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Facial expressions are one of the most essential channels to communicate a person’s emotional state. In
social interaction, the capability to accurately read subtle changes in facial expressions, which reveal
emotional fluctuations, is critical for 1) comprehending others’ emotions in context and background sit-
uations, 2) identifying responsiveness to others’ emotions, and 3) developing social skills in human–com-
puter interaction. In this paper, we first introduce automatic emotion change detection via facial
expression that discovers timings or temporal locations in a video where facial expression significantly
changes. We propose a weakly-supervised deep emotion change detection framework that does not
require facial expression videos with expensive temporal annotations and instead learns static images
for training. Incorporating these ideas, we performed extensive experiments to demonstrate fundamental
insights into emotion change detection and the efficacy of our framework using three video datasets, i.e.,
CASME II, MMI, and our YoutubeECD. Furthermore, we modified our framework for temporal spotting,
which is the most similar task to emotion change detection, and showed comparable results with
state-of-the-art methods on CAS(ME)2, proving justification for the problem. Even though we only
employed the AffectNet to train our framework rather than the CASME II, MMI, YoutubeECD, and CAS
(ME)2, experimental results demonstrate its exceptional generalization capability in cross-dataset
environments.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Non-verbal communication, i.e., non-language-mediated com-
munication, involves the use of non-verbal cues such as facial
expressions, eye contact, gestures, posture, tone of voice, and body
language. Non-verbal communication is vital in human interac-
tions because it can serve as a guide, an amplifier, or even a substi-
tute for verbal communication [4–6]. In general, non-verbal and
verbal communication complement each other, but non-verbal
aspects in face-to-face interactions may express a completely dif-
ferent meaning [7]. For example, saying ‘‘stop” with a smile or a
neutral facial expression may convey an entirely different inten-
tion. Facial expressions play a significant role in social interactions
among those non-verbal cues because they provide visual cues for
sending and perceiving emotional states via human faces [8].

From this point of view, for nearly three decades, automatic
facial expression analysis has been extensively studied in a variety
of fields because of its practical importance in social robots, smart
video surveillance, patient monitoring, driver monitoring, self-
management interviews, and other human–computer interaction
(HCI) systems [9]. Particularly, research on automatic facial expres-
sion recognition has primarily focused on what facial expressions
are being made. That is, a user’s emotional state is deduced by
an automatic emotion recognition system based on the facial
expressions he or she makes. For instance, [10]’s method discrim-
inates between emotions, i.e., happiness, sadness, disgust, anger,
surprise, fear, and neutrality, by learning and generating the corre-
sponding neutral face image for any facial expression image. With
the success of deep learning technology, numerous emotion classi-
fication algorithms based on facial expression analysis have been
developed, as described in the survey paper [11]. Meanwhile,
[12] proposed a multi-modal emotion recognition system that uses
facial expressions, shoulder gestures, and audio cues in valence-
arousal space based on the dimensional emotion model [13].

To properly understand human emotions through facial expres-
sions, not only is the automatic emotional state recognition task
crucial for non-verbal communication, but also is automatic emo-
tion change detection task for three fundamental reasons:

1. The timing and direction, i.e., positive or negative shift, of emo-
tion change are important factors in understanding emotion status
appropriately with contextual and background situations [14–16].
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Fig. 1. Detection of emotion changes by analyzing an emotion signal from a facial
expression video on MMI dataset [3]. The emotion change detection task identifies
timings or locations in a video where facial expressions significantly shift.
Estimated changepoints provide crucial meaning for comprehending human
emotions. The emotion signal describes the intensity changes of participant’s anger
emotion from our framework. The dotted lines represent changepoints detected in
the signal.
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For example, if a person is hospitalized and has been experienc-
ing persistent sad feelings, the sadness is amplified when he or
she receives unexpected negative news about his or her health.
In this case, automatic emotion recognition merely detects the
user’s emotional state, i.e. sadness. That is, automatic emotion
recognition alone misses important contextual and background
information, which has a significant impact on the user’s emo-
tional state.
2. The timing of emotion change provides critical clues for identify-
ing responsiveness to others’ emotions in social communication
[17]. Responding to others’ emotions is a complex skill that
heavily relies on social and cognitive abilities. People with men-
tal disorders such as Autism Spectrum Disorder (ASD) and alex-
ithymia, who have a poor ability to understand others’
emotions, are known to be unable to respond to others’ emo-
tions automatically and immediately [18,19]. For instance, dur-
ing ASD screening, automatic emotion change detection in
social interaction can provide an objective indicator of emo-
tional response.
3. It is critical for natural HCI systems with social capabilities to
detect when the user’s emotional state changes. Non-verbal
means of communication, i.e., contextual information such as
facial expression, intonation, behavior, gaze, and gesture,
should be interpreted at a certain point in time in order to fully
comprehend the user’s emotional state. That is, the timing of
the user’s emotional change can be considered as a critical time
for grasping the user’s emotional state, which should be com-
prehended along with the context and background situations.
For sociable HCI, results of automatic emotion change detection
can be used as reference points, i.e., beginning or changing
points, of a computer’s interaction method with humans.

Automatic emotion change detection via facial expression finds
timings or temporal locations in a video where facial expressions
shift significantly, as shown in Fig. 1. Despite the importance men-
tioned above, few studies have focused on the automatic emotion
change detection task. [20] reported an initial investigation into
detecting and localizing changepoints based on speech signals
using the Gaussian Mixture Model (GMM). In [21], the automatic
emotion change detection method for the speech modality is also
proposed using a martingale framework. However, to the best of
our knowledge, no research on the automatic emotion change
detection task via facial expressions has been conducted except
for our workshop paper [22], which we extend to this paper.

In the fields of computer vision and pattern recognition, the
closest study to emotion change detection via facial expressions
is the temporal spotting in facial expression videos, which is also
known as temporal localization or segmentation. The temporal
spotting problem is similar to the emotion change detection prob-
lem in that the goal is to find key parts of facial expression videos.
However, the fundamental difference is that the emotion change
detection finds changepoints, whereas the temporal spotting finds
intervals where facial expressions occur over time. In general, the
temporal dynamics of facial expressions are modeled by onset
(i.e., starting point), apex (i.e., peak point), and offset (i.e., ending
point) [23] over time. Temporal spotting identifies intervals based
on the facial expression temporal model. On the other hand, the
emotion change detection does not assume the temporal model
and only identifies changepoints of facial expressions. The tempo-
ral model of facial expressions does not cover complex and subtle
changes in internal emotions due to the following practical reasons
[24]:

1. The temporal model cannot account for all of the temporal
dynamics of spontaneous expressions, e.g., onset-onset-offset and
onset-offset-offset, which occur frequently in a complex manner
2

in real environments. For example, if a user laughs a little and
then laughs a lot or cries a little and then cries a lot, the simple
onset-offset model cannot handle it, resulting in missing impor-
tant context information. In CAS(ME)2 [25], for instance, 44
intervals out of 374 facial expressions have no offset label, indi-
cating that annotators were not able to seek them out. Fig. 2 is a
counterexample of the temporal model in CAS(ME)2, where its
offset label is missing.
2. In real-world situations, the entire temporal sequence, i.e.
neutral-onset-apex-offset-neutral, may not always be available
[26]. Thus, Acted Facial Expressions in the Wild (AFEW) dataset
does not assume the full temporal dynamics of facial expres-
sions for close-to-natural settings. In addition, even if there is
an offset in a micro-expression, it may not appear in the video
due to the camera’s frame-rate limitation.

As a result, from a facial expression video, the onset and offset
points obtained by an automatic spotting algorithm are a subset of
the changepoints obtained by an automatic emotion change detec-
tion method. To demonstrate the justification for the problem, we
modified our framework to produce proper results in the spotting
task by utilizing the relationship between the two tasks, as
described in Section 3.6. Moreover, we conducted extensive com-
parative experiments with state-of-the-art algorithms for the spot-
ting task of the Micro Expression Grand Challenge (MEGC) as
described in Section 4.6.

In this paper, we present, to the best of our knowledge, the first
study to investigate the automatic emotion change detection (ECD)
problem via facial expressions from an engineering perspective. To
tackle the issue, we propose a weakly-supervised Deep Emotion
Change Detection (DECD) framework comprised primarily of a
multi-task emotion recognizer and a changepoint detector. The
Multi-Task Emotion Recognizer (MTER) learns discrimination of
categorical facial expressions as well as valence and arousal repre-
sentations. The MTER extracts an emotion signal, which consists of
frame-level emotion states, using recent Deep Neural Networks
(DNNs) from a facial expression video. Then, our changepoint
detector identifies points with relatively steep and large changes
based on the emotion signal over time. We provide a comprehen-
sive framework for online and offline ECD tasks that includes a
variety of recent DNNs and several existing changepoint detection
approaches.

