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Abstract

We propose a bandwidth prediction approach based on deep learning. The

approach is intended to accurately predict the bandwidth of various types of

mobile networks. We first use a machine learning technique, namely, the gra-

dient boosting algorithm, to recognize the connected mobile network. Second,

we apply a handover detection algorithm based on network recognition to

account for vertical handover that causes the bandwidth variance. Third, as

the communication performance offered by 3G, 4G, and 5G networks varies,

we suggest a bidirectional long short-term memory model with time distribu-

tion for bandwidth prediction per network. To increase the prediction accu-

racy, pretraining and fine-tuning are applied for each type of network. We use

a dataset collected at University College Cork for network recognition, hand-

over detection, and bandwidth prediction. The performance evaluation indi-

cates that the handover detection algorithm achieves 88.5% accuracy, and the

bandwidth prediction model achieves a high accuracy, with a root-

mean-square error of only 2.12%.
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1 | INTRODUCTION

Mobile traffic is growing quickly because of the prolifera-
tion of smart devices and advancements in mobile com-
munication technologies. From 31.16% in the first
quarter of 2015 to 58.99% in the second quarter of 2022,
smart devices generate a growing portion of Internet traf-
fic [1]. Users of smart devices frequently use video
streaming services, such as Netflix and Amazon Prime
Video. In particular, live video streaming services are
becoming increasingly popular, and by 2025, traffic
related to such services on the Internet is expected to
account for 17% of the total traffic [2]. As smart devices

are highly mobile, offering a steady streaming service is
challenging because of frequent dynamic network band-
width changes that substantially impact live video
streaming.

Adaptive bitrate streaming (ABS) is adopted for
streaming video in dynamic network environments. ABS
allows adapting the video quality to fluctuating network
capacity [3]. ABS enables high-quality video if the net-
work bandwidth is high and reduces the quality other-
wise. However, ABS fails to suitably react to sudden
bandwidth changes. ABS may timely respond to changes
in the network environment if the bandwidth is predicted
in a mobile network, in which large bandwidth changes
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likely occur due to user mobility. Hence, the bandwidth
should be predicted after identifying the presently
accessed network to account for the different communi-
cation properties of 3G, 4G, and 5G mobile networks [4].
In 4G networks, a latency of 10 ms is expected, while it
reduces to under 1 ms in 5G networks. In addition, the
peak data rates in 4G and 5G networks are 1 Gbps and
20 Gbps, respectively, while the user-experienced data
rates are 10 Mbps and 100 Mbps, respectively. Real-time
services with low latency and requiring high transmission
reliability, such as extended reality, demand preparations
for network quality of service (QoS) changes through
bandwidth prediction.

Figure 1 shows the market share of 3G, 4G, and 5G
networks worldwide. While 4G has a market share of
more than 70% in Europe and North America, 2G and 3G
remain representative in Asia and Latin America [5].
Overall, 3G, 4G, and 5G networks coexist globally. When
various mobile communication technologies are simulta-
neously accessible, mobile smart devices can switch the
type of mobile network as they displace. Mobile smart
devices experience horizontal handover in the same net-
work and vertical handover across different mobile net-
works. Sudden bandwidth variations occur under vertical
handover [6, 7]. Even when ABS is employed, vertical
handover causes unexpected fluctuations in network
bandwidth, and live streaming experiences playback
interruption and buffering. In addition, transmission con-
trol protocol (TCP) is disconnected during a vertical
handover because the Internet protocol (IP) address
changes, preventing users from accessing real-time ser-
vices until reestablishing the TCP connection. Under ver-
tical handover, TCP cannot adapt to the large variations
in bandwidth. To respond quickly to bandwidth

fluctuations and connection termination, handover detec-
tion is necessary.

