
1. Introduction

In recent years, breakthrough research has been
carried out in remote sensing fields with remarkable
advancement in the non-linear representation of neural

networks and the spatial feature learning capabilities 
of the convolution neural network (Ma et al., 2019; 
Zhu et al., 2017). More recently, each topic, such as
semantic segmentation, change detection, and image
captioning, has been integrated with large language
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models for downstream tasks like question answering
(Wen et al., 2023). However, it is worth noting that
satellite image super-resolution has not been as actively
pursued compared to its computer vision field and other
tasks in the remote sensing domain. The primary reason
for this is the lack of suitable datasets for analysis,
particularly datasets with submeter or cm unit spatial
resolution that are globally distributed, which are
limited in availability. Another reason could be the
practical challenge of obtaining a dataset that spans 
the entire range of imagery pyramids, from drone-to-
aerial-to-satellite, considering spatial resolutions ranging
from centimeters to tens of meters or even higher
degradation.

Image super-resolution categories could be divided
into single- and multi-frame image super-resolution
(Chen et al., 2022). These categories are further
distinguished by their approaches, which can be
classified as supervised and unsupervised (Wang et al.,
2022a). The distinct difference lies in how they utilize
data during training. Supervised methods train the
model using pairs of high-resolution and corresponding
low-resolution images. On the other hand, unsupervised
methods attempt to restore high-resolution images
using only their inherent features without needing
paired high-resolution data. In other words, both
supervised and unsupervised approaches require
reference data for quantitative and visual evaluations,
and the importance of high-quality data becomes 
even more pronounced when developing large-scale
foundation models such as the segment anything model
(Kirillov et al., 2023). While one could envision a
scenario where drone or aerial images are acquired
during the satellite passing time, in this case, the
significant disparity in image geometries would 
render them unsuitable for super-resolution research.
In this letter, we propose a refined pipeline to address
these challenges by leveraging images of extremely
high resolution. If such images are available, our
method, based on modulation transfer function (MTF)

simulation, allows us to create a benchmark dataset 
by degrading spatial resolution; thus, this method 
can generate datasets with spatial resolution ranging
from a few centimeters to several tens of meters while
maintaining the identical image geometry as the ultra-
high resolution images. This significant advantage makes
the benchmark dataset suitable for super-resolution
research. In addition, by applying state-of-the-art base
algorithms and conducting both visual and quantitative
analyses, we introduce the value of the proposed data
generation pipeline and discuss its implications.

2. Super-Resolution Benchmark Dataset

2.1. Open Dataset
As seen in various deep learning research, the

significance and necessity of well-crafted and sophisticated
datasets have increased, just as the development of
more advanced and deeper networks has explainability
(Hasanpour Zaryabi et al., 2022). Several publicly
available datasets exist in the computer vision fields of
super-resolution research to meet these needs. However,
in the remote sensing field, the availability of publicly
accessible datasets is limited, and most datasets exhibit
spatial resolutions within approximately 10 meters
(Wang et al., 2022a). As a result, there are significant
constraints for conducting super-resolution research 
at a submeter or cm unit spatial resolution. In the field
of remote sensing, recent trends in super-resolution
research and datasets can be referred to the well-
constructed study by Wang et al. (2022b), and as for
the latest developments in real-world single image
super-resolution and datasets, Chen et al. (2022) serve
as a valuable reference.

2.2. Benchmark Dataset for CAS500-1
The primary targeting sensor of this study is the

Compact Advanced Satellite (CAS)500-1 satellite 
of South Korea; however, the proposed generation
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process of the super-resolution image pyramidal dataset
can be equally applied to other satellites, such as 
the Korean multi-purpose satellite constellation. The
CAS500-1 was launched in March 2021 with a focus
on efficient land management, cartography, disaster
response, and 3D digital twin applications, and the main
specifications of CAS500-1 are summarized in Table
1 (Yoon et al., 2020). The CAS500-1 mission, which
has approximated 528 km orbital altitude, was initiated
as part of standardizing the production of medium-
sized satellites weighing about 500 kg, and the sensor
comprises the panchromatic band with a 0.5-meter
spatial resolution and the multispectral bands with a
2.0-meter spatial resolution. The multispectral bands,
as shown in Table 1, consist of four channels RGB,
near-infrared (NIR), and the life cycle of the mission is
four years.