In summary, the main contributions of our work are:



Fig. 2. A counterexample of facial expression temporal model in CAS(ME)2 dataset. In this video, there are two macro-facial expressions with very slight motions around the
participant’s mouth, but only the second one has an offset label. The temporal model cannot account for all of the temporal dynamics of spontaneous expressions in real
environments. Our proposed framework for emotion change detection is able to identify the changepoints regardless of the temporal model of facial expressions.

B. Han, C.-H. Yoo, H.-W. Kim et al. Neurocomputing 549 (2023) 126439
� We first cast the facial expression-based automatic ECD prob-
lem. We provide a formal definition, practical justification,
and correlation with the most similar task, i.e., temporal spot-
ting, for the problem.

� We propose a weakly-supervised DECD framework that only
learns static facial expression images rather than directly learn-
ing video clips in which emotions change. This strengthens our
method because there are fewer temporal labels, which require
a laborious annotation process, than facial expression labels.

� We demonstrate extensive experimental results that provide
fundamental insights into the facial expression-based ECD task
and validate our ideas on a static image dataset for training, i.e.,
AffectNet [1], and three video datasets for testing, i.e., CASME II
[2], MMI [3], and our own YoutubeECD.

� We adapted our DECD framework and conducted comparative
experiments with state-of-the-art methods for the temporal
spotting task. Without any data from CAS(ME)2-cropped for
training, we show comparable results for the spotting task of
MEGC.

The remainder of this paper is organized as follows. Section 2
introduces the related work, including temporal spotting for facial
expression, changepoint detection, and deep facial expression
recognition. In Section 3, we formulate the facial expression-
based ECD problem and then describe our comprehensive frame-
work and application to the temporal spotting problem. Our exten-
sive experimental results, including the performance of our DECD
framework and comparisons with recent temporal spotting meth-
ods, are presented in Section 4. Then, we conclude and discuss our
work in Section 5.
2. Related Work

2.1. Temporal Spotting for Facial Expression

Temporal spotting for facial expressions is the task of identify-
ing onset-offset intervals in a video. The spotting task is the most
similar to our ECD task, but there are fundamental differences as
mentioned in Section 1. Recently, the temporal spotting task for
the MEGC has attracted many researchers using various DNN based
data-driven approaches. Pan et al. [27] applied a bilinear Convolu-
tional Neural Network (CNN) which is composed of two parallel
streams for feature extraction and a Support Vector Machine
(SVM) as a classifier. Wang et al. [28] used a spatio-temporal
CNN that consists of a 2D-CNN for extracting frame-wise feature
vectors from a video and a 1D-CNN for mixing the feature vectors
3

for the temporal spotting task. Yang et al. [29] also adopted a facial
action unit-based deep learning framework for the spotting task.
Those methods train their DNNs on CAS(ME)2 and SAMM [30]
datasets in a supervised manner. However, due to the lack of data-
sets, those fully-supervised approaches struggle to collect facial
expression video samples and their temporal annotations, i.e.,
onset, peak, and offset frames, for training DNNs. This limits the
generalization capability in a cross-dataset experiment setting.
Our DECD framework, on the other hand, is trained in a weakly-
supervised manner, using only static facial expression images
and their emotion labels rather than facial expression videos and
their temporal labels.

2.2. Changepoint Detection

Changepoint detection has been researched to identify steeply
changing points in a sequential signal along the temporal dimen-
sion since the 1950s [31,32]. Changepoint detection is divided into
two categories: offline and online detection. Offline changepoint
detection algorithms discover changepoints after the whole signal
has been obtained. There are numerous widely used offline meth-
ods, such as binary segmentation [33], sliding window [34], fused
Lasso [35], bottom up [36], and Pruned Exact Linear Time (PELT)
[37].

Online changepoint detection aims to find changepoints in real-
time scenarios. Different from offline approaches, online ones
should determine if the current point is a changepoint or not by
using only signal information from the past to the present. Online
approaches, in particular, use less data than offline approaches to
detect changepoints in streaming signals, making it more difficult
to make correct decisions. Early online approaches were developed
under the assumption that the distribution of signal data was
known [31,32]. In [38,39], online detection has been generalized
by automatic analysis of the distribution of signal data. Based on
Bayesian theory, an online method of [40] was proposed, where
it recursively estimates the probabilistic distribution to determine
whether a changepoint occurs or not. The Bayesian approach is
being actively modified to improve its performance and is being
used in various areas [41,42]. In our DECD framework, we deal
with representative changepoint methods with qualitative and
quantitative experimental results for offline and online ECD tasks.

2.3. Deep Facial Expression Recognition

Facial Expression Recognition (FER) has received steady atten-
tion for several decades. In particular, with the development of
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DNNs, CNN-based approaches based on static facial expression
images, e.g., [43–45], have been intensively investigated for facial
expression classification based on six basic emotions [46]. In addi-
tion, video-based FER approaches are proposed using CNN [47,48],
Recurrent Neural Network (RNN) [49], and Long Short-Term Mem-
ory (LSTM) [50]. Nasir et al. [51] utilized the fuzzy membership to
capture gradual change in human emotion for emotion classifica-
tion in facial videos. Recently, with promising results from Vision
Transformer (ViT) [52] for image recognition, the transformer-
based DNN structures began to be applied to FER [53,54]. We train
the MTER of our DECD framework using several representative
DNNs and validate it for the facial expression-based ECD task.

The amount and quality of FER data used for training DNNs have
a significant impact on the performance of DNN-based FER meth-
ods. Early FER datasets [55,3] are composed of controlled and
posed facial expression image or video data collected in laboratory
environments, whereas more recent FER datasets [56,1] are com-
posed of unrestricted data collected in real environments. The
unrestricted FER datasets, also known as in-the-wild datasets,
include various facial variations in identity, pose, illumination,
and occlusion because they collect diverse facial expression images
or videos by searching with emotion keywords on the Internet.
Using AffectNet [1], the largest in-the-wild FER dataset, we train
our MTER to learn the FER classification and the dimensional infor-
mation on valence-arousal space for properly depicting emotional
states. Furthermore, we constructed our own in-the-wild Youtu-
beECD dataset to validate our DECD framework in real
environments.

3. Proposed Method

In this section, we begin by formulating the ECD problem,
including the problem’s goal and performance criteria. Our DECD
framework consists of three parts, a face detector, an MTER, and
a changepoint detector, as shown in Fig. 3. Face detection is per-
formed from a video input containing facial expression informa-
tion. Based on detected regions, the MTER estimates an
emotional state per frame, which consists of emotion scores, an
arousal value, and a valence value. The frame-level emotion states
extracted from the MTER are concatenated to generate an emotion
signal per video, which is then used for emotion change analysis.
Finally, the emotion signal is analyzed to detect multiple change-
points in a multivariate time series by changepoint detection.
The details are given below.

3.1. Problem Definition

Emotion changes that occur within a person or are caused by
another person provide important clues for understanding a per-
son’s feelings. As mentioned in Section 1, the timings of emotion
changes can be utilized as key indicators for determining a person’s
emotional intelligence or sociable HCI. The goal of the facial
expression-based ECD problem is to discover or locate those timings
or points in time from a video containing human faces where facial
expression shifts significantly or steeply. Based on the facts, we eval-
uate how accurately an automatic ECD approach predicts the tim-
ing of emotion changes. To be specific, we define ground truth
changepoints Tgt and predicted changepoints Tpred in a video of a
person’s facial expressions as:

Tgt ¼ ft1; t2; . . . ; tngtg
Tpred ¼ ft1; t2; . . . ; tnpredg ð1Þ

where ngt is the number of ground truth changepoints in a video
and npred is the number of predicted changepoints from an auto-
matic ECD method.
4

Each ground truth changepoint is compared to all of the pre-
dicted changepoints as shown in Fig. 4 and then precision and
recall of the ECD method are defined as:

Prec: ¼
Xngt
i¼1

min 1;
Xnpred
j¼1

tpðti; tjÞ
 !

=ngt

Recall ¼
Xngt
i¼1

min 1;
Xnpred
j¼1

tpðti; tjÞ
 !

=npred

tpðti; tjÞ ¼
1 if jti � tjj 6 s
0 otherwise

�
ð2Þ

where, tpð�Þ is a function that determines true positive and s is a
time interval threshold in seconds. s should be set to a short value
that reflects the time between changepoints. Note that a duplicated
true positive sample is protected by the function minð�Þ.

We employed the threshold s without using the error between
the ground truth and predicted value for the evaluation criterion.
This is because whether or not a person’s emotional changes can
be detected within an appropriate time, i.e., s, is an important indi-
cator in social communication. We use precision rather than recall
as a quantitative metric in Sections 4.4 and 4.5. This is because we
fix the number of predictions to a predefined number for easy-to-
understand analysis for the ECD task.