For stable live streaming on mobile networks, the net-
work bandwidth should be predicted. As the network
performance of 3G, 4G, and 5G communication technolo-
gies varies, the network bandwidth should be estimated
according to the type of mobile network connection.
Before bandwidth prediction, the currently active net-
work should be identified. Therefore, to adequately pre-
dict the network bandwidth in a mobile network, the
connected mobile network should be identified. Then,
the bandwidth of the recognized mobile network should
be predicted accordingly.

Several methods for handover detection have been
proposed. To judge the occurrence of handover, a deep
neural network and a variety of machine learning tech-
niques, such as naïve Bayes, support vector machine
(SVM), and multilayer perceptron, have been employed
[8–10]. Based on the user movement pattern and current
location, handover detection was performed in Han and
others [11]. However, previous studies focused on the
decision for handover execution rather than handover
detection. When the movement patterns vary, they can-
not contribute to accurate handover detection. On the
other hand, bandwidth prediction has mainly been based
on either throughput modeling or communication his-
tory/patterns [12–16]. These approaches are ineffective
for mobile networks in dynamic communication environ-
ments because a stable communication environment is
assumed. Several techniques for bandwidth prediction
based on deep learning, such as the long short-term
memory (LSTM) architecture, have been explored [7, 17,
18]. Existing deep learning studies focused on environ-
ments with a single type of mobile network, whereas we
considered environments with coexisting mobile net-
works, including 3G, 4G, and 5G networks, in this study.

We aim to predict the bandwidth in mobile networks
implementing the 3G, 4G, 5G technologies by using mea-
surable data from smart devices. First, we propose a
machine-learning-based network recognition technique.
From a dataset, 10 representative features are selected as
the input. After evaluating the network recognition per-
formance of eight machine learning methods, we deter-
mine that the gradient boosting machine (GBM) is the
most appropriate for network recognition. Second, we
propose a vertical handover detection algorithm. Band-
width fluctuations occur due to handovers across net-
works. The proposed algorithm recognizes vertical
handover to deal with internetwork bandwidth varia-
tions. The algorithm may allow to quickly handle such
variations. Third, we propose a bandwidth prediction
model called bidirectional LSTM (Bi-LSTM) mode with
time distribution (TD) to estimate the bandwidth of eachF I GURE 1 Market share of telecommunication technologies.
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available network. After pretraining based on traces
involving 3G, 4G, and 5G networks, fine-tuning for each
type of mobile network is applied to improve the predic-
tion accuracy. We achieve outstanding performance for
the handover detection algorithm and bandwidth predic-
tion model for each type of network. In addition to
mobile users, stationary users can adapt to bandwidth
variations over time using our approach. Hence, uninter-
rupted streaming is guaranteed, and users can access
video streaming and other demanding services without
experiencing connection problems regardless of band-
width variations.

The rest of this paper is organized as follows. In
Section 2, we present related work. In Section 3, we dis-
cuss the dataset for network recognition, handover detec-
tion, and bandwidth prediction. Section 4 details network
recognition per type of mobile network based on
machine learning. In Sections 5 and 6, we introduce the
handover detection algorithm and bandwidth prediction
through the Bi-LSTM model with TD, respectively. In
Section 7, the performance of handover detection and
bandwidth prediction is reported. Finally, we draw con-
clusions in Section 8.

2 | RELATED WORK

Various studies on handover in mobile networks are
available. In Huang and others [9], the user equipment
(UE) employed a deep neural network considering the
change in signal-to-interference-plus-noise ratio (SINR)
to decide handover between cells in a 5G network. In
Lima and others [10], various machine learning methods,
including SVM and multilayer perceptron, performed
handover decisions in long term evolution (LTE) net-
works. In Goutam and Unnikrishnan [8], a naïve Bayes
algorithm was proposed for vertical handover decision
from inputs of network coverage, bandwidth, receive side
scaling, and QoS. Handover execution based on extreme
gradient boost (XGBoost) between a millimeter-wave and
LTE network was proposed in Nayakwadi and
Fatima [19]. XGBoost-based handover mechanism
increased the handover success rate and decreased the
signal overhead. Unlike earlier studies focused on hand-
over decision-making, we apply machine learning to
handover detection. In Han and others [11], handover
detection was achieved using data mining. To anticipate
the future location of a mobile terminal, data mining was
used to analyze object movement patterns. Using the pre-
dicted location, handover was detected. However, hand-
over detection was incorrect if the movement patterns
differed. In contrast, our proposal uses diverse network
features for handover detection.

