCNNs, similar to PhysNet. However, compared to
PhysNet, our proposed method demonstrated a performance
improvement of approximately 59.24% in terms of MACs,
while having slightly more parameters. The performance
improvement observed in MACs can be attributed to the
compression of features in spatial as well as temporal di-
mensions during the encoding process, as well as the preser-
vation of the compressed feature size for spatial dimen-
sions during the decoding process. Furthermore, our pro-
posed method outperformed both Physformer and Phys-
Net+PFE+TFA in terms of the number of parameters and
MACs. Compared to Physformer, the proposed method ex-
hibited a reduction of approximately 87.06% in the number
of parameters and a 39.12% reduction in MACs. Compared
to PhysNet+PFE+TFA, the proposed method demonstrated
a decrease of approximately 32.09% in the number of pa-
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(a)

(b)

Figure 4. Comparison of predicted rPPG signal and PSD (blue)
with ground-truth rPPG signal and PSD (red) for two video clips in
testing data: (a) one from Subject 42 and (b) another from Subject
47.

rameters and a 38.24% reduction in MACs.
When considering the trade-off between computational

complexity and performance metrics (Tab. 2, Tab. 3), the
proposed method had slightly more parameters than Phys-
Net but showed notable performance improvements in
MACs and MAE. Furthermore, for Physformer and Phys-
Net+PFE+TFA the proposed methods presented better per-
formance across all performance metrics, the number of pa-
rameters, and MACs.

4.4. Visualization of results

We visualized both the predicted rPPG signals and their
PSDs, as well as the ground-truth signals and their PSDs
on two video clips in testing data in Fig. 4. The similarity
between the predicted and ground-truth rPPG signals and
PSDs shown in Fig. 4a demonstrated the effectiveness of
our proposed method. Furthermore, detecting dicrotic notch
and diastolic peaks, as shown by the black dashed circle
(Fig. 4a), further reinforced the effectiveness. In Fig. 4b,
sudden changes in HR were observed in the early part of
the ground-truth signal. Despite the sudden changes in HR,
the proposed method demonstrated a comparable prediction
of the rPPG signal. Furthermore, the observation of the
similarity between the PSDs of predicted and ground-truth
signals in Fig. 4a and Fig. 4b indicated that the frequency
scale invariant loss effectively guided the learning in the fre-
quency domain.

Figure 5 displays the scatter plot of the predicted and
ground-truth HRs for the testing data, wherein the x-axis
represents the predicted HRs and the y-axis represents the
ground-truth HRs. The overall alignment of the scatter plot
with the y = x line was observed. Such alignment was

Figure 5. Comparison of predicted HRs with ground-truth HRs for
testing data.

maintained even at relatively low and high HRs. In a deep
learning-based approach, achieving such alignment is not
an easy task owing to the data imbalance where the HR
distribution of the training data is heavily concentrated in
specific beats per minute range, leading to potential over-
fitting on this range. However, our proposed method could
accurately predict the wide distribution of HRs even in the
absence of HR distribution data augmentation.

4.5. Ablation studies

To validate the effectiveness of TARM and the use of
frequency scale invariant loss, ablation studies were con-
ducted. The results of ablation studies are summarized in
Tab. 4, where Siloss denotes the frequency-domain scale
invariant loss, TARM denotes the temporal attention refine-
ment module, and the symbol ✓signifies whether to ap-
ply Siloss and TARM or not. The employment of Siloss
and TARM individually resulted in a minor improvement
in MAE compared to the baseline architecture. In contrast,
the utilization of both Siloss and TARM together showed a
substantial increase in MAE. It can be assumed that the use
of TARM for the optimization of long short-term features,
combined with the frequency scale invariant hybrid loss to
guide their learning, may have resulted in a synergistic ef-
fect that led to improved performance.

Table 4. Effectiveness of Siloss and TARM.

Siloss TARM MAE ↓ RMSE ↓ r

0.78 1.1 0.99
✓ 0.75 1.0 0.99

✓ 0.74 1.1 0.99
✓ ✓ 0.70 1.0 0.99
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5. Conclusion and Future Work

This paper proposed a deep learning-based method to
accurately and reliably measure rPPG signals from facial
videos. In Sec. 3.1, a novel baseline architecture, denoted
as LSTC-rPPG, was proposed with the objective of model-
ing long short-term spatio-temporal features and integrating
the long short-term features for improved measurement of
rPPG signals. In Sec. 3.2, a temporal attention refinement
module, referred to as TARM, was proposed to address the
temporal mismatches between the long-term and short-term
features. Furthermore, in Sec. 3.3, a frequency scale invari-
ant hybrid loss was proposed. The frequency scale invari-
ant hybrid loss helped LSTC-rPPG consider long short-term
information of target rPPG signals and also made it eas-
ier to learn frequency-domain characteristics through scale
invariance. To verify the proposed method, experiments
were conducted on the UBFC-rPPG dataset. Our proposed
method demonstrated state-of-the-art performance showing
an MAE of 0.70, RMSE of 1.00, and r of 0.99.

Future studies will focus on more efficient and improved
architecture as well as intra-dataset and cross-dataset ex-
periments on a larger variety of datasets to supplement our
evaluation on a limited dataset.
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