3.2. Multi-task Emotion Recognition

For several decades, psychologists have developed diverse emo-
tion models to find out how human emotions work. We adopted a
categorical model [46] and a dimensional model [13] among them
because of their simplicity and generality. The categorical model is
a typical emotion model that represents universal facial expres-
sions based on Paul Ekman’s emotion theory. Seven discrete emo-
tion categories are widely used, which include happiness, sadness,
disgust, fear, anger, surprise, and neutrality. On the other hand, the
dimensional model was developed by Russell and represents an
emotional state in terms of valence and arousal dimensions rather
than in discrete categories. The two emotion models describe dif-
ferent aspects of an emotional state in humans and can play a com-
plementary role in each other.

We designed our deep learning architecture in a multi-task
manner, which covers categorical and dimensional models, to rep-
resent a complex emotional state of humans for each video frame.
Multi-task learning techniques have several advantages compared
to single-task learning methods. One of the most significant bene-
fits is that associated tasks complement one another to improve
the representations of features in input vectors. The categorical
model can represent each emotion by discriminating several emo-
tions in an independent direction, but it cannot represent the mag-
nitude of each emotion. The dimensional one, on the other hand, is
available to represent the magnitude of each emotion, but only has
two directions: valence and arousal. In other words, the categorical
model is expected to improve inter-class discriminability while the
dimensional model is expected to clarify intra-class magnitude
ordering. In addition, multi-task learning improves computational
efficiency and generalization ability in feature space. Taking those
advantages, our method performs emotion state recognition in a
multi-task manner based on the two emotion models as follows.

Given input facial images x and their labels ye; yv , and ya, we
constitute a feature extractor f ðx; hf Þ with a trainable parameters
hf . Then, an emotion classifier is defined as eðf ðxÞ; heÞ, consisting
of the output of the feature extractor with a trainable parameter,
he. Similarly, a valence regressor is represented as vðf ðxÞ; hv Þ and
an arousal regressor is formulated as aðf ðxÞ; haÞ. The loss function
Eð�Þ of our MTER, MTERðx; ye; yv ; ya; hf ; he; hv ; haÞ, is defined as:



Fig. 3. The overall architecture of our framework. Our DECD framework consists of a face detector, a multi-task emotion recognizer (MTER), and a changepoint detector. The
MTER produces an emotion signal, which is composed of emotion scores and valence-arousal values, and the emotion signal is analyzed by the changepoint detector to
extract multiple changepoints per video sample.

Fig. 4. Evaluation criterion of emotion change detection problem. GT represents the
ground truth of a changepoint and s is a time interval threshold. Each ground truth
changepoint is compared to all of the detected changepoints based on the threshold
s.
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EðMTERðx; ye; yv ; ya; hf ; he; hv ; haÞÞ
¼ keCCEðeðf ðxÞÞ; ye; hf ; heÞÞ þ kvL2ðvðf ðxÞÞ; yv ; hf ; hvÞ

þ kaL2ðaðf ðxÞÞ; ya; hf ; haÞ ð3Þ

where, ye; yv , and ya stand for labels of the emotions, valence, and
arousal of facial images x. CCEð�Þ depicts the loss function of cate-
gorical cross entropy for the multi-class classification problem.
L2ð�Þ describes a function of mean squared error and ke; kv , and ka
are weight values for each task.

The emotional state deduced from the MTER is represented as a
nine-dimensional vector, which consists of seven dimensions for
confidence values of categorical emotions, one dimension for a
valence value, and one dimension for an arousal value. After esti-
mating the nine-dimensional emotion state, the frame-level emo-
tion state is accumulated into an emotion signal that illustrates
emotional information from video input.

3.3. Weakly Supervised Learning

To properly train DNNs, it is necessary to prepare large-scale
datasets with accurate annotations. However, annotating temporal
labels on a large amount of facial expression video data is a time-
consuming process. In addition, there exists substantial ambiguity
in annotating facial expression temporal labels, which leads to
5

inconsistency in temporal labeling. For these reasons, facial expres-
sion video data with temporal labels is quite insufficient to appro-
priately train the MTER for the ECD task. To overcome these
problems, we train our DECD framework in a weakly-supervised
manner using static facial expression images with categorical and
dimensional emotion annotations, which are much more sufficient
than video data with temporal labels.

Weakly supervised learning is a way to learn a high-level task,
such as ECD on facial expression videos, from a low-level task, such
as emotion recognition on static facial expression images. To be
specific, the MTER in our DECD framework uses 2D DNN architec-
tures, instead of 3D DNNs, as our backbones that can easily learn
generic visual features through pre-training from large-scale image
datasets, such as ImageNet [57]. The visual features from large-
scale datasets should help generalization performance of our
framework on facial expression videos for the ECD task. For this,
we initialize the MTER using a pre-trained model on ImageNet.
Based on the initialized MTER, instead of directly learning facial
expression videos with their temporal labels, our DECD framework
learns static facial expression images with their emotion state
labels for frame-level video encoding, resulting in its remarkable
generalization capability in cross-dataset environments as
described in Section 4.

3.4. Noise Filtering

Once an emotion state signal is obtained, the DECD framework
performs a noise filtering process to remove outliers, such as high-
frequency noise, and identify the general tendency of emotional
flow from the signal using a Savitzky-Golay filter [58]. Since our
framework determines changepoints based on the emotion score
retrieved from each frame in a video, it can result in high-
frequency noise. To be specific, it may be caused by the instability
of the trained model or by the prediction noise from variations in
illumination, facial pose, and partial occlusions of facial images.
The Savitzky-Golay filter is a sort of low-pass filter well-known
for its characteristics of reducing noise while maintaining the
height of the signal shape and peaks of a waveform. Thus, the
smoothing filter is necessary to reduce inessential details in the
signal. The discrete nine-dimensional vector of the emotion state
signal with n frames in a video can be defined as:



Fig. 5. Bottom-up merge approach for offline changepoint detection. It repeatedly
merge consecutive sub-signals until a stopping criteria is satisfied. In this case, the
stopping criteria is that the number of changepoints is two points.
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si ¼ fsið0Þ; sið1Þ; . . . ; siðn� 1Þg
s:t: 0 6 i < 9

ð4Þ

The filter performs a moving polynomial fit on 2M þ 1 points.
The polynomial function pðtÞ with order N is denoted as:

pðtÞ ¼
XN
k¼0

wktk ð5Þ

where, wk depicts a coefficient of the polynomial function pðtÞ.
Then, local least-square approximation error eN between the

signal and the polynomial function can be described as:

eN ¼
XM
t¼�M

pðtÞ � siðtÞð Þ2 ð6Þ

A filtered signal ri is calculated by using a discrete convolution
operation as:

riðtÞ ¼
XM

m¼�M

h½m�siðt �mÞ

¼
XtþM

m¼t�M

h½t �m�siðmÞ
ð7Þ

where h½�� denotes a finite impulse response that is equivalent to the
least-square polynomial approximation.

The filtered signal ri is obtained by repeatedly performing the
convolution operation with a moving window of 2M þ 1 width
on the emotion state signal si.

3.5. Changepoint Detection

After the noise filtering process, our method conducts change-
point detection on the emotion signal. Changepoint detection algo-
rithms are categorized into offline or online methods depending on
whether they are performed on a whole signal from entire frames
or on a partial signal in real-time. When analyzing recorded video
inputs, we employ an offline method to detect changepoints based
on entire video frames. On the other hand, when detecting emo-
tional changes in a real-time situation such as a robot, we utilize
an online method to obtain immediate results.

3.5.1. Offline changepoint detection
We use a bottom-up merge approach for offline changepoint

detection because of its simplicity and effectiveness. The bottom-up
merge method splits a whole signal into a large number of short
sub-signals. Then, it repeatedly merges consecutive sub-signals if
the cost difference between the sub-signals is comparatively small,
which implies there isno largeemotionchanges.Thoseprocesses con-
tinueuntil the specifiednumberof changepoints is reachedor thecost
difference is greater than a threshold value. Fig. 5 shows how the
bottom-up merge approach works for offline changepoint detection.