Studies on real-time bandwidth prediction have been
carried out for many years. In Huang and Subhlok [12], a
pattern based on the TCP window size was used to fore-
cast the TCP throughput. A heuristic algorithm was used
in the absence of a matching pattern. In Mirza and
others [14], based on prior file transfer data, support vec-
tor regression, an SVM approach for regression, was used
to predict the throughput. Various studies have used for-
mulations to predict the TCP throughput. In the litera-
ture [15, 16], throughput models based on the round-trip
time (RTT) and loss rate performed throughput predic-
tion. However, the prediction accuracy using these indi-
cators was low given the difficulty to correctly measure
the RTT and loss rate. To improve the accuracy of TCP
throughput prediction, a throughput model based on the
available bandwidth and router buffer size was proposed
in Hwang and Yoo [13]. However, throughput prediction
studies based on history or formulas could not be used in
a mobile network given the dynamically changing com-
munication environment instead of the commonly
assumed stable communication environment.

Deep learning has been applied to bandwidth predic-
tion. TRUST predicted the TCP throughput in mobile
networks by analyzing movement patterns and then esti-
mating the throughput using an LSTM model according
to these patterns [18]. In Mei and others [17], an LSTM
recurrent neural network predicted the bandwidth in a
mobile network. To choose the best model from pre-
trained LSTM models for online bandwidth prediction,
model switching and Bayesian fusion were applied. In Li
and others [7], for various movement scenarios, an
attention-based LSTM model employed bandwidth pre-
diction considering bandwidth fluctuations based on the
form of transportation of the user, such as bus or train.
To predict bandwidth, the attention-based LSTM model
first used an SVM to identify the movement scenario and
then employed LSTM and an attention mechanism to
predict the bandwidth. However, previous studies pre-
dicted the throughput in mobile networks considering
only HSDPA (High-Speed Downlink Packet Access) or
LTE communications. On the other hand, we predict the
bandwidth considering mobile networks implementing
the 3G, 4G (or LTE), and 5G technologies. Similarly, in
Yun and others [20], machine learning was used for
bandwidth prediction and network resource reservation
for efficient large-capacity data transfer in high-
performance networks.

3 | DATASET

For network recognition, handover detection, and band-
width prediction, we used the dataset collected by the
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Mobile and Internet Systems Laboratory at University
College Cork [21, 22]. The dataset has 83 trace files and
measurements over 3142 min. Twenty-six network
properties, including relative signal strength indicator
(RSSI), uplink bandwidth, and downlink bandwidth,
were measured every second using the G-NetTrack Pro
monitor [23]. Without requiring root access,
G-NetTrack Pro gathered data on a variety of channels,
contexts, cells, and throughputs on Android devices.
The dataset was measured in two types of mobility pat-
terns: stationary and moving in a car. The bandwidth
was evaluated using two applications: file download
and video streaming in Netflix and Amazon Prime
Video. The 5G network was an Irish network, and in
areas without 5G base stations, access to a 4G or 3G
network was available. For scenarios using different
networks, such as 3G, 4G, and 5G, we employed the
dataset in a mobile environment. The dataset obtained
from file download was used to focus on the network
bandwidth. Hence, during movement, 16 file download
traces were used with measurement duration of 27607s.

For training, 12 trace files with a measurement time of
20008 s were used. For testing, 4 trace files with a mea-
surement time of 7599 s was used. A total of 27607 sam-
ples were obtained because data were measured every
second over the measurement interval, with 20008 sam-
ples used for training and the remaining 7599 samples
used for testing.