3. A New Benchmark Dataset 
Using MTF Simulation

3.1. Pyramidal Image Generation Using
Airborne Imagery

The image pyramid or pyramid representation is 
a structure of multiscale signal representation applied
in signal processing and computer vision (Adelson et
al., 1984). The primary assumption of this image
pyramid is that the signal or image is subject to repeated

smoothing and subsequent sampling. In generating an
image pyramid, low-pass filters are commonly used,
and the MTF-based Gaussian low-pass filters have
been widely adopted in image fusion fields due to 
their ability to mimic the physical characteristics of
satellite sensors effectively (Kallel, 2014; Kim et al.,
2017; Massip et al., 2012). In other words, targeting
high- and low-resolution image pairs or super-resolution
pyramidal benchmark datasets can be constructed by
applying low-pass filtering that effectively reflects the
physical characteristics. As a result, this image pyramid
serves as valuable reference data in the research of
super-resolution imaging. In simple terms, we utilized
12 cm resolution aerial imagery provided by the
National Geographic Information Institute (NGII), and
these datasets mean that we can make training data 
that can enhance or super-resolve the 50 cm spatial
resolution of CAS500-1 imagery by nearly four times
to approximately 10 cm.

3.2. Generation of Benchmark Dataset
Using MTF Simulation

Typical super-resolution processes and optical
degradation models are considered inverse relationships
(Chen et al., 2022; Wang et al., 2022b); thus, low-
resolution image ILR is normally assumed to be a
degraded version from a corresponding high-resolution
image IHR, which can be represented as:

                   ILR = [IHR⊗M] ↓r + n                      (1)

where ⊗ denotes the optical degradation models 
defined by the MTF kernels M and ↓r represents the
downsampling operator. Mathematically, n means the
additive noise typically assumed to be Gaussian noise.
As shown in Eq. (1), in generating a high-quality super-
resolution benchmark dataset, the most crucial aspect
lies in effectively emulating the low-pass filters using
the MTF kernels M. This paper simulates the low-
pass filter using the MTF cutoff frequency, resulting in
a Gaussian bell shape.
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Table 1.  Specification of CAS500-1
Specification

Spatial resolution Panchromatic: 0.5 m
Multispectral: 2.0 m

Spectral range Panchromatic: 450–900 nm
Multispectral: 450–900 nm

Radiometric resolution 12 bits
Swath ≥ 12 km

Orbit Circular sun-synchronous 
ascending orbit

Launch date March 22, 2021



The MTF is the module of the Fourier transform of
the point spread function, and the satellite manufacturer
usually releases information about the MTF of 
the sensor (Ghassemian, 2016; Kallel, 2014). The
multispectral band cutoff values generally range from
0.25 to 0.30 in actual satellite sensors. In this study,
thus, the cutoff value of the CAS500-1 was set to 0.26
and assumed to be a bell-shaped Gaussian low-pass
filter. The 2D Gaussian low-pass filter is shown in 
Fig. 1 with cutoff values at Nyquist (Nyq) frequency
range from 0.1 to 0.9. As illustrated in Fig. 1, as the
cutoff frequency decreases, a significant amount of
high-frequency components or edge information in the
imagery is attenuated or removed by the MTF filters.
The primary research to utilize the MTF of satellite
sensors can be found in Aiazzi et al. (2006) and Vivone
et al. (2014).

4. Experiments

The airborne imagery utilized in this experiment was
provided by the NGII, and the study area corresponds
to map sheet number Seoul078-37608078 at a 1:5,000
digital map scale. The complete size of the imagery is
denoted as height × width, measuring 23,975 × 19,250
pixels. For experimentation purposes, a subset of the
image in the main entrance of Yonsei University was
extracted at a size of 512 × 512 pixels, as shown in 
Fig. 2. The CAS500-1 has four channels; however, we
processed data by targeting only three RGB channels.
The reason for this approach is that the input aerial
imagery provided by the NGII consisted of only three
RGB channels. It should be noted that even if the initial
aerial imagery had four bands, including the NIR band,
or if it was hyperspectral imagery, the processing steps
would remain the same.
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Fig. 1.  Simulated 2D Gaussian kernels by mimicking the MTFs of the satellite sensor. The spatial resolution ratio is set
to 4, and the Nyquist frequency ranges (a) 0.10, (b) 0.25, (c) 0.40, (d) 0.60, (e) 0.75, and (f) 0.90.