To be specific, we first measure the amount of change in the sig-
nal to find points where the emotion signal changes. The degree of
change in the signal, or homogeneity, is measured to quantify
whether there are drastic changes in the signal itself. To reflect
the degree of changes in the nine-dimensional emotion signal r,
we integrate it into a one-dimensional signal r� by applying the
median filter to it along the dimension axis. Using the radial basis
function (RBF) [59], the cost function Cð�Þ for a homogeneity mea-
sure of a sub-signal r�ðts; teÞ from ts to te is defined as:

Cðr�ðts; teÞÞ ¼ ðte � tsÞ � 1
te�ts

Xte
j¼tsþ1

Xte
k¼tsþ1

exp �ckr�ðjÞ � r�ðkÞk2
� �

s:t: c > 0
ð8Þ
6

where, c denotes a bandwidth parameter for the radial basis kernel.
The cost function produces a low value if a signal contains few

changepoints. A large cost value means that a signal has several
changepoints. Using the cost function, the distance between two
consecutive sub-signals can be obtained as:

Dist r�ðts; tmÞ; r�ðtm; teÞð Þ ¼ Cðr�ðts; teÞÞ � Cðr�ðts; tmÞÞ � Cðr�ðtm; teÞÞ
s:t: 0 6 ts < tm < te 6 n� 1

ð9Þ
The distance between consecutive sub-signals increases when

the cost of an entire signal is high and the total cost of its subse-
quent sub-signals is low, indicating that the two signals are hetero-
geneous. After obtaining all the distances between successive sub-
signals, the two signals with the smallest distance are combined
repeatedly. If the number of changepoints is known and set by a
user, our method stops the iterative merge process when the num-
ber of sub-signals reaches the number of changepoints. Otherwise,
the stopping criteria based on the cost difference between the two
sub-signals is defined as:

Dist r�ðts; tmÞ; r�ðtm; teÞð Þ P pen ð10Þ
If the penalty value, pen, is small, our method sensitively

responds to changes in the signal, resulting in many detected
changepoints. Conversely, if the pen is large, our method tries to
detect a few significant changepoints.

3.5.2. Online changepoint detection
We also developed an online changepoint detection method to

find emotional changes based on the Bayesian theory [40] for real-
time applications. The bayesian online changepoint detection
approach identifies anomaly changes based on history information
at regular intervals. When a new emotion state value riðt þ 1Þ is
received, a posterior probability is calculated based on a previous
signal rið0; tÞ as follows.

P riðt þ 1Þ j rið0; tÞð Þ ¼
X
‘t

Pðriðt þ 1Þ; ‘t j rið0; tÞÞ

¼
X
‘t

P riðt þ 1Þ j ‘t; rið0; tÞð ÞP ‘t j rið0; tÞð Þ

ð11Þ
where ‘t denotes the run lengths, indicating time length at t since
the last changepoint, for calculating a marginal probability over it.

The predictive probability P riðt þ 1Þ j ‘t ; rið0; tÞð Þ can be solved
by using a recursive form as in Eq. (13). Then, we have the poste-
rior probability P ‘t j rið0; tÞð Þ to be solved.
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P ‘t j ri 0; tð Þð Þ ¼ P ‘t; ri 0; tð Þð Þ
P ri 0; tð Þð Þ ð12Þ

The posterior is proportional to the joint probability P ‘t ; rið0; tÞð Þ
and it can be derived to the recursive form as follows.

P ‘t; rið0; tÞð Þ ¼
X
‘t�1

P ‘t; ‘t�1; rið0; t � 1Þ; riðtÞð Þ

¼
X
‘t�1

P ‘t; riðtÞ j ‘t�1; rið0; t � 1Þð ÞP ‘t�1; rið0; t � 1Þð Þ

¼
X
‘t�1

P ‘t j ‘t�1ð ÞP riðtÞ j ‘t�1; rið0; t � 1Þð Þ

� P ‘t�1; rið0; t � 1Þð Þ ð13Þ
When a changepoint is detected, the run length ‘t is reset to 0,

otherwise it becomes ‘t�1 þ 1. Then, the conditional prior in terms
of the run length P ‘t j ‘t�1ð Þ can be obtained by using the hazard
function Hð�Þ [60].

P ‘t j ‘t�1ð Þ ¼
Hð‘t�1 þ 1Þ if ‘t ¼ 0
1� Hð‘t�1 þ 1Þ if ‘t ¼ ‘t�1 þ 1
0 otherwise

8><
>: ð14Þ

where we use a constant hazard function H ¼ 1=k that is not depen-
dent on the run length ‘t and the time t. A user parameter k denotes
an expected length between two changepoints in the emotion
signal.

To calculate the posterior predictive in Eq. (13), we assume that
the sub-signal follows a normal likelihood with an unknown mean
and variance as:

ðriðtÞ j ‘t�1; rið0; t � 1ÞÞ � Nðl; r2Þ ð15Þ
Using this assumption, we can calculate the posterior predictive

as:

P riðtÞ j ‘t�1; rið0; t � 1Þð Þ
¼
Z
l;r2

N riðtÞ j l;r2� �
P l;r2 j ‘t�1; rið0; t � 1Þ� �

dðl;r2Þ ð16Þ

However, this integral is difficult to compute, so we use the con-
jugate before getting a derived closed-form [61]. The distribution
of the conjugate prior in terms of the normal distribution is the
Normal-Gamma distribution. Then, the posterior predictive can
be obtained through the Student-T distribution [62]:

P riðtÞ j ‘t�1; rið0; t � 1Þð Þ ¼ t2a riðtÞ j l̂;bðK þ 1Þ
aK

� �
ð17Þ

where a;b; l̂;K are the posterior parameters. The posterior predic-
tive follows a Student-T distribution with a center at l̂, precision
aK=bðK þ 1Þ, and degree of freedom 2a.

When a new emotion state value is received, the four parame-
ters in Eq. (17) are updated every time as:

K ! K þ 1;a ! aþ 0:5;

l̂ ! Klþx
Kþ1 ; b ! bþ K

Kþ1
ðx�l̂Þ2

2
ð18Þ

Finally, using the Student-T distribution, we can obtain the pos-
terior probability for change prediction, i.e., P riðt þ 1Þ j rið0; tÞð Þ.
We perform change prediction by comparing the ðt þ 1Þ-th poste-
rior and the t-th posterior along the temporal dimension. For the
nine-dimensional emotion signal, we average over the difference
between the two posterior probabilities as follows:

1
nd

Xnd�1

i¼0

P riðt þ 1Þ j rið0; tÞð Þ � P riðtÞ j rið0; t � 1Þð Þð Þ < w ð19Þ
7

where, nd is the number of dimensions of the emotion signal and w
is a threshold value for the bayesian decision.

The Bayesian method treats the point as a changepoint in the
emotion signal if this criterion is satisfied.

3.6. Application to Temporal Spotting

Our DECD framework can be applied to the facial expression
spotting task, which identifies intervals where macro and micro
facial expressions occur. We consider the intervals obtained by
facial expression spotting, which is composed of onset and offset
points, to be a subset of detected emotion changepoints from our
framework. Most facial expression studies assume that emotional
changes occur only in the temporal model of facial expressions,
which are composed of onset, peak, and offset. Some changepoints,
however, are not described by the temporal model of facial expres-
sions [26]. For example, if a facial expression occurs at a very brief
moment in a video sample, such as a micro-expression, only the
onset is visible and the offset is not. The CAS(ME)2 [25] contains
tens of samples that lack offset labels because annotators discov-
ered the onset and peak points but not offset points. Taking these
factors into account, we consider the detected points from the ECD
task to be a superset of those from the facial expression spotting
task.

For the facial expression spotting task, we need to remove
unnecessary changepoints to detect onset-offset intervals. A set
of the detected emotion changepoints from our framework Tecd is
defined as:

Tecd ¼ ft1; t2; . . . ; tnpg ð20Þ
where, np represents the number of detected changepoints.

Then, all intervals related to facial expression dynamics Iecd are
represented as a combination of the detected changepoints Tecd:

Iecd ¼ fðt1; t2Þ1; ðt1; t3Þ2; . . . ; ðtnp�1; tnp Þnig
ni ¼ C2

np
ð21Þ

where C2
np is the number of all intervals by a combination of the

detected changepoints Tecd.
To find intervals composed of onset, peak, and offset, we filter

out intervals that do not follow the temporal dynamics of facial
expressions. A peak point tpeak of an interval in Iecd is obtained by
using an onset point ton and an offset point toff as:

tpeak ¼ floor tonþtoff
2

� �
s:t: 0 6 ton < tpeak < toff < np

ð22Þ

where, floor denotes a floor function to obtain an integer value.
We can obtain a set of spotted intervals Ispot from the set Iecd by

selecting only the intervals that satisfy the following condition:

min riðtonÞ � riðtpeakÞ; riðtoff Þ � riðtpeakÞ
� �		 		

toff � ton
P g ð23Þ

where, ri is one dimension of the nine-dimensional emotion signal
used as a reference signal to calculate peak points and emotion state
values. g denotes a threshold value for removing intervals that do
not follow the temporal dynamics of facial expressions.