Figure 2 shows the download rate per trace over time.
The green, orange, and blue curves indicate 3G, 4G, and
5G networks, respectively. As shown in the figure,
14 traces used two or three types of networks. As
expected, the fastest average download rate was obtained
for 5G networks followed by 4G and finally 3G networks.
For each trace, the usage time of each type of network
varied. Figure 3 shows the measured usage times. Com-
pared with 3G networks, 5G networks were used more
frequently and achieved a longer overall usage time.
However, as shown in Figures 2 and 3, the connections
to 3G networks lasted longer than those to 5G networks
given the larger 3G coverage and less frequent disconnec-
tions compared with 5G technology.

F I GURE 2 Download rate per trace over time.
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4 | NETWORK RECOGNITION

We begin by discussing network recognition based on
machine learning. To identify the network to which a
smart device is connected, the proposed scheme employs
machine learning. To determine the best machine learn-
ing technique for network recognition, we assessed the
network recognition performance of eight candidates:
logistic regression, naïve Bayes, SVM, random forest,
decision tree, K-nearest neighbors (K-NN), GBM, and
adaptive boosting (AdaBoost). To determine input fea-
tures for effective network recognition using machine
learning, we employed the permutation feature impor-
tance of random forest to select the most representative
among the 26 network features collected in the dataset.
The 10 features listed in Table 1 were used as input. Over
the measurement period, features were periodically col-
lected, and their averages and standard deviations were
used as inputs. For instance, the reference signal received
power (RSRP) was measured once every second over 10 s
for a measurement period of the same duration. Then,

our scheme calculated the mean and standard deviation
across the 10 measurements to establish the input for
machine learning.

We measured the accuracy, precision, recall, and
recognition time to assess the network recognition

F I GURE 3 Usage time per mobile network within each trace.

TABL E 1 Features used as input for machine learning.

Feature Description

DL bitrate Downlink bandwidth (Mbps)

UL bitrate Uplink bandwidth (Mbps)

NRxSRP RSRP of neighboring cell

RSRP Reference signals received power

RSSI Received signal strength indicator

NRxSRQ RSRQ of neighboring cell

Speed Displacement speed

SNR Signal-to-noise ratio

RSRQ Reference signal received quality

CQI Channel quality indicator

LEE ET AL. 209
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performance. The percentage of accurate responses
across all the predictions defines the accuracy, which is
obtained as follows:

Accuracy¼ TPþTN
TPþFNþFPþTN

, ð1Þ

where TP, TN, FN, and FP indicate numbers of true posi-
tives, true negatives, false negatives, and false positives,
respectively. The precision is defined as the ratio of true
positives to expected positives as follows:

Precision¼ TP
TPþFP

: ð2Þ

The recall is the proportion of correct predictions to
correct cases and calculated as follows:

Recall¼ TP
TPþFN

: ð3Þ

The recognition time is the amount of time taken by a
machine learning technique to identify a network.

The accuracy and precision of network recognition
for the eight machine learning techniques are shown in
Figures 4 and 5, respectively. GBM outperformed the
other machine learning techniques with an accuracy of
88.5%. In terms of precision, GBM and random forest
achieved high performance, with values of 91.9% and
91.6%, respectively. The recall of network recognition is
shown in Figure 6. The highest performance was
achieved by GBM at 91.5%. Figure 7 shows the time
required for network recognition. Logistic regression,

naive Bayes, and decision tree recognition were the fast-
est techniques for network recognition. However, these
techniques performed poorly in terms of accuracy, preci-
sion, and recall. As the GBM achieved superior network
recognition accuracy, precision, and recall as well as a
reasonable recognition time of 15 ms, we used it as the
machine learning technique for network recognition.