                   (a) Nyq = 0.10                                                (b) Nyq = 0.25                                                (c) Nyq = 0.40

                   (d) Nyq = 0.60                                                (e) Nyq = 0.75                                                 (f) Nyq = 0.90



4.1. Results and Analysis
The primary experimental goal of this study is to apply

our benchmark dataset to well-established algorithms,
often utilized as base models in natural image super-
resolution research, and assess their suitability for satellite
imagery super-resolution. In essence, our intention is
not to imply the ineffectiveness of the deep learning
networks within these base models. Instead, the focus

is on recognizing that the dataset used to train these base

models lacks appropriate spatial features for satellite

image super-resolution. For this reason, we utilized the

super-resolution base methods, namely the Blind Super-

Resolution Generative Adversarial Networks (BSRGAN),

Swin transformer Image Restoration (SwinIR)-Large

(Liang et al., 2021; Zhang et al., 2021). The former is a

GAN-based super-resolution method, while the latter
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Fig. 2.  The super-resolution results for proof of concept: (a) the input airborne imagery, (b) the MTF-simulated imagery,
(c) the output of the BSRGAN model, and (d) the output of the Swin-Large model.

                       (a) Input airborne imagery (12 cm)                                                         (b) MTF-simulated imagery (48 cm)

                                   (c) BSRGAN (12 cm)                                                                                 (d) Swin-Large (12 cm)



employs a vision transformer-based approach with
shifted windows.

The experimental results are depicted in Fig. 2. The
12-cm spatial resolution image is shown in Fig. 2(a),
and the MTF-based simulated 48-cm spatial resolution
image, which is assumed identical to CAS500-1 data,
is shown in Fig. 2(b). In addition, Fig. 2(a) indicates
details like pedestrian crossings, speed limits, railway
tracks, and other intricate landscapes. In contrast, the
simulated low-resolution image in Fig. 2(b) lacks
discernible traffic markings on the roads, and even the
pedestrian crossings, indicative of image modulation,
appear blurred. Fig. 2(c) presents the outcome of the
BSRGAN model, where the overall results resemble
an image segmentation output more than actual high-
resolution imagery and lack sharpness. Similarly, in
Fig. 2(d), the results of the Swin-Large model also
exhibit a lack of image sharpness, akin to an image
segmentation output, except for some apparent landscape
features on the ground.

Furthermore, neither produced satisfactory results
when quantitatively comparing the two super-resolution
methods to the reference data (Table 2). These outcomes
could potentially stem from using pre-trained models
without fine-tuning in our investigation. However, the
results signify that the algorithms serving as base
models for super-resolution research have not learned
suitable spatial features for deep learning analysis of
remote sensing data, specifically aerial and satellite
imagery. The quantitative evaluation of Table 2 reaffirms
this by providing numerical evidence; the peak signal-
to-noise ratio (PSNR) values were around 16 dB, and
the root-mean-square error (RMSE) approximated 
40 pixels. In 8-bit image super-resolution research,

achieving a PSNR value of around 30 dB is typically
considered common. In other words, a PSNR value of
approximately 16 dB and a universal image quality
index (UIQI) value of about 0.35 are notably low, which
aligns with the earlier-mentioned visual assessment of
inadequate results. This consistency between the visual
evaluation and quantitative outcomes underscores the
need for further research utilizing the well-crafted
benchmark dataset.

5. Conclusions

An ideal scenario would be to utilize a globally
distributed benchmark dataset to train super-resolution
deep learning models that capture worldwide land
covers and urban forms. However, constructing a dataset
encompassing different spatial resolutions considering
various spatial features is a highly challenging endeavor.
To address these limitations, this study employed 
MTF simulation of the CAS500-1 satellite to create a
benchmark dataset. Subsequently, super-resolution base
models were applied and compared to the reference
data for visual evaluation in Fig. 2 and quantitative
assessment in Table 2. However, the restored imagery
exhibited a loss of sharpness and even showed
segmentation-like outcomes, underscoring the need for
further research.

Especially considering the spatial heterogeneity and
dependence, which signify the varied configurations of
urban environments, conducting simulation studies
using real-world datasets rather than synthetic ones
would substantially enhance the values, as demonstrated
in this study. In conclusion, this study highlights the
significance of the benchmark dataset used for training
rather than solely pointing out limitations within the
deep learning networks of the base model. Again, when
considering spatial heterogeneity, using the MTF
simulation employed in this study could create a
benchmark dataset optimized for land covers in Korea.
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Table 2.  Statistics of the super-resolved imagery

Statistic
Method PSNR UIQI RMSE

BSRGAN 16.84 0.38 36.70
SwinIR-Large 16.04 0.35 40.21



In essence, what takes precedence is the meticulously
crafted benchmark dataset, and the high-performance
algorithm comes next, wherein performance comparison
is based on these benchmark datasets. Through this
approach, we anticipate the development of foundation
models shortly for super-resolution imaging in the
remote sensing field.
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