In this way, our DECD framework can be used to produce the set
of spotted intervals Ispot , which consists of onset and offset pairs in
a facial expression video. This modified version of our DECD frame-
work, DECD-spot, produces appropriate results for the temporal
spotting task, as described in Section 4.6, by exploiting the rela-
tionship between the ECD and temporal spotting tasks. Not only
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that, but those experimental results demonstrate the justification
of the ECD problem.
4. Experimental Results

Generally, the temporal model of emotion changes in facial
expression is modeled by onset (i.e., starting point), apex (i.e., peak
point), and offset (i.e., ending point) [23] along the temporal
dimension. Based on the temporal dynamics of facial expression,
we assume that changes in emotions occur at onset, apex, and off-
set points according to facial movements. This is because facial
expression datasets, which we used for experiments such as
CASME II and CAS(ME)2, only provide temporal labels for onset,
apex, and offset indices, not changepoint labels. Furthermore,
MMI dataset provides videos of posed facial expressions in labora-
tory environments, so participants for MMI made their facial
expressions according to the temporal model. However, our Youtu-
beECD dataset does not assume the temporal model of facial
expressions and provides only a changepoint per video clip. In
order to clarify the ECD task, we set the goal of detecting emotion
change to finding an onset frame in a facial expression video in this
section except for Section 4.6. We consider a changepoint in a You-
tubeECD video as an changepoint in it.

In this section, all of the ECD and temporal spotting experi-
ments are carried out in cross-dataset settings. For validation of
our DECD framework, we tested it on CASME II, MMI, CAS(ME)2,
and our own YoutubeECD datasets without training on split sets
from them. To be specific, even though their video data and annota-
tions were created in totally different environments, we did not train
our DECD framework on CASME II, MMI, CAS(ME)2, or our own Youtu-
beECD datasets; instead, we only used AffectNet. This is a significant
advantage of our weakly-supervised DECD framework since it demon-
strates exceptional generalization capacity of our framework for the
ECD problem. The description of the datasets as well as the imple-
mentation details, ablation study, main results, and comparison
experiments with the other approaches are given below.

4.1. Datasets

For evaluation of the ECD task, we utilized five datasets, i.e.,
AffectNet [1], CASME II [2], MMI [3], YoutubeECD, and CAS(ME)2

datasets. To train the MTER, we used the AffectNet dataset by using
7-class emotion categories and values for valence and arousal. To
evaluate the overall DECD framework, we used CASME II, MMI,
and YoutubeECD datasets, which have ground truths of onset or
changepoint along the temporal dimension. For comparative
experiments with state-of-the-art methods, we employed the
CAS(ME)2 [25] dataset for the facial expression spotting task. The
CASME II, MMI, and CAS(ME)2 datasets are recorded in lab-
controlled environments, where facial expressions in videos are
captured by several fixed cameras. On the other hand, our Youtu-
beECD dataset provides online videos that have spontaneous and
natural facial expressions in unrestricted environments from the
Youtube website. Details of the datasets are described as follows.

4.1.1. AffectNet
AffectNet is an in-the-wild facial expression dataset that is col-

lected by querying 1;250 emotion-related keywords on search
engines such as Google, Bing, and Yahoo. AffectNet is the largest
facial expression dataset which contains more than 1 M facial
images from the Internet and annotations of facial expressions,
valence, and arousal. We used a total of 287;401 facial images,
which have annotations for seven classes (i.e., neutrality, happi-
ness, sadness, surprise, disgust, fear, and anger) out of eleven emo-
tion categories and values for valence and arousal. AffectNet
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officially provides training and validation sets which have
283;901 and 3;500 facial images, respectively. Using this dataset,
we train our multi-task recognizer, which includes a seven-class
classifier for facial expressions and a regressor for valence and
arousal.

4.1.2. CASME II
CASME II is a micro-expression video dataset recorded at the

high temporal resolution, 200 fps, in the lab environment. The
micro-expressions are very rapid and subtle facial expressions that
usually last between 0:04 and 0:5 secs [63–65] while the macro-
expressions occur between 0:5 and 4 s. There are a total of 255
video clips which consist of five classes of micro-expressions, i.e.,
surprise, repression, happiness, disgust, and others. This dataset
officially provides the temporal dynamics information, which
includes the frame number of onset, apex, and offset along the
temporal dimension in image sequences. We utilized all of the
video clips in the dataset with cropped faces and annotations of
the onset frame to evaluate our method.

4.1.3. MMI
MMI is an in-the-lab facial expression dataset that contains

over 2;900 image sequences recorded at 25 fps from 75 subjects.
To test ECD approaches, we used 127 image sequences related to
five emotion categories (i.e., happiness, sadness, disgust, fear, and
anger), 30 subjects, low-resolution images, and frontal faces. All
of the image sequences in this dataset are manually and tightly
segmented from the beginning (i.e., onset frame) to the end (i.e.,
offset frame) of the facial expressions. However, for testing ECD
approaches, we need full videos, which must contain all the tem-
poral dynamics from the neutral state of facial expressions to the
onset, apex, and offset, with their annotations for temporal dynam-
ics such as the frame number of the onset in each video. To evalu-
ate detection of the onset point in a video clip, we reconstructed
the video by replicating the first frame image, which has a neutral
face, 15 times at the beginning of it. Then, we annotated the 16th
frame as the onset frame, which is used for the ground truth infor-
mation in the ECD task.

4.1.4. YoutubeECD
To evaluate our method in-the-wild environment, we con-

structed the YoutubeECD dataset, which contains emotional
changes of ASD children or infants. This dataset is composed for
analysis of social interactions and non-verbal communications
related to facial emotion changes in ASD children or infants. In gen-
eral, children or infants with ASD have difficulty in emotional
interaction with others since the way and timing of revealing emo-
tions tends to be different from those with TD [18]. In this regard,
detecting emotion changes can provide essential clues for ASD
screening of children or infants.

We collected a total of 461 videos by querying keywords, such
as autism, autism spectrum disorder, child, and infant, on the You-
tube website. Since the YoutubeECD dataset is composed of facial
videos, which have emotion changes, from unrestricted environ-
ments, they inherently have large variations in facial expression,
identity, pose, illumination, and occlusion as shown in Fig. 6. This
is a very important property as a test environment for developing
ECD algorithms that are robust to various variations. We also anno-
tated the frame number of a changepoint per facial expression
video clip, three classes of emotional categories (positive, negative,
and neutral), and expression intensity ranging from 0 to 3. All
video clips are segmented with a margin of around 1:0 to 3:0 secs
based on the changepoint we annotated. For testing ECD methods,
we used 134 video clips that have annotations of positive and neg-
ative facial expressions. Due to the privacy concerns when using



Fig. 6. Examples of the YoutubeECD. We blurred faces in captured images of videos
due to the privacy issue.
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facial images of children and infants, we did not open our Youtu-
beECD dataset to the public.
4.1.5. CAS(ME)2

CAS(ME)2 [25] is a dataset for the spotting task of spontaneous
macro-expression and micro-expression. The dataset contains 87
long videos recorded at 30 fps with annotations of onset, peak,
and offset indices along the temporal dimension. We employ this
dataset to compare our proposed method to the-state-of the-art
methods for the facial expression spotting task. To be specific, we
use the CAS(ME)2-cropped version, which officially provides face
regions of long videos from Micro-Expression Grand Challenge
(MEGC) 2021 [66]. The CAS(ME)2-cropped dataset includes 300
macro-expressions and 57 micro-expressions with an average
duration of 148 s.
4.2. Implementation Details

Based on the fact that the micro-expression occurs for a short
moment (6 0:5 secs) [65], we set the s to 0:2 secs on the evaluation
criterion, Eq. (2) for Sections 4.4 and 4.5. This ensures that a
detected changepoint does not deviate from the range of micro-
expression. Our method first detects facial regions in a video input
using RetinaFace [67]. All detected facial images are resized to
100� 100. For multi-task emotion recognition, we utilized a
ResNet [68] network as our backbone network. Once the nine-
dimensional emotion state vectors are extracted from the MTER
as described in Section 3.2, we concatenate the vectors to compose
an emotion signal, which will be analyzed to find multiple change-
points. To train the MTER, we initialized our MTER using a pre-
trained model on ImageNet and fine-tuned it on AffectNet using
the stochastic gradient descent optimizer with a batch size of
512 and the number of training epochs of 100. The initial value
of the learning rate was set to 0:01 and it decreases by 10 times
every 30 epochs.

After composing the emotion signal, we conducted a noise fil-
tering process to remove outliers in the signal through the
Savitzky-Golay filter [58] as described in Section 3.4. We used 17
frames as the width of the moving window and a 13-degree poly-
nomial to fit the extracted signal to the filter.