5 | HANDOVER DETECTION

We introduce a handover detection algorithm based on
network recognition and explain three typical handover
scenarios. The proposed algorithm employs the machine-

F I GURE 4 Accuracy of network recognition using different

machine learning techniques.
F I GURE 5 Precision of network recognition using different

machine learning techniques.

F I GURE 6 Recall of network recognition using different

machine learning techniques.
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learning-based network recognition technique to regu-
larly identify the current network. A handover is recog-
nized if a network other than the currently used one is
consistently identified above a threshold. For instance, if
a 4G network is consistently detected above the threshold
and the current network is 5G, handover is detected from
the 5G to the 4G network.

Algorithm 1 describes the proposed handover detec-
tion algorithm. A network already recognized by a smart
device is designated by a base variable, and a network
that was just recognized and distinct from the base is
designated by a temp variable. The current variable refers
to the network that is currently identified by the
proposed network recognition scheme. When operation
DETECT_HANDOVER is executed, the current value,
also known as currently recognized network identifier, is
supplied as a parameter. If the base and current network
identifiers are different, a network other than the base
has been detected. If the temp and current variables are
equal, a counter is increased because the same network is
being identified. The counter is set to 1, and the current
value is kept in the temp variable in case that the current
and temp variables differ, indicating a new network con-
nection. If the base and current network identifiers are
the same but the base and temp variables differ, connec-
tion to a different network for a short time or improper
network detection occurred. Hence, the temp variable is
initialized with the value of the base variable. When the
counter reaches a threshold, a handover has taken place
because the same network has lately been identified
numerous times. The base variable is updated with the
value of the temp variable, and the counter is initialized
when handover is detected.

The first scenario of handover from a 5G to a 4G net-
work is described in Figure 8. The handover recognition
threshold is 5. The base, temp, and current variables are
listed in Table 2 at different instants. The values of the
base, temp, and current variables are identical for the 5G
network from t0 to t1. At time t2, the 4G network is
detected, and the temp and current values are updated to
4G. At t3, the 4G network is identified over five consecu-
tive timesteps. As a result, the handover detection

F I GURE 7 Network recognition time for different machine

learning techniques.

TABL E 2 Variable values for handover scenario 1 at different

instants.

t0 t1 t2 t3

base 5G 5G 5G 4G

temp 5G 5G 4G 4G

current 5G 5G 4G 4G

F I GURE 8 Handover scenario 1.
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algorithm recognizes the handover and switches the base
value to 4G.

Figure 9 describes the second scenario, in which a 5G
network switches to a 4G network. After briefly recon-
necting to the 5G network, a connection is established to
the 4G network. The values of the base, temp, and cur-
rent variables are 4G, 5G, and 5G, respectively, from t0 to
t1, as listed in Table 3. A 4G network is recognized at t2,
and the temp variable is updated to 4G. At t3, the 4G net-
work is identified at five consecutive timesteps, but as the
base and current variables are equal, this is not regarded
as a handover.

The final handover scenario is described in Figure 10.
Switching from a 5G to a 4G network and then switching
from the 4G network to a 3G network occur. Table 4 lists
the values of the base, temp, and current variables from
t1 to t4. The 4G network is identified at time t1, and the
algorithm recognizes the handover from the 5G to the 4G
network at time t2. After t2, it joins the 5G network, but

before the count hits the threshold, it connects to the 3G
network at t3. At t4, the counter increases to 5, and hand-
over from the 4G to the 3G network is detected.

6 | BANDWIDTH PREDICTION

For bandwidth prediction in a mobile network, the three
main components of the proposed scheme are data pre-
processing, pretraining for the deep learning model, and
fine-tuning of the pretrained model. First, the missing
values in the dataset are identified during data preproces-
sing. If there are missing values, the corresponding
entries are filled with zeros. Data before and after prepro-
cessing are shown in Figures 11 and 12. As the indexes
from 11 to 13 in Figure 11 have no RSSI values, the corre-
sponding entries are set to zero, as indicated in Figure 12.
Then, normalization between 0 and 1 using minmaxsca-
ler is applied to the dataset values.