For changepoint detection, we employed bottom-up, binary
segmentation, sliding window, dynamic programming, and PELT
approaches to quantitatively compare results for offline change-
point detection. We implemented those algorithms by using a
python library, ”Ruptures” [69]. For online approaches, we imple-
mented the Bayesian approach and a gradient-based approach to
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predict whether an emotional change occurs or not in real-time.
For the Bayesian online changepoint detection method, we used
a library, ”Baysian Online Changepoint Detection in Python” [40],
and initialized the posterior parameters to
l ¼ 0;K ¼ 1;a ¼ 1; b ¼ 1. The w is set to zero for the Bayesian
decision.

For an easy-to-understand analysis, we performed experiments
based on the number of changepoints detected by those change-
point detection methods. In more detail, in the cases of binary seg-
mentation, bottom-up, sliding window, dynamic programming,
and gradient-based methods, we conducted experiments assuming
that the number of changepoints is known. That is, those five
methods find as many changepoints as the number of change-
points specified. Note that, among the offline methods, the binary
segmentation, bottom-up, and sliding window approaches can per-
form change detection by setting either the pen value or the num-
ber of changepoints as described in Section 3.5.1. On the other
hand, because the PELT method is not based on the assumption,
the number of detected changepoints was controlled by adjusting
the pen value. The Bayesian method was tested based on the k
value because the number of changepoints detected is more
dependent on the k value than b value as described in Section 3.5.2.

For the temporal spotting task, we used ResNet-18 as an MTER
backbone, bottom-up with a pen as a changepoint detector, and
RBF as a cost function without the noise filtering process. As a ref-
erence signal of Eq. (23), we empirically set the ‘Happiness’ signal
from the nine-dimensional emotion signal.

4.3. Temporal Dynamics of Emotion Changes in Facial Expression

We first performed qualitative experiments for the visualization
of signal outputs from our DECD framework. Our method extracts
an emotion signal from a video clip that has faces and their facial
movements, and analyzes it to detect emotional changepoints,
which are start points or breakpoints that separate sub-signals
along the temporal dimension of the signal. Fig. 7 shows results
from our emotion changepoint detection method using two video
samples in MMI and CASME II datasets. Note that the samples from
MMI and CASME II are recorded at 25 fps and 200 fps respectively.
Due to the recording speed, extracted emotion signals have differ-
ences in the temporal resolution of graph visualization.

The moments of emotional changes in the upward or down-
ward direction appear consistently along the temporal dimension
in all of the signals. In particular, in the case of the anger signal
from the MMI sample, the value of the signal changes steeply
upward at the moment of onset. Similarly, signals from the other
emotional dimensions also show steep changes at the onset point.
Based on each multivariate signal, our method successfully
detected an onset point (red line) within s (green shading) in Eq.
(2), i.e., 0:2 secs, compared to one of the ground truth (green line).

4.4. Ablation Study

We conducted experiments on the ablation study to validate
improved performance by changing or removing key components
of our framework. To be specific, we verified the effectiveness of
our backbone network for the MTER, the noise filtering, the cost
function, and the signal type of the emotion signal for our DECD
framework. In this ablation study, in order to clarify the ECD task,
we set the goal of detecting emotion change to find an onset frame
in a facial expression video. We used CASME II dataset because
there is no public ECD dataset. A video sample on CASME II has
one facial expression occurrence per sample with the ground truth
information of an onset in facial expression dynamics. We tested
our method on onset detection based on the assumption that the
number of changepoints is known and that there are two signifi-



Fig. 7. Emotion signals extracted from two video samples, one annotated as an angry expression from the MMI dataset and one with happiness from the CASME II dataset.
The emotion signal consists of nine dimensions of seven emotion classes, valence, and arousal. The green line represents the ground truth (GT) of the onset point in facial
expression dynamics, and the red line denotes a detected point from an offline changepoint detection method. The green shading indicates the ground truth interval for the
onset point. Each row shows a signal from one out of the nine dimensions of an emotion signal. (Sur.: Surprise, Fea.: Fear, Dis. :, Disgust, Hap.: Happiness, Sad.: Sadness, Neu:
Neutrality, Val.: Valence, Aro.: Arousal).
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cant changepoints, i.e. onset and offset points, per sample on
CASME II. Namely, we set the number of changepoints to two,
which is composed of onset and offset points along the temporal
dimension, and the first point detected by our method is used for
an estimated onset point as described in Fig. 7. Because the quan-
tity of predictions from our algorithm is set, precision is utilized to
assess its performance rather than recall, which is also fixed.
4.4.1. DNNs for multi-task emotion recognition
The MTER provides a nine-dimensional emotion signal from a

facial video. This is achieved by training our backbone DNN using
the train set of the facial images in the AffectNet dataset with
labels for seven emotion classes and dimensional values for
valence and arousal. We verified the quality of a frame-level emo-
tion state, which composes an emotion signal, on the validation set
of AffectNet and the test set of RAF [56] by training several DNNs
widely used for facial expression recognition. We used the RAF test
set to evaluate cross-dataset performance of the MTER when
trained on the AffectNet train set. We also conducted the onset
detection experiments on CASME II dataset to evaluate ECD perfor-
mance. As can be seen in Table 1, SwinT shows the highest perfor-
mance in the seven-class emotion classification and regression of
valence and arousal on the AffectNet. However, the Transformer-
based architectures such as ViT and SwinT do not perform well
on the RAF test set and CASME II due to a lack of inductive bias.
ResNet-50 achieves the highest precision in the onset detection
task because of its exceptional generalization ability in a cross-
dataset setting. Note that the precision does not increase as the
error decreases. This is because the ECD task aims to predict within
an appropriate time, as mentioned in Section 3.1. We used ResNet-
50 as our backbone for the MTER in the other ablation
experiments.
4.4.2. Noise filtering
Since each emotional state is extracted at the frame level, an

emotion signal extracted from the MTER would be noisy. The signal
noise is caused by the identity of facial images, changes in facial
10
pose, illumination changes, occlusion, and other factors. To reduce
signal noise while preserving the signal’s global shape, we employ
noise filtering methods. We investigated the impact of three repre-
sentative filtering algorithms that smooth a signal on the onset
detection task. The Savitzky-Golay filter achieves the highest pre-
cision with the largest gap from the raw signal as shown in Table 2.
4.4.3. Cost function for distance measure
We also conducted the ECD experiments to validate the cost

functions in a changepoint detection algorithm. A cost function
of changepoint algorithms measures the homogeneity of sub-
signals to find changepoints in an emotion signal. The homogeneity
is utilized to distance measure between sub-signals in an emotion
signal. We employed six cost functions to verify the performance of
our method, as shown in Table 3. Among them, the L1-median cost
function produces the best precision on the ECD task. The L1-
median cost function is generally robust to a shift in the median
value of a sub-signal [76]. In other words, because steep changes
in emotion signals occur frequently, the L1-median that reflects
these changes in the cost value produces good results. However,
the RBF shows the best performance in average error, but not in
ECD precision.
4.4.4. Emotion signal type
In addition, we performed experiments to verify the effective-

ness of the extracted nine-dimensional emotion signal. We com-
posed six types of emotion signals as ‘Happiness’, ‘Neutrality’,
‘Emotion’, ‘Predicted Emotion’, ‘Valence & Arousal’, and ‘All’ based
on the extracted signal as shown in Table 4. The two signal types of
‘Neutrality’ and ‘Emotion’ show comparatively high performance.
Because the values of the ‘Neutrality’ signal type are converted to
probability values using the softmax function at the final layer of
the MTER, they are closely related to the remaining six emotion
signal values in the ‘Emotion’ one. In other words, the ‘Neutrality’
signal type can be regarded as a representative signal of the ‘Emo-
tion’ signal type. The ‘Predicted Emotion’ signal type is composed
of maximum values along the temporal dimension in one of ’Emo-



Table 1
Ablation study on various DNN backbones to extract a frame-level emotion state on onset detection. The results show the accuracy of the emotion classification task and mean
squared errors of regression tasks for valence and arousal on the validation set of AffectNet and the test set of RAF

Backbone Networks Emo. Acc. (%) Val. MSE Aro. MSE ECD Prec. (%) Avg. Err. (sec)

Dataset Aff. RAF Aff. Aff. CASME II CASME II

RegnetX [70] 58:3 66:7 0:098 0:110 81:96 0:1236
ViT-base [71] 58:0 50.0 0:094 0:099 78:43 0:1555
SwinT [72] 59:9 50:0 0:092 0:094 80:78 0:1438

MLP-Mixer [73] 53:1 83:3 0:117 0:115 79:61 0:1405
ResNet-18 [74] 58.7 75.0 0:097 0:107 83.92 0.1302

ResNet-50 57:6 75.0 0:104 0:100 84:71 0.1291
ResNet-152 57:3 83:3 0:107 0:108 71:76 0:1823

(Emo.: Emotion, Acc.: Accuracy, Val.: Valence, Aro.: Arousal, MSE: Mean Squared Error, Prec.: Precision, Err.: Error, Aff.: AffectNet)

Table 2
Ablation study on noise filtering for onset detection on CASME II. Note that we assume the number of changepoints in a video is known and is fixed at 2. The first detected
changepoint is used for onset detection.

Filtering Methods Kernel Size Poly-order r ECD Prec. (%) Avg.Err. (sec)

Raw Signal - - - 82:75 0:1278
Gaussian 17 - 1 83:14 0:1272

Bilateral [75] 17 - 1 83:92 0:1269
Savitzky-Golay [58] 17 13 - 84:71 0:1291

Table 3
Ablation study on cost function for onset detection on CASME II. Note that we assume
the number of changepoints in a video is known and is fixed at 2. The first detected
changepoint is used for onset detection.

Cost Functions ECD Prec. (%) Avg. Err. (sec)

Normal 79:61 0:1346
Cosine 83:14 0:1317
Linear 78:43 0:1572

RBF [59] 82:75 0:1275
L2-mean 83:92 0:1287
L1-median 84:71 0:1291

Table 4
Ablation study on emotion signal type for onset detection on CASME II. Dim. denotes
the dimension of a signal. Note that we assume the number of changepoints in a video
is known and is fixed at 2. The first detected changepoint is used for onset detection.

Signal Type Dim. ECD Prec. (%) Avg. Err (sec)

Happiness 1 72:55 0:1840
Neutrality 1 82:35 0:1444
Emotion 7 83:14 0:1319

Predicted Emotion 1 79:22 0:1578
Valence & Arousal 2 81:96 0:1373

All 9 84:71 0:1291
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tion’. Among the signal types, the ‘All’ signal type achieves the best
performance, which indicates that all the nine-dimensional infor-
mation in an emotion signal is effectively applied to the ECD task.

4.5. Performance of Changepoint Detection Algorithms

In this subsection, we report the main experimental results to
validate the efficacy of our DECD framework in various environ-
ments using two in-the-lab datasets, i.e., CASME II and MMI, and
an in-the-wild dataset, i.e., our YoutubeECD dataset. In detail,
based on our proposed framework, we verify the ECD performance
of several offline and online changepoint detection approaches on
hundreds of video clips with macro and micro facial expressions.
Similarly to Section 4.4, we perform onset detection experiments
here, but we control the user’s threshold, such as pen or the num-
ber of changepoints in Section 3.5.1 so that the number of detected
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changepoints ranges from 1 to 10, rather than limiting it to 2. In
other words, along the temporal dimension, all detected change-
points are compared to the onset point’s ground truth in a video
clip.

On the extracted emotion signals, we test binary segmentation
(BinSeg) [33], sliding window (Window) [34], dynamic program-
ming (DynP) [77], pruned exact linear time (PELT) [37], and
bottom-up (BottomUp) [36] methods for offline changepoint
detection. We also perform experiments on simple gradient-
based and Bayesian approaches for online changepoint detection.
To fairly compare the performance of those methods, we modified
online methods into offline methods. In the case of the gradient-
based method, a changepoint was not detected by simply compar-
ing a gradient value of the emotion signal with a user’s threshold,
but the changepoint was detected based on the ranking of gradient
values in the entire signal. The Bayesian approach was evaluated
based on the k of the constant hazard function H in Eq. (14), a user
parameter for the expected length, to show performance more
directly.

Despite the fact that almost all the CASME II video samples con-
tain micro-expressions, which last in 0:5 secs, the overall algo-
rithms show relatively high performance on it, as shown in
Table 5. This is because video samples on the CASME II are
recorded at 200 fps, resulting in high temporal resolution of
extracted emotion signals. Among changepoint algorithms, the
DynP approach produces the highest precision since it yields the
optimal solution to discrete optimization [69]. However, the DynP
guarantees the optimal solution only when the number of change-
points is known. That is, in most cases where the ECD is used, this
assumption is incorrect. Among approaches that do not require the
assumption, the BottomUpmethod shows the best performance. In
online changepoint methods, the Bayesian approach performs bet-
ter than the Gradient method when comparing performance when
the average number of detected changepoints is one.

Table 6 shows the performance of the online and offline meth-
ods on the MMI dataset. Since samples on the MMI dataset are
recorded at 25 fps and the temporal resolution is low, the overall
performance of algorithms on it is lower than on the CASME II.
The DynP and BottomUp methods also show higher precision than
the other methods in the onset detection task of macro expres-
sions. As shown in Section 4.1.3, the ground truth of the onset in
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Table 5
Onset detection performance on CASME II dataset. Note that the Avg. Prec. represents average precision calculated without columns that include missing values. Avg. # DCPs
describes the average number of detected changepoints. The normalized precision, Norm. Prec., is computed by dividing the Prec. by the Avg. # DCPs which represents the
precision per prediction.

Algorithms Avg. # DCPs Avg.

1 2 3 4 5 6 7 8 9 10 Prec.

Offline BinSeg 50:59 85:88 91:76 94:12 95:69 97:65 98:43 99:22 99:22 - 89:17
Window 46:27 66:67 79:22 86:33 89:22 93:93 96:04 97:43 - - 81:89
DynP 50:59 87:45 91:76 95:29 97:65 98:43 98:82 100 100 - 90:00
PELT 38:04 63:67 75:08 84:04 91:37 92:82 94:43 95:52 96:75 97:78 79:37

BottomUp 52:16 86:27 91:37 94:12 97:65 98:82 99:61 99:61 99:61 100 89:95
Online Gradient 36:47 54:51 67:84 75:69 81:96 84:71 88:63 89:80 90:59 91:76 72:45

Bayesian k 3 5 7 10 13 16 19 22 25 30 -
Avg. # DCPs 1:00 2:01 2:64 2:63 2:61 3:47 14:33 10:35 20:84 21:64 -

Prec. 44:31 48:24 55:69 60:78 67:45 73:33 95:29 94:90 92:55 81:57 -
Norm. Prec. 44:31 24:00 21:10 23:11 25:84 21:13 6:65 9:17 4:44 3:77 -

Table 6
Onset detection performance on MMI dataset.

Algorithms Avg. # DCPs Avg.

1 2 3 4 5 6 7 8 9 10 Prec.

Offline BinSeg 36:22 62:99 73:23 78:74 83:46 88:19 90:55 - - - 71:65
Window 26:77 55:12 72:00 80:56 - - - - - - 69:23
DynP 36:22 62:99 74:02 81:89 85:83 89:76 91:34 - - - 72:97
PELT - 57:74 70:76 79:00 84:23 88:28 90:26 92:78 95:37 96:61 69:17

BottomUp 35:43 64:57 73:23 80:31 86:61 88:19 88:19 89:76 92:13 92:91 72:70
Online Gradient 0 2:36 13:39 29:92 48:03 69:29 82:68 95:28 96:85 98:43 15:22

Bayesian k 3 5 7 10 13 16 19 22 25 30 -
Avg. # DCPs 1:00 2:17 2:77 2:93 3:48 4:99 11:95 8:06 9:81 8:53 -

Prec. 0 0 74:02 100 0 0 0 0 0 0 -
Norm. Prec. 0 0 26:72 34:13 0 0 0 0 0 0 -
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the MMI dataset is fixed at 16th frame, so the Bayesian method
performs best when the expected length k of the sub-signal is
appropriate. In general, this is not a reliable result because the
duration of macro and micro expressions is not fixed and varies
from 0:04 secs to 4 s. However, when the expected length of
sub-signals is approximately correct, the Bayesian approach pro-
duces outstanding performance.

We also evaluate our DECD framework on our in-the-wild data-
set, YoutubeECD. In Table 7, the performance of seven approaches
on the YoutubeECD is lower than those on the other in-the-lab
datasets. Because our framework is based on facial information,
the various variations of facial information have a significant
impact on performance. Unlike the in-the-lab datasets, the video
clips in the YoutubeECD were recorded in unrestricted environ-
ments, so the emotion signals are extracted based on facial images
reflecting diverse and large variation factors, such as changes in
facial identity, facial pose, illumination, occlusions, and so on. Nev-
ertheless, the Window method shows the highest performance
among online and offline algorithms. The Window method, on
the other hand, is heavily dependent on the length of the sliding
window algorithm, which is a user parameter. Therefore, it is inef-
fective for detecting emotion changes in videos with varying facial
expression durations along the temporal dimension. Even in an
unrestricted setting, DynP maintains a high level of performance
among seven methods.