The dataset shows frequent vertical handover across
3G, 4G, and 5G networks. As a result, the access time of
each network is short. When the connection period per
network is brief, time-series data processing using an
optimized LSTM model has a detrimental impact on
bandwidth prediction. Hence, we apply pretraining to the
model for each trace regardless of the type of mobile net-
work to improve the accuracy of bandwidth prediction.

TAB L E 4 Variable values for handover scenario 3 at different

instants.

t0 t1 t2 t3 t4

Base 5G 5G 4G 4G 3G

Temp 5G 4G 4G 3G 3G

Current 5G 4G 4G 3G 3G

F I GURE 1 0 Handover scenario 3.

TAB L E 3 Variable values for handover scenario 2 at different

instants.

t0 t1 t2 t3

base 4G 4G 4G 4G

temp 5G 5G 4G 4G

current 5G 5G 4G 4G

F I GURE 9 Handover scenario 2.

F I GURE 1 2 Data after preprocessing.

F I GURE 1 1 Data before preprocessing.
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Pretraining is performed using the Bi-LSTM model with
TD model. This model consists of two LSTM layers, three
dropout layers, one TD layer, and one Bi-LSTM layer.
Each layer has 48 units. The hyperparameters for model
training are listed in Table 5.

Regardless of the network, the pretrained model can
predict the bandwidth. The model for each type of net-
work is then fine-tuned based on the pretrained model to
improve the accuracy of bandwidth prediction. For
instance, the pretrained model is fine-tuned using data
from 5G networks to predict the bandwidth of those net-
works. Pretraining and fine-tuning use the Bi-LSTM
model with TD model. The hyperparameters used for
fine-tuning are listed in Table 6. The learning rate and
number of epochs are less than those of pretraining to
reduce the loss for each type of network because fine-
tuning progresses with more learning on the pretrained
model. As the batch size affects the model performance
[24, 25], each network model is fine-tuned with a variable
batch size. The pretrained model hyperparameters,
including timestep, dropout rate, optimizer, and loss
function, are also used for fine-tuning.

The 10 features listed in Table 1 are the inputs used
by the Bi-LSTM model with TD model. The Shannon–
Hartley theory states that an important feature is the
number of allocated resource blocks because the usable
bandwidth is proportional to that number. The reference
signal received quality (RSRQ) is calculated using RSRP,
RSSI, and the number of resource blocks, as indicated
in (4) [26], where NRB is the number of resource blocks
in the measurement bandwidth. As the proposed Bi-

LSTM model with TD model employs RSRQ, RSRP, and
RSSI as inputs, the number of resource blocks is implicit
in the proposed model and used for bandwidth predic-
tion. However, the number of resource blocks allotted to
a UE may vary depending on the number of active users
in a cell, which affects the prediction of the UE available
bandwidth [27]. Nevertheless, the proposed bandwidth
prediction model uses RSRQ without considering the
number of users owing to the lack of this information in
the dataset.

RSRQ¼NRB�RSRP
RSSI

: ð4Þ

7 | EVALUATION

We evaluated the performance of the proposed approach.
First, we measured the performance of the proposed
handover detection algorithm and then that of the band-
width prediction model.

7.1 | Handover detection

We evaluated the performance of the handover detection
algorithm by measuring the precision, recall, and F1
score on the test set. In every test scenario, as handover
detection delays with an increasing measurement period,
we set the measurement period to 20 s. First, we mea-
sured the precision, which is the proportion of true posi-
tive results to the actual number of positive results. The
measured precision is shown in Figure 13. The handover

TAB L E 6 Hyperparameters for fine-tuning.

Value

Hyperparameter 5G 4G 3G

Learning rate 0.00002 0.00001 0.00002

No. of epochs 2 5 5

Batch size 192 128 16

TAB L E 5 Hyperparameters for pretraining.

Hyperparameter Value

Timestep 10

Dropout rate 0.2

Optimizer Adam

Learning rate 0.0001

Loss function MSE

No. epochs 1500

Batch size 128

F I GURE 1 3 Precision of handover detection algorithm.
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detection precision in every scenario exceeds 70%, with
an average of 82.44%. The measured recall is shown in
Figure 14 and indicates the proportion of true positives to
true cases. In the measurement results, it performed the
best on all tests. According to the precision and recall,
the proposed handover detection algorithm detected all
true vertical handovers, but precision suffered because
it predicted more vertical handovers than the actual
number.

The F1 score was calculated considering both preci-
sion and recall. The F1 score is calculated as

F1 score¼ 2�Precision�Recall
PrecisionþRecall

ð5Þ

where Precision and Recall are the precision given by (2)
and recall given by (3), respectively. An increase in the
F1 score indicates that the handover detection perfor-
mance enhances. Figure 15 shows the F1 score for the
test set. Most of the F1 scores were higher than 80,
demonstrating that the proposed handover detection
algorithm adequately detected vertical handover.

7.2 | Bandwidth prediction

We also evaluated the accuracy of bandwidth prediction
for each network by calculating the root-mean-square
error (RMSE) as follows:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
L

X

L

n¼1

ðyn�pnÞ2Þ
v

u

u

t : ð6Þ

The difference between the actual value, yn, and pre-
dicted value, pn, is used to calculate an error value that is
squared. The same operation is performed on all the L
samples, and the sum of the errors is calculated. Then,
the average error is calculated by dividing the sum by L.
The square root is finally taken to fit the original data
dimension.

Only 13 5G communication samples were extracted
from four test sets to evaluate the bandwidth prediction
accuracy of 5G networks. Figure 16 shows the measured
accuracy of bandwidth prediction, and the average RMSE
of the proposed model was 7.15. The bandwidth predic-
tion of our model was accurate despite the large

F I GURE 1 4 Recall of handover detection algorithm. F I GURE 1 5 F1 score of handover detection algorithm.

F I GURE 1 6 Accuracy of bandwidth prediction for 5G

network.
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bandwidth fluctuations in the 5G network. Eight 4G net-
work samples were extracted from four test sets.
Figure 17 shows the bandwidth prediction on eight 4G
network samples. The average RMSE was 2.12, and most
of the samples showed a low RMSE. Hence, the proposed
model accurately predicted the 4G network bandwidth.
Owing to the low connection frequency of 3G networks,
two samples were extracted from the test set. Figure 18
shows the measured accuracy of bandwidth prediction
for 3G networks. The average RMSE was 0.57, indicating
an excellent accuracy of bandwidth prediction.

Figures 16, 17, and 18 show that the average RMSE,
which measures the accuracy of bandwidth prediction,

degrades as the communication generations increase
from 3G to 4G and finally 5G. Considering resource
blocks allotted to the UE is more complicated because a
higher communication generation uses a higher carrier
frequency and requires more resource blocks. We used a
limited dataset that was measured in Android devices
without root access owing to the lack of a specific dataset,
as described in Section 6. The accuracy of bandwidth pre-
diction for 5G networks may increase if we incorporate
the number of resource blocks allotted to the UE as input
in future work.

8 | CONCLUSION

We propose a bandwidth prediction approach for mobile
networks. Machine learning and the permutation feature
importance of random forest are used to identify the cur-
rently connected network. Based on the network recogni-
tion, we apply a vertical handover detection algorithm.
When a handover is detected, the Bi-LSTM model with
TD model for the corresponding type of mobile network
is used to predict the bandwidth. Handover detection and
bandwidth prediction achieved high performance in
evaluation tests. Future studies will include the addition
of the number of resource blocks allocated to the UE to
the input features for bandwidth prediction, aiming to
increase the accuracy of bandwidth prediction, especially
for 5G networks.
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