We also analyze the execution time for changepoint detection
methods as shown in Table 8. Note that the execution time does
not include time for the multi-task emotion recognition and noise
filtering processes. The Gradient and Window methods are faster
than the others because of their algorithmic simplicity. High com-
plexity methods, such as the Bayesian, DynP, and PELT methods, on
the other hand, are slower than the others.
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4.6. Comparisons with the Other Approaches

Finally, we conducted comparative experiments with the other
approaches similar to our framework. Because, to the best of our
knowledge, our DECD framework is the first attempt to detect
emotional changes using facial expression information, there is
no comparative study for the task. We conduct comparative exper-
iments by adapting and modifying our framework for the facial
expression spotting task, which is most similar to the ECD task
as described in Section 3.6. We utilize the CAS(ME)2-cropped data-
set from the MEGC 20211 challenge for the spotting task. We use the
Intersection over Union (IoU) score to evaluate spotting algorithms
quantitatively, where true positive (TP) per interval is defined based
on the predicted interval and the ground-truth interval as follows
[66]:

Ipred \ Igt
Ipred [ Igt

P 0:5 ð24Þ

where Igt denotes the ground truth of the facial expression interval
between onset and offset points, and Ipred represents the predicted
interval from a spotting method.

Note that each ground truth interval corresponds to at most one
single predicted interval. If Eq. (24) is not satisfied, the sample is
classified as a false positive (FP). Then, for recall, precision, and
the f1-score metric, we count the number of TP, FP, and false neg-
ative (FN) samples for the spotting task.

The nine-dimensional emotion signal from a video sample on
the CAS(ME)2-cropped dataset and the results of spotted intervals
from our framework are depicted in Fig. 8. The emotion signal was

https://megc2021.github.io/


Table 7
ECD performance on YoutubeECD dataset.

Algorithms Avg. # DCPs Avg.

1 2 3 4 5 6 7 8 9 10 Prec.

Offline BinSeg 8:96 17:91 20:90 29:10 33:58 44:78 52:24 58:96 64:18 67:16 36:73
Window 5:22 15:67 22:39 31:46 43:52 51:46 60:35 67:91 75:62 - 41:51
DynP 8:96 19:40 22:39 30:60 39:55 47:01 54:48 58:96 64:93 69:40 38:48
PELT 10:45 15:75 24:78 31:86 36:23 43:39 50:54 57:78 62:87 64:56 37:07

BottomUp 6:72 13:43 18:66 29:85 39:55 47:01 49:25 53:73 59:70 63:43 35:32
Online Gradient 7:46 17:91 25:37 31:34 35:82 40:30 46:27 49:25 52:99 53:73 34:08

Bayesian k 3 5 7 10 13 16 19 22 25 30 -
Avg. # DCPs 1:00 2:03 2:57 2:77 4:11 8:20 35:01 23:25 26:85 26:34 -

Prec. 0:75 1:49 2:24 3:73 6:72 26:12 82:84 79:85 84:33 85:07 -
Norm. Prec. 0:75 0:73 0:87 1:35 1:64 3:19 2:37 3:43 3:14 3:23 -

Table 8
Average execution time for change point detection methods.

Algorithms Avg. Exec. Time per Sample (sec)

CASME II MMI YoutubeECD

Offline BinSeg 0:0156 0:0056 0:0090
Window 0:0077 0:0031 0:0050
DynP 0:1190 0:0119 0:0337
PELT 0:0859 0:0092 0:0223

BottomUp 0:0236 0:0083 0:0137
Online Gradient 0:0002 0:0001 0:0001

Bayesian 0:4420 0:1534 0:2677

Fig. 8. The emotion change signal, ground-truth intervals (green shading), and predicted intervals (red shading) for the spotting task. The red dotted lines indicate the onset
and offset points of the predicted intervals, whereas the green lines represent those of the ground-truth intervals. Note that the color darkens as the intervals overlap, so the
first three red lines produced three predicted intervals. In this facial expression video, there are six true positives, three false positives, and no false negatives.
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retrieved from a video sample of a person who had no facial
expression for the most part but occasionally smiled for a short
moment. By analyzing the emotion signal, this fact becomes appar-
ent. Our method predicted nine spotted intervals although this
video sample has six ground-truth intervals of facial expressions.
Applying Eq. (24) to those results, there are 6 TPs, 3 FPs, and 0
FNs for this video sample.

Table 9 shows results of comparative experiments with the
other spotting approaches on the CAS(ME)2 dataset. The Yuhong
et al. [83]’ method produces the best f1-score among various spot-
ting methods. However, this approach utilizes optical flow features
to analyze facial movements on a strictly normalized face, indicat-
ing that it yields poor performance with facial pose variations.
Even though our method was developed for the ECD task and
trained without the spotting annotations, the modified version as
described in Section 3.6, the spotting version of our Deep Emotion
Change Detection (DECD-spot), shows the comparable f1-score
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with the second highest precision. This is interesting because there
are 44 facial expression intervals with no offset like in Fig. 2 out of
a total of 374 on CAS(ME)2-cropped. That is, our DECD-spot does
not find them because our method is designed to detect explicit
changepoints for the ECD task. Furthermore, our DECD-spot does
not use any training data from CAS(ME)2-cropped. Nevertheless,
our DECD-spot yields comparable results with the other methods.
We also report Jun et al.’s approach [84] which is the first-ranked
method at MEGC 2022 on CAS(ME)3 dataset [85]. The DECD is
placed fifth, despite the fact that it is not based on the assumption
of the facial expression temporal model. Note that the DECD is the
unmodified version whose outputs are composed of only a combi-
nation of the detected changepoints. This demonstrates that our
framework is capable of identifying changes effectively. However,
our approach cannot detect any micro-expressions since we need
to raise the pen in Eq. (10) to maintain high detection performance.
In other words, lowering the pen improves micro-expression detec-



Table 9
Comparisons of state-of-the-art algorithms for the temporal spotting task on the CAS(ME)2 dataset. The CAS(ME)2-cropped dataset is provided by MEGC 2021 for a fair evaluation.
MaE and ME represent macro and micro facial expressions, respectively. DECD and DECD-spot depict the original version and the modified version of our DECD framework,
respectively.

Algorithms Dataset Challenge MaE ME Overall

F1-Score F1-Score Recall Precision F1-Score

Wang et al. [28] CAS(ME)2 - - - - - 0:0260
He et al. [78] CAS(ME)2 MEGC 2020 - - 0:1196 0:0082 0:0376
Gan et al. [79] CAS(ME)2 MEGC 2020 - - 0:1436 0:0098 0:0448
Pan et al. [27] CAS(ME)2 MEGC 2020 - - - - 0:0595

Zhang et al. [80] CAS(ME)2 MEGC 2020 - - 0:0547 0:2131 0:1403
Baseline [66] CAS(ME)2-cropped MEGC 2021 0:0401 0:0118 - - 0:0304
Pan et al. [81] CAS(ME)2-cropped MEGC 2021 0:1250 0:0250 0:1597 0:0919 0:1168
Yang et al. [29] CAS(ME)2-cropped MEGC 2021 0:2505 0:0153 0:1793 0:2310 0:2019
Yu et al. [82] CAS(ME)2-cropped MEGC 2021 0:380 0:063 - - 0:327

Yuhong et al. [83] CAS(ME)2-cropped MEGC 2021 0:3782 0:1965 0:5154 0:2577 0:3436
Jun et al. [84] CAS(ME)3-cropped MEGC 2022 - - 0:4444 0:2667 0:3333
DECD (Ours) CAS(ME)2-cropped - 0:2279 0:0000 0:2605 0:1816 0:2140

DECD-spot (Ours) CAS(ME)2-cropped - 0:2675 0:0000 0:2353 0:2593 0:2467
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tion but degrades overall performance. This point demonstrates
our method’s limitations in terms of micro-expressions, which
we will address in future research.
5. Conclusion

In this study, we explicitly stated and formulated the facial
expression-based ECD problem for the first time. The significance
and necessity of the ECD problem were explained, and the justifi-
cation for our problem was provided by demonstrating its distinc-
tion from the most similar problem in computer vision, the
temporal spotting of facial expression. We designed a weakly
supervised DECD framework that can be trained only with static
facial expression images to detect the timing of emotion changes.
Extensive experiments were carried out using our comprehensive
DECD framework on various datasets with temporal labels, demon-
strating the efficacy of our method for onset detection. Further-
more, our DECD framework was modified and tested for the
spotting task, with comparable results, indicating that the ECD task
can include the spotting task.

We conclude this paper with the hope that the facial
expression-based ECD task will aid researchers in better under-
standing people’s emotions, which are influenced by a variety of
non-verbal means of communication by providing a crucial time
for automatic emotion recognition. As our future work, we plan
to expand the ECD task for multiple persons rather than a single
person. Through the multi-person ECD task, it is feasible to exam-
ine whether an appropriate response occurred between partici-
pants at the proper time in social interactions. In particular, the
multi-person ECD task can be utilized for automatic ASD screening
because people with weak social communication capabilities, such
as those with ASD, have trouble responding to others’ emotions